Theorem 4.25: (Fundamental Theorem of Isomorphism) or

(First Isomorphism Group Theorem)

Let $\left(\mathrm{G},{ }^{*}\right)$ and $\left(\mathrm{G}^{\prime},.\right)$ be two groups. Let $f:\left(\mathrm{G},{ }^{*}\right) \rightarrow\left(\mathrm{G}^{\prime},.\right)$ be an onto homomorphism, then $(\mathrm{G} / \operatorname{Ker}(f), \otimes) \cong\left(\mathrm{G}^{\prime},.\right)$.

Proof: Let $\mathrm{H}=\operatorname{Ker}(f)$.
Define a mapping $\varphi: \mathrm{G} / \mathrm{H} \rightarrow \mathrm{G}^{\prime}$ by
$\varphi\left(\mathrm{a}^{*} \mathrm{H}\right)=f(\mathrm{a}), \forall \mathrm{a} \in \mathrm{G}$.
First we show that φ is well-defined, i.e.,
let $\mathrm{a}^{*} \mathrm{H}, \mathrm{b} * \mathrm{H} \in \mathrm{G} / \mathrm{H}$.
we show that $\mathrm{a}^{*} \mathrm{H}=\mathrm{b}^{*} \mathrm{H} \Rightarrow \varphi\left(\mathrm{a}^{*} \mathrm{H}\right)=\varphi\left(\mathrm{b}^{*} \mathrm{H}\right)$.
Let $\mathrm{a}^{*} \mathrm{H}=\mathrm{b} * \mathrm{H} \Rightarrow \mathrm{a}^{-1 *} \mathrm{~b} \in \mathrm{H}=\operatorname{Ker}(f)$
$\Rightarrow f\left(\mathrm{a}^{-1 *} \mathrm{~b}\right)=\mathrm{e}^{\prime}$, where e^{\prime} is the identity element of G^{\prime}.
$\Rightarrow f\left(\mathrm{a}^{-1}\right) . f(\mathrm{~b})=\mathrm{e}^{\prime}$ (since f is homomorphism)
Since $\mathrm{a} \in \mathrm{G}$, then $f(\mathrm{a}) \in \mathrm{G}^{\prime}$. Therefore, $\exists(f(\mathrm{a}))^{-1} \in \mathrm{G}^{\prime}$ such that $f(\mathrm{a}) .(f(\mathrm{a}))^{-1}=\mathrm{e}^{\prime}$.

Now, we have
$f\left(\mathrm{a}^{-1}\right) . f(\mathrm{~b})=\mathrm{e}^{\prime}$
$\Rightarrow f(\mathrm{a}) \cdot(f(\mathrm{a}))^{-1} \cdot f(\mathrm{~b})=f(\mathrm{a}) \cdot \mathrm{e}^{\prime} \quad\left[\right.$ since $f\left(\mathrm{a}^{-1}\right)=(f(\mathrm{a}))^{-1}$, where f is homomorphism]
$\Rightarrow \mathrm{e}^{\prime} . f(\mathrm{~b})=f(\mathrm{a})$
$\Rightarrow f(\mathrm{~b})=f(\mathrm{a})$
$\Rightarrow \varphi\left(\mathrm{b}^{*} \mathrm{H}\right)=\varphi\left(\mathrm{a}^{*} \mathrm{H}\right)$
$\therefore \varphi$ is well-defined.

Now, we show that φ is a homomorphism.
Let $\mathrm{a}, \mathrm{b} \in \mathrm{G}$.
We show that $\varphi\left[\left(\mathrm{a}^{*} \mathrm{H}\right) \otimes\left(\mathrm{b}^{*} \mathrm{H}\right)\right]=\varphi\left(\mathrm{a}^{*} \mathrm{H}\right) . \varphi\left(\mathrm{b}^{*} \mathrm{H}\right), \forall \mathrm{a}^{*} \mathrm{H}, \mathrm{b}^{*} \mathrm{H} \in \mathrm{G} / \mathrm{H}$. Consider,
$\varphi\left[\left(\mathrm{a}^{*} \mathrm{H}\right) \otimes(\mathrm{b} * \mathrm{H})\right]=\varphi[(\mathrm{a} * \mathrm{~b}) * \mathrm{H}]=f\left(\mathrm{a}^{*} \mathrm{~b}\right)=f(\mathrm{a}) . f(\mathrm{~b})$ [since f is homo. $]$
$\varphi\left[\left(a^{*} H\right) \otimes\left(b^{*} H\right)\right]=\varphi\left(a^{*} H\right) \cdot \varphi\left(b^{*} H\right)$.
$\therefore \varphi$ is homomorphism.
To show that φ is 1-1, i.e.,
we show that $\forall \mathrm{a} * \mathrm{H}, \mathrm{b}^{*} \mathrm{H} \in \mathrm{G} / \mathrm{H}, \varphi\left(\mathrm{a}^{*} \mathrm{H}\right)=\varphi\left(\mathrm{b}^{*} \mathrm{H}\right) \Rightarrow \mathrm{a}^{*} \mathrm{H}=\mathrm{b}^{*} \mathrm{H}$.
Now, $\varphi\left(\mathrm{a}^{*} \mathrm{H}\right)=\varphi(\mathrm{b} * \mathrm{H}) \Rightarrow f(\mathrm{a})=f(\mathrm{~b})$.
$\Rightarrow(f(\mathrm{a}))^{-1} \cdot f(\mathrm{a})=(f(\mathrm{a}))^{-1} \cdot f(\mathrm{~b})$
$\Rightarrow \mathrm{e}^{\prime}=f\left(\mathrm{a}^{-1}\right) \cdot f(\mathrm{~b})\left[\right.$ since $f\left(\mathrm{a}^{-1}\right)=(f(\mathrm{a}))^{-1}$, where f is homomorphism $]$
$\Rightarrow \mathrm{e}^{\prime}=f\left(\mathrm{a}^{-1} * \mathrm{~b}\right) \quad[$ since f is homomorphism]
$\Rightarrow \mathrm{a}^{-1} * \mathrm{~b} \in \mathrm{H}=\operatorname{Ker}(f)$.
$\Rightarrow \mathrm{a} * \mathrm{H}=\mathrm{b} * \mathrm{H}$ [why ?]
$\therefore \varphi$ is $1-1$.
Since f is onto, then φ is onto (By Corollary 4.23)
$\therefore \varphi$ is isomorphism.
$\therefore \mathrm{G} / \operatorname{Ker}(f) \cong \mathrm{G}^{\prime}$.

Th. 4.26: (Second Isomorphism Group Theorem)
Let (G, *) be a group, $\mathrm{H} \preccurlyeq \mathrm{G}$ and $\mathrm{K} \nabla \mathrm{G}$, then
(1) $\mathrm{H} \cap \mathrm{K} \nabla \mathrm{H}$.
(2) $\mathrm{H}^{*} \mathrm{~K} \preccurlyeq \mathrm{G}$.
(3) $\mathrm{H} / \mathrm{H} \cap \mathrm{K} \cong \mathrm{H}^{*} \mathrm{~K} / \mathrm{K}$.

Proof: (1) Since $H \preccurlyeq G$ and $K \preccurlyeq G$, then $e \in H$ and $e \in K \Rightarrow e \in H \cap K \Rightarrow$ $\mathrm{H} \cap \mathrm{K} \neq \phi$.

Also, let $\mathrm{a}, \mathrm{b} \in \mathrm{H} \cap \mathrm{K}$.
Now, we show that $\mathrm{H} \cap \mathrm{K} \preccurlyeq$ G, i.e.,
we show that $a^{*} b^{-1} \in H \cap K$.
Since $\mathrm{a}, \mathrm{b} \in \mathrm{H} \cap \mathrm{K} \Rightarrow \mathrm{a}, \mathrm{b} \in \mathrm{H}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{K}$.
$\Rightarrow \mathrm{a}^{*} \mathrm{~b}^{-1} \in \mathrm{H}$ and $\mathrm{a}^{*} \mathrm{~b}^{-1} \in \mathrm{~K}($ since $\mathrm{H} \leqslant \mathrm{G}$ and $\mathrm{K} \leqslant \mathrm{G})$
$\Rightarrow \mathrm{a}^{*} \mathrm{~b}^{-1} \in \mathrm{H} \cap \mathrm{K}$
$\therefore \mathrm{H} \cap \mathrm{K} \preccurlyeq \mathrm{G}$.
Now, we want to show that $\mathrm{H} \cap \mathrm{K} \nabla \mathrm{H}$.
Let $\mathrm{x} \in \mathrm{H}$ and $\mathrm{h} \in \mathrm{H} \cap \mathrm{K}$.
We show that $\mathrm{x}^{*} \mathrm{~h}^{*} \mathrm{x}^{-1} \in \mathrm{H} \cap \mathrm{K}$, i.e., we show that $\mathrm{x} * \mathrm{~h}^{*} \mathrm{x}^{-1} \in \mathrm{H}$ and $\mathrm{x}^{*} \mathrm{~h}^{*} \mathrm{x}^{-1} \in \mathrm