Chapter 4

Homomorphism Group

Def. 4.1: (Homomorphism Group)

Let (G, *) and (G', o) be two groups and ϕ be a mapping from G into G', then $\phi: G \rightarrow G'$ is said to be homomorphism if

 $\phi(a*b) = \phi(a) \circ \phi(b)$, for each $a, b \in G$.

Ex. 4.2: Let (G, *) be a group and $\phi: (G, *) \rightarrow (G, *)$ defined by $\phi(x) = x$, then ϕ is homomorphism since

$$\phi(x^*y) = x^*y = \phi(x)^*\phi(y).$$

: Every identity map from a group G into itself is a homomorphism.

Ex. 4.3: Let H be a normal subgroup of G and $\phi: G \to G / H$ such that $\phi(a) = aH$, where $a \in G$. Is ϕ a homomorphism mapping?

Solution: \forall a, b \in G.

We show that $\phi(a.b) = \phi(a) \otimes \phi(b)$.

Since $\phi(a.b) = a.b.H$

$$=$$
 (a.H) \otimes (b.H)

$$= \phi(a) \otimes \phi(b).$$

 $\therefore \phi$ is homomorphism.

Remark 4.3': ϕ from **Ex. 4.3** is called the natural map.

Th. 4.4: Let $\phi: G \rightarrow G'$ be a group homomorphism and e, e' the identity elements of G and G', respectively, then

$$(1) \phi(e) = e'.$$

(2)
$$\phi(a^{-1}) = (\phi(a))^{-1}, \forall a \in G.$$

Proof: (1) Let $a \in G$, $\phi(a) \in G'$.

$$\phi(a).e' = \phi(a) = \phi(a.e)$$

$$= \phi(a).\phi(e) \text{ (since } \phi \text{ is homomorphism)}$$

So, $e' = \phi(e)$ (By cancellation law)

(2) Let
$$a \in G$$
. By (1), $\phi(e) = e'$, then

$$e' = \phi(e) = \phi(a.a^{-1}) = \phi(a).\phi(a^{-1})$$
 (since ϕ is homomorphism)

$$\Rightarrow$$
 e' = $\phi(a).\phi(a^{-1})$

$$(\phi(a))^{-1}.e' = (\phi(a))^{-1}.\phi(a).\phi(a^{-1})$$

But,
$$(\phi(a))^{-1} \cdot \phi(a) = e'$$
.

$$\therefore (\phi(a))^{-1} = \phi(a^{-1}).$$

$$\therefore \ \phi(a^{-1}) = (\phi(a))^{-1}.$$

Th. 4.5: Let $f: (G, *) \rightarrow (G', .)$ be a group homomorphism, then

- (1) If H is a subgroup of G, then f(H) is a subgroup of G'.
- (2) If H' is a subgroup of G', then $f^{-1}(H')$ is a subgroup of G.

Proof: (1) Since H is a subgroup of G, $e \in H$, then $f(e) \in f(H)$.

Since
$$f(e) = e'$$
 (by **Th. 4.4(1)**), then

$$e' \in f(H)$$
. Therefore, $f(H) \neq \phi$.

Let
$$x, y \in f(H)$$
.

We show that $x.y^{-1} \in f(H)$.

Since $x, y \in f(H)$, then there exist a, $b \in H$ such that x = f(a) and y = f(b).

Therefore,
$$x.y^{-1} \in f(a).(f(b))^{-1}$$
.

Since $(f(b))^{-1} = f(b^{-1})$ [by **Th. 4.4 (2)**]

Then, $f(a).f(b^{-1}) = f(a*b^{-1}) \in f(H)$ [since $a.b^{-1} \in H$, $H \leq G$, then $f(a*b^{-1}) \in f(H)$].

- \therefore x.y⁻¹ $\in f(H)$.
- \therefore f(H)≤G'.
- (2) **H.W.**

Def. 4.6: (Kernel of a group)

Let $(G_1, *)$, $(G_2, .)$ be two groups and $f: G_1 \rightarrow G_2$ be a homomorphism. Define Ker $(f) = \{x \in G_1: f(x) = e_2\}$, where e_2 is the identity element in G_2 .

Th. 4.7: Let f be a homomorphism from a group $(G_1, *)$ into a group $(G_2, .)$ with identity elements e_1 , e_2 , respectively, then Ker(f) is a normal subgroup of G_1 .

Proof: Since we have $f(e_1) = e_2$ (by **Th. 4.4 (1)**), then $e_1 \in \text{Ker}(f)$.

So, $Ker(f) \neq \emptyset$.

Let a, b \in Ker(f).

We show that $a*b^{-1} \in Ker(f)$, i.e.,

we show $f(a*b^{-1}) = e_2$.

Since $a \in Ker(f)$, then $f(a) = e_2$ and

 $b \in Ker(f)$, then $f(b) = e_2$.

