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Chapter 4

Homomorphism Group

Def. 4.1: (Homomorphism Group)

Let (G, *) and (G,) be two groups and  be a mapping from G into G ,
then : GG is said to be homomophism if

(a*b) = (a)  (b), for each a, b  G.

Ex. 4.2: Let (G, *) be a group and  : (G, *)(G, *) defined by (x) = x,
then  is homomorphism since

(x*y) = x*y = (x)*(y).

∴ Every identity map from a group G into itself is a homomorphism.

Ex. 4.3: Let H be a normal subgroup of G and  : GG / H such that
(a) = aH, where aG. Is  a homomorphism mapping ?

Solution:  a, b G.

We show that (a.b) = (a)  (b).

Since (a.b) = a.b.H

= (a.H)  (b.H)

= (a)  (b).

∴  is homomorphism.

Remark 4.3:  from Ex. 4.3 is called the natural map.

Th. 4.4: Let  : GG be a group homomorphism and e, e  the identity
elements of G and G, respectively, then

(1) (e) = e.
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(2) (a-1) = ((a))-1, aG.

Proof: (1) Let aG, (a)G.

(a).e = (a) = (a.e)

= (a).(e) (since  is homomorphism)

So, e = (e) (By cancellation law)

(2) Let aG. By (1), (e) = e, then

e = (e) = (a.a-1) = (a).(a-1) (since  is homomorphism)

 e = (a).(a-1)

((a))-1.e = ((a))-1.(a).(a-1)

But, ((a))-1.(a) = e.

∴ ((a))-1= (a-1).

∴ (a-1) = ((a))-1.

Th. 4.5: Let f: (G, *)(G, .) be a group homomorphism, then

(1) If H is a subgroup of G, then f (H) is a subgroup of G.

(2) If H is a subgroup of G, then f -1(H) is a subgroup of G.

Proof: (1) Since H is a subgroup of G, eH, then f (e)f (H).

Since f (e) = e (by Th. 4.4(1)), then

ef (H). Therefore, f (H)  .

Let x, y f (H).

We show that x.y-1 f (H).

Since x, y f (H), then there exist a, b  H such that x = f (a) and y = f (b).

Therefore, x.y-1  f (a).(f (b))-1.
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Since (f (b))-1 = f (b-1) [by Th. 4.4 (2)]

Then, f (a).f (b-1) = f (a*b-1) f (H) [since a.b-1  H, H≼G, then f (a*b-1) 

f (H)].

∴ x.y-1f (H).

∴ f (H)≼G.

(2) H.W.

Def. 4.6: (Kernel of a group)

Let (G1, *), (G2, .) be two groups and f : G1G2 be a homomorphism.
Define Ker (f ) = {xG1: f (x) = e2}, where e2 is the identity element in G2.

Th. 4.7: Let f be a homomorphism from a group (G1, *) into a group (G2, .)
with identity elements e1, e2, respectively, then Ker(f ) is a normal subgroup
of G1.

Proof: Since we have f (e1) = e2 (by Th. 4.4 (1)), then e1Ker(f ).

So, Ker(f )  .

Let a, b Ker(f ).

We show that a*b-1Ker(f ), i.e.,

we show f (a*b-1) = e2.

Since aKer(f ), then f (a) = e2 and

bKer(f ), then f (b) = e2.

Consider,

e2= (f (b))-1. (f (b)) = (f (b))-1.e2= (f (b))-1.

∴ (f (b))-1 = e2.
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Since f is a homomorphism, then

f (a*b-1) = f (a).f (b-1).

But, f (b-1) = (f (b))-1 [by Th. 4.4 (2)]

Then, f (a*b-1) = e2.e2= e2.

So, a*b-1Ker(f ).

∴ Ker(f ) ≼ G1.

It remains to show that, Ker(f ) ∇ G1 (H.W.).

-----------------------------------------------------------

Let (G, *) and (G, .) be two groups.

Def. 4.8: (epimorphism mapping)

A homomorphism  : GG  is said to be epimorphism if  is onto or
(G) = G.

Def. 4.9: (monomorphism mapping)

A homomorphism : GGis said to be a monomorphism if  is 1-1.

Def. 4.10: (isomorphism mapping)

A homomorphism : GGis said to be an isomorphism if  is 1-1 and onto.

Def. 4.11: (isomorphic between two groups)

Two groups (G, *) and (G  , .) are said to be isomorphic if there exists
an isomorphism between G and G.

It is denoted by G  G.
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Th. 4.12:

A homomorphism : GGis 1-1 iff Ker() = {e}, where e is the identity
element of G.

Proof: Suppose Ker() = {e}, then we show that  is 1-1, i.e.,

we show that  x, yG, (x) = (y) x = y.

Since x G, yG y-1G (since G is a group)

Then, x.y-1 G (by closure law)

(x.y -1) = (x).(y -1) (since  is homomorphism)

= (x).((y))-1 (by Th. 4.4 (2))

= (y).((y))-1 (since (x) = (y))

= e

∴ (x.y -1) = e.

 x.y -1Ker() = {e}.

 x.y -1= e x.y -1.y = e.y

 x.(y -1.y) = y x.e = y x = y.

∴  is 1-1.

Conversely, suppose  is 1-1, then we want to show that Ker(  ) = {e};
this means to show that

{e} Ker() (it is obvious) and

Ker ()  {e} (H.W.)

Ex. 4.13: Let : (ℤ, +)(ℤ� , +) defined by (n) = 2n, then show that  is
isomorphism.

Or, (Show that (ℤ, +)  (ℤ�, +))
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Solution: Let n, m  ℤ, we show that (n+m) = (n)+(m).

Now, (n+m) = 2(n+m) = 2n+2m = (n)+(m).

∴  is homomorphism.

Let (n) = (m), we show that n = m.

Let (n) = (m), then 2n = 2m. Therefore, n = m.

Hence  is 1-1.

Since (n) = 2n, i.e., (ℤ) = ℤ�.

or,

2n  ℤ�,  n  ℤ such that (n) = 2n.

So,  is onto.

∴  is an isomorphism.

∴ ℤ  ℤ�.

Def. 4.14: (Automorphism group)

The set of all mapping from a group G into itself such that f is isomorphism
is said to be automorphism and denoted by Auto(G) or Aut(G), i.e,

Aut(G) = {f : GG, f is isomorphism}.

Def. 4.14: (Endomorphism group)

The set of all homomorphism f from (G, *) into itself is called
endomorphism and denoted by End(G) or E(G), i.e,

End(G) = {f : GG, f is homomorphism}.

Def. 4.15:

Let (G, .) be a group and a be a fixed element in G. Define a mapping
f a: GG by f a(x) = a.x.
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Th. 4.16:

Show that f a is 1-1 and onto, but not homomorphism.

Proof: Let x, y  G.

Let f a (x) = f a (y). We show that x = y.

Let f a (x) = f a (y) a.x = a.y.

Since a is a fixed element in G and G is a group, then  a-1 G such that

a-1. (a.x) = a-1. (a.y) (a-1.a).x = (a-1.a).y  e.x = e.y  x = y.

So, f a is 1-1.

 x  G,  a-1.x  G (since a  G and G is a group, then  a-1  G ) such
that f a (a-1.x) = a.(a-1.x) = (a.a-1).x = e.x = x.

∴ f a is onto.

Let x, y  G, we show that f a(x.y)  f a(x).f a(y).

Now, f a(x.y) = a.x.y = (a.x).y = f a(x).y

∴ f a(x.y)  f a(x).f a(y).

∴ f a is not homomorphism.

Q. 4.16: Let (G, .) be any group, then show that (FG, ) is group, where

FG= {f a: a  G} and f a(x) = a.x.

Solution:

(1) Let f a, f bFG such that

f a: GG and , f b: GG, where f a(x) = a.x and f b(x) = b.x.

Now, (f a f b )(x) = f a (f b (x))

= f a (b.x)
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(f a f b )(x) = a.(b.x)

= a.b.x

= f ab(x)FG.

∴ f a f bFG.

(2) Let f a, f b , f cFG.

We show that ((f a f b)  f c )(x) = (f a  (f b  f c))(x)

Now, ((f a f b)  f c )(x) = (f a f b)(f c(x))

= (f a f b)(c.x)

= f a (f b (c.x))

= f a (b.c.x)

= a.b.c.(x)

= a.(b.c).(x)

= f a (f b f c))(x) [How ? write step by step]

So, ((f a  f b)  f c )(x) = (f a (f b  f c))(x).

(3) H.W. (identity)

(4) H.W. (inverse)

Th. 4.17: (Cayley’s Theorem)

If (G, *) is an arbitrary group, then (G, *)  (FG, ).

(Q: State and prove Cayley’s Theorem).

Proof: Define a mapping : (G, *)(FG, ) by (a) = f a ,  aG.

First we show that  is well-defined.

Let a, b G such that a = b.
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Let xG a*x = b*x f a (x) = f a (y) (a) = (b).

Second we show that  is homomorphism.

Let a, b G such that

(a*b) = f a*b = f a*b (x) = (a*b)*x = a*(b*x) = f a (b*x) = f a (f b (x)) =

(f a f b)(x) = (a)  (b).

∴  is homomorphism.

Now, we show that  is 1-1.

Let (a) = (b),  a, bG.

 f a = f b f a (x) = f b (x) a*x = b*x.

Since xG, then  x -1G (since G is a group)

 a*(x*x -1) = b*(x*x -1) a = b  is 1-1.

Now,  f a FG,  a G such that (a) = f a .

∴  is onto.

∴  is an isomorphism.

(G, *)  (FG, ) [by First Isomorphism Group Theorem].

Q 4.17: Give an example on Cayley’s Theorem.


