Chapter 5

5. Open mappings and Homeomorphisms

Def. 5.1: Let (X, τ) and (Y, σ) be two top. spaces and let $f: X \rightarrow Y$ be a mapping. Then

(1) f is said to be an open mapping if f(G) is σ -open set in Y, for each τ -open set G of X.

(2) f is said to be a closed mapping if f (F) is σ -closed set in Y, for each τ -closed set F of X.

(3) f is said to be bicontinuous if f is open and continuous, i.e.,

 $(f \text{ and } f^{-1} \text{ are continuous}).$

(4) f is said to be homeomorphism if

(i) *f* is bijective (one-one and onto)

(ii) f is a τ - σ continuous.

(iii) f^{-1} is a σ - τ continuous (or *f* is an open mapping).

Def. 5.2: (Homeomorphic Spaces)

Two top. spaces are homeomorphic if there exists a homeomorphism mapping from one of them into the other.

Then Y is said to be a homeomorphic to X and denoted by $Y \cong X$.

Q*: Show that \cong is an equivalence relation (**H.W.**).

Def. 5.3: (Topological Property)

A property of a space X is said to be a topological property if it's preserved under homeomorphism mapping, i.e.,

if (X, τ) and (Y, σ) are two topological spaces and $f : X \rightarrow Y$ is a homeomorphism mapping, then a property **P** of X has a topological property if f(X) has the same property **P**, i.e.,

if Y has the same property **P**.

Ex 5.4: Connectedness and Compactness have topological property.

Remark 5.5: A property which is preserved under continuous mapping is also preserved under homeomorphism.

Th 5.6: Let (X, τ) and (Y, σ) be two top. spaces and let $f: X \rightarrow Y$ be a bijective mapping, then the following statements are equivalent:

(1) f is homeomorphism.

(2) f is continuous and open.

(3) f is continuous and closed.

Proof: H.W.

Ex 5.7: Consider the topology

 $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ on $X = \{a, b, c\}$ and

 $\sigma = \{\phi, \{r\}, \{p, q\}, Y\} \text{ on } Y = \{r, p, q\}.$

Find which of the mappings defined as follows are:

(1) cont. fun.?

(2) open fun.?

(3) closed fun.?

(4) bicontinuous fun.?

(5) homeomorphism.?

(i)
$$f(a) = r, f(b) = r, f(c) = r$$
.

(ii)
$$\mu(a) = p$$
, $\mu(b) = q$, $\mu(c) = r$.

Solution: (i)

$$f(a) = r, f(b) = r, f(c) = r.$$

(1) $f^{-1}(\phi) = \phi, f^{-1}(\{r\}) = \{a, b, c\} = X.$
 $f^{-1}(\{p, q\}) = \phi, f^{-1}(Y) = X.$

Hence f is cont.

(2) $f(\phi) = \phi$, $f(\{a\}) = \{r\}$, $f(\{b, c\}) = \{r\}$, $f(X) = \{r\}$. Also, $\{r\}$ is open in (Y, σ) .

Hence f is open fun.

(3) Now, τ -closed sets are

X, $\{b, c\}, \{a\}, \phi$.

The σ -closed sets are

 $Y, \{p, q\}, \{r\}, \phi.$

 $f(X) = \{r\}, f(\{b, c\}) = \{r\}, f(\{a\}) = \{r\}, f(\phi) = \phi.$

Hence f is closed fun.

(4) Since f is cont. and open, so it is bicontinuous.

(5) **H.W.**

(ii) **H.W.**

Th 5.8: Let (X, τ) and (Y, σ) be two top. spaces. Then a mapping $f: X \rightarrow Y$ is open **iff**

 $f(\mathbf{A}^{\mathbf{o}}) \subset (f(\mathbf{A}))^{\mathbf{o}}, \forall \mathbf{A} \subset \mathbf{X}.$

(Q: State and prove an equivalent statement of open function).

Proof: (\Rightarrow) .

Let *f* be an open mapping and $A \subset X$. Then A° is a τ -open set in X.

Since f is an open mapping, then $f(A^{\circ})$ is σ -open set in Y (by Def. of open mapping).

$$\Rightarrow (f(A^{\circ}))^{\circ} = f(A^{\circ}) \text{ (Th. A is open } \leftrightarrow A^{\circ} = A).$$

But, $A^{\circ} \subset A \Rightarrow f(A^{\circ}) \subset f(A)$ [How ?]
$$\Rightarrow (f(A^{\circ}))^{\circ} \subset (f(A))^{\circ} \text{ [since } A \subset B \to A^{\circ} \subset B^{\circ}]$$

So, $f(A^{\circ}) \subset (f(A))^{\circ}$.

Conversely, let $f(A^{\circ}) \subset (f(A))^{\circ}, \forall A \subset X$.

To show that f is an open mapping.

Let G be any τ -open set in X.

$$\Rightarrow$$
 G^o = G [Th: A is open \leftrightarrow A^o = A]

$$\Rightarrow f(\mathbf{G}^{\mathbf{o}}) = f(\mathbf{G}).$$

i.e., $f(G) = f(G^{\circ}) \subset (f(G))^{\circ}$ [By given].

But,
$$(f(G))^{\circ} \subset f(G)$$
 [Since $A^{\circ} \subset A$]

$$\Rightarrow f(\mathbf{G}) = (f(\mathbf{G}))^{\mathrm{o}}.$$

Hence f(G) is an open set (by Def. of open mapping).

Whence *f* is an open mapping (By Def. of open fun.).

Th 5.9: Let (X, τ) and (Y, σ) be two top. spaces.

A mapping $f: X \rightarrow Y$ is closed **iff**

 $\operatorname{Cl}(f(A)) \subset f(\operatorname{Cl}(A)), \forall A \subset X.$

(Without proof)

Th 5.10: Let (X, τ) and (Y, σ) be any two top. spaces.

Let the mapping $f: X \rightarrow Y$ be bijective.

Then f is a homeomorphism **iff**

 $f(Cl(A)) = Cl(f(A)), \forall A \subset X.$

(Q: State and proof an equivalent statements of homeomorphism)

Proof: (\Rightarrow) .

Suppose that f is a homeomorphism, then by Th. 5.6, we obtain

(f is bijective, f is cont. and f is closed).

If $A \subset X$, then $f(Cl(A)) \subset Cl(f(A))$ [Since *f* is cont.(by Th. 4.16)]

Since *f* is closed mapping, then $Cl(f(A)) \subset f(Cl(A))$ [by Th. 5.9], and so

 $f(\mathrm{Cl}(\mathrm{A})) = \mathrm{Cl}(f(\mathrm{A})).$

Conversely, let $f(Cl(A)) = Cl(f(A)), \forall A \subset X$.

 $\Rightarrow f(Cl(A)) \subset Cl(f(A)) \Rightarrow f \text{ is cont [by Th. 4.16]}.$

Also, $Cl(f(A)) \subset f(Cl(A)) \Rightarrow f$ is closed [by Th 5.9].

Hence f is a homeomorphism.

Some Questions about Chapter 5

Q1/ Let the real function $f : \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x) = x^2$. Show that *f* is not open fun.

Q2/ Let **B** be a base for a topological space X. Show that if $f: X \rightarrow Y$ has the property that f[B] is open for every $B \in B$, then f is an open fun.

Q3/ Show that the closed interval A = [a, b] is homeomorphic to the closed unit interval I = [0, 1].

Q4/ Give an example of a real function $f: \mathbf{R} \rightarrow \mathbf{R}$ such that f is continuous and closed, but not open.