Consider,

$$e_2 = (f(b))^{-1}$$
. $(f(b)) = (f(b))^{-1}$. $e_2 = (f(b))^{-1}$.

∴
$$(f(b))^{-1} = e_2$$
.

Since f is a homomorphism, then

$$f(a*b^{-1}) = f(a).f(b^{-1}).$$

But,
$$f(b^{-1}) = (f(b))^{-1}$$
 [by **Th. 4.4 (2)**]

Then,
$$f(a*b^{-1}) = e_2.e_2 = e_2$$
.

So,
$$a*b^{-1} \in Ker(f)$$
.

∴
$$Ker(f) \leq G_1$$
.

It remains to show that, $Ker(f) \nabla G_1$ (**H.W.**).

Let (G, *) and (G', .) be two groups.

Def. 4.8: (epimorphism mapping)

A homomorphism $\phi: G \to G'$ is said to be epimorphism if ϕ is onto **or** $\phi(G) = G'$.

Def. 4.9: (monomorphism mapping)

A homomorphism ϕ : $G \rightarrow G'$ is said to be a monomorphism if ϕ is 1-1.

Def. 4.10: (isomorphism mapping)

A homomorphism ϕ : G \rightarrow G'is said to be an isomorphism if ϕ is 1-1 and onto.

Def. 4.11: (isomorphic between two groups)

Two groups (G, *) and (G', .) are said to be isomorphic if there exists an isomorphism between G and G'.

It is denoted by $G \cong G'$.

Th. 4.12:

A homomorphism $\phi: G \rightarrow G'$ is 1-1 **iff** Ker(ϕ) = {e}, where e is the identity element of G.

Proof: Suppose $Ker(\phi) = \{e\}$, then we show that ϕ is 1-1, i.e.,

we show that $\forall x, y \in G, \phi(x) = \phi(y) \Rightarrow x = y$.

Since $x \in G$, $y \in G \Rightarrow y^{-1} \in G$ (since G is a group)

Then, $x.y^{-1} \in G$ (by closure law)

$$\phi(x.y^{-1}) = \phi(x).\phi(y^{-1})$$
 (since ϕ is homomorphism)
= $\phi(x).(\phi(y))^{-1}$ (by **Th. 4.4 (2)**)
= $\phi(y).(\phi(y))^{-1}$ (since $\phi(x) = \phi(y)$)
= e'

$$\therefore \phi(x.y^{-1}) = e'.$$

$$\Rightarrow$$
 x.y⁻¹ \in Ker(ϕ) = {e}.

$$\Rightarrow$$
 x.y⁻¹ = e \Rightarrow x.y⁻¹.y = e.y

$$\Rightarrow$$
 x.(y ⁻¹.y) = y \Rightarrow x.e = y \Rightarrow x = y.

∴ \$\phi\$ is 1-1.

Conversely, suppose ϕ is 1-1, then we want to show that $Ker(\phi) = \{e\}$; this means to show that

 $\{e\}\subseteq Ker(\phi)$ (it is obvious) and

 $Ker(\phi) \subseteq \{e\}$ (H.W.)

Ex. 4.13: Let $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_e, +)$ defined by $\phi(n) = 2n$, then show that ϕ is isomorphism.

Or, (Show that $(\mathbb{Z}, +) \cong (\mathbb{Z}_e, +)$)

Solution: Let $n, m \in \mathbb{Z}$, we show that $\phi(n+m) = \phi(n) + \phi(m)$.

Now,
$$\phi(n+m) = 2(n+m) = 2n+2m = \phi(n)+\phi(m)$$
.

 \therefore ϕ is homomorphism.

Let $\phi(n) = \phi(m)$, we show that n = m.

Let $\phi(n) = \phi(m)$, then 2n = 2m. Therefore, n = m.

Hence ϕ is 1-1.

Since $\phi(n) = 2n$, i.e., $\phi(\mathbb{Z}) = \mathbb{Z}_e$.

or,

 $\forall 2n \in \mathbb{Z}_e, \exists n \in \mathbb{Z} \text{ such that } \phi(n) = 2n.$

So, ϕ is onto.

 $\therefore \phi$ is an isomorphism.

 $\therefore \mathbb{Z} \cong \mathbb{Z}_e$.

Def. 4.14: (Automorphism group)

The set of all mapping from a group G into itself such that f is isomorphism is said to be automorphism and denoted by Auto(G) or Aut(G), i.e,

Aut(G) = $\{f: G \rightarrow G, f \text{ is isomorphism}\}.$

Def. 4.14': (Endomorphism group)

The set of all homomorphism f from (G, *) into itself is called endomorphism and denoted by End(G) or E(G), i.e,

 $End(G) = \{f: G \rightarrow G, f \text{ is homomorphism}\}.$

Def. 4.15:

Let (G, .) be a group and a be a fixed element in G. Define a mapping f_a : $G \rightarrow G$ by $f_a(x) = a.x$.

