Question Bank General Topology 2022-2023

Q1/ Suppose a singleton set {p} is an open subset of a topological space X. Show that for any topological space Y and any function $f : X \rightarrow Y$, f is cont. at $p \in X$.

Q2/ State a theorem, which is equivalent to cont. fun. interms of interior of a set.

Q3/ Show that, in topology, every continuity is sequential continuity.

Q4/ Show that the identity function i: $(X, \tau) \rightarrow (X, \sigma)$ is continuos iff τ is finer than σ , i.e., $\sigma \subset \tau$.

Q5/ Let $\{\tau_i\}$ be a collection of topologies on a set X. If a fun. $f: X \rightarrow Y$ is continuous with respect to each τ_i , then show that *f* is continuous with respect to the intersection topology $\tau = \bigcap_i \tau_i$.

Q6/ Under what conditions will a function $f : X \rightarrow Y$ not be continuous at a point $p \in X$?

Q7/ Let X and Y be topological spaces. Then show that a fun. $f: X \rightarrow Y$ is continuous iff it is continuous at every point $p \in X$.

Q8/ Let the fun. $f: X \rightarrow Y$ and g: $Y \rightarrow Z$ be continuous. Then the composition fun. g o $f: X \rightarrow Z$ is also continuous.

Q9/ State and prove an equivalent statement of open function.

Q10/ State and proof an equivalent statements of homeomorphism.

Q11/ Let **B** be a base for a topological space X. Show that if $f: X \rightarrow Y$ has the property that f[B] is open for every $B \in \mathbf{B}$, then *f* is an open fun.

Q12/ Show that the closed interval A = [a, b] is homeomorphic to the closed unit interval I = [0, 1].

Q13/ Give an example of a real function $f: \mathbb{R} \to \mathbb{R}$ such that f is continuous and closed, but not open.

Q14/ What is the relation between separated sets and disjoint ?

Q15/ State and prove a theorem which is equivalent to two separated sets interms of subspace.

Q16/ Show that if (X, τ) is disconnected and τ' is finear than τ (i.e., $\tau \subset \tau'$). Then, (X, τ') is disconnected.

Q17/ Show that if (X, τ) is connected and τ' is coarser than τ (i.e., $\tau' \subset \tau$). Then, (X, τ') is connected.

Q18/ Show that connectedness being a topological property.

Q19/ State and prove four equivalent statements of connectedness.

Q20/ State and prove a theorem which is equivalent statement of disconnectedness in terms of the discrete space $\{0, 1\}$.

Q21/ Show that every discrete space X is a totally disconnected space.

Q22/ Let $X = \{a, b, c, d, e\}$ and $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$. Show that (X, τ) is disconnected space.

Q23/ Show that (\mathbf{R}, \mathbf{U}) is connected space, where \mathbf{R} is the set of real numbers and \mathbf{U} is the usual topology.

Q25/ Show that every finite set is compact.

Q26/ Show that compactness being a topological property.

Q27/ Let τ be the cofinite topology on any set X. Show that (X, τ) is a compact space.

Q28/ Show that any infinite subsets A of a discrete topological space X is not compact.

Q29/ Consider the following class of open intervals:

 $A = \{(0, 1), (0, 1/2), (0, 1/3), (0, 1/4), ...\}$. Show that A has the FIP.

Q30/ State and prove an equivalent statement of T_0 -space.

Q31/ Every T_1 -space is a T_0 -space, but the converse is not true in general. Give an example.

Q32/ State and prove an equivalent statement of T_1 -space.

Q33/ State a property of a T₁-space.

Q34/ T₂-space being hereditary property.

Q35/ Show that a finite subset of a T_1 -space X has no accumulation points.

Q36/ Show that every finite T_1 -space X is a discrete space.

Q37/ Let τ be the topology on the real line R generated by the open-closed interval (a, b]. Show that (R, τ) is T₂-space.