Q1/

(A) Define "Neighbourhood of a point". Show that a subset G of a space X is open iff it is a neighbourhood of each of it is points.
(B) Define "continuous function in topology". Let X and Y be two topological spaces. Show that a function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous iff the inverse image of every member of a sub-base of Y is open in X .

Q2/
(A) Define "Disconnected space". Let $\left(\mathrm{Y}, \tau_{\mathrm{Y}}\right)$ be a subspace of a space (X, τ) and $\mathrm{A} \subset \mathrm{Y}$. Show that A is τ-disconntected iff A is τ_{Y}-disconntected.
(B) Define "open function". Let (X, τ) and (Y, σ) be two topological spaces. Show that a mapping $f: \mathrm{X} \rightarrow \mathrm{Y}$ is open iff $f(\operatorname{Int}(\mathrm{~A})) \subset \operatorname{Int}(f(\mathrm{~A})), \forall \mathrm{A} \subset \mathrm{X}$.

Q3/
(A) Define "Locally connected space". Show that locally connectedness is a topological property.
(B) Write "True" or "False" of the following:

Let (X, τ) be a topological space and $\mathrm{A}, \mathrm{B} \subset \mathrm{X}$.
(1) Let (X, d) be a metric space. If Y is an infinite subset of X, then the subspace Y has the discrete topology.
(2) If Y is a subspace of X . If $\mathrm{A} \subset \mathrm{Y}$, then $\mathrm{Cl}(\mathrm{A})$ in $\mathrm{Y}=\mathrm{Y} \cap(\mathrm{Cl}(\mathrm{A})$ in X$)$.
(3) In general, the number of elements of topology is equal to the number of elements of it is subspace.
(4) $\mathrm{A}^{\mathrm{o}}=\mathrm{A}-\mathrm{b}(\mathrm{A})$.
(5) $\mathrm{D}(\mathbf{Q})=\mathbf{Q}$, where \mathbf{Q} is the set of all rational numbers and D is the derived set.
(6) Every component of a locally connected space is a closed set.
(7) A space X is said to has Bolzano-Weierstrass property if every finite subset of X has a limit point in X .
(8) The union of a family of connected subsets with nonempty intersection is connected.

Q4/
(A) Define "Base for a topology". Let (X, τ) be a topological space. Show that a subcollection \mathbf{B} of τ is a base for τ iff every τ-open set can be expressed as a union of some members of \mathbf{B}.
(B) Let τ be a topology on a set X consisting of four sets, i. e.,
$\tau=\{\mathrm{X}, \phi, \mathrm{A}, \mathrm{B}\}$, where A and B are non-empty distinct proper subsets of X . What conditions must A and B satisfy to become τ a topology on X .