Th. 4.16:

Show that f_a is 1-1 and onto, but not homomorphism.

Proof: Let $x, y \in G$.

Let $f_a(x) = f_a(y)$. We show that x = y.

Let $f_a(x) = f_a(y) \Rightarrow a.x = a.y$.

Since a is a fixed element in G and G is a group, then $\exists a^{-1} \in G$ such that

$$a^{-1}$$
. $(a.x) = a^{-1}$. $(a.y) \Rightarrow (a^{-1}.a).x = (a^{-1}.a).y \Rightarrow e.x = e.y \Rightarrow x = y$.

So, f_a is 1-1.

 $\forall x \in G, \exists a^{-1}.x \in G \text{ (since } a \in G \text{ and } G \text{ is a group, then } \exists a^{-1} \in G \text{) such that } f_a(a^{-1}.x) = a.(a^{-1}.x) = (a.a^{-1}).x = e.x = x.$

 $\therefore f_a$ is onto.

Let $x, y \in G$, we show that $f_a(x.y) \neq f_a(x) \cdot f_a(y)$.

Now,
$$f_a(x.y) = a.x.y = (a.x).y = f_a(x).y$$

$$\therefore f_{a}(x.y) \neq f_{a}(x).f_{a}(y).$$

 \therefore f_a is not homomorphism.

Q. 4.16': Let (G, .) be any group, then show that (F_G, o) is group, where

$$F_G = \{f_a: a \in G\} \text{ and } f_a(x) = a.x.$$

Solution:

(1) Let f_a , $f_b \in F_G$ such that

 f_a : G \rightarrow G and , f_b : G \rightarrow G, where $f_a(x) = a.x$ and $f_b(x) = b.x$.

Now,
$$(f_a \circ f_b)(x) = f_a(f_b(x))$$

$$= f_a(b.x)$$

$$(f_a \circ f_b)(x) = a.(b.x)$$

$$= a.b.x$$

$$= f_{ab}(x) \in F_G.$$

∴ f_a o f_b ∈ F_G .

(2) Let f_a , f_b , $f_c \in F_G$.

We show that $((f_a \circ f_b) \circ f_c)(x) = (f_a \circ (f_b \circ f_c))(x)$

Now,
$$((f_a \circ f_b) \circ f_c)(x) = (f_a \circ f_b)(f_c(x))$$

$$= (f_a \circ f_b)(c.x)$$

$$= f_a(f_b(c.x))$$

$$= f_a(b.c.x)$$

$$= a.b.c.(x)$$

$$= a.(b.c).(x)$$

$$= f_a \circ (f_b \circ f_c))(x) \text{ [How ? write step by step]}$$

So, $((f_a \circ f_b) \circ f_c)(x) = (f_a \circ (f_b \circ f_c))(x)$.

- (3) **H.W.** (identity)
- (4) **H.W.** (inverse)

Th. 4.17: (Cayley's Theorem)

If (G, *) is an arbitrary group, then $(G, *) \cong (F_G, o)$.

(Q: State and prove Cayley's Theorem).

Proof: Define a mapping ϕ : $(G, *) \rightarrow (F_G, o)$ by $\phi(a) = f_a, \forall a \in G$.

First we show that ϕ is well-defined.

Let $a, b \in G$ such that a = b.

Let
$$x \in G \Rightarrow a^*x = b^*x \Rightarrow f_a(x) = f_a(y) \Rightarrow \phi(a) = \phi(b)$$
.

Second we show that ϕ is homomorphism.

Let $a, b \in G$ such that

$$\phi(a*b) = f_{a*b} = f_{a*b}(x) = (a*b)*x = a*(b*x) = f_a(b*x) = f_a(f_b(x)) = (f_a \circ f_b)(x) = \phi(a) \circ \phi(b).$$

 \therefore ϕ is homomorphism.

Now, we show that ϕ is 1-1.

Let $\phi(a) = \phi(b)$, $\forall a, b \in G$.

$$\Rightarrow f_a = f_b \Rightarrow f_a(x) = f_b(x) \Rightarrow a*x = b*x.$$

Since $x \in G$, then $\exists x^{-1} \in G$ (since G is a group)

$$\Rightarrow$$
 a*(x*x⁻¹) = b*(x*x⁻¹) \Rightarrow a = b \Rightarrow ϕ is 1-1.

Now, $\forall f_a \in F_G$, $\exists a \in G$ such that $\phi(a) = f_a$.

- $\therefore \phi$ is onto.
- $\therefore \phi$ is an isomorphism.
- $(G, *) \cong (F_G, o)$ [by First Isomorphism Group Theorem].
- Q 4.17': Give an example on Cayley's Theorem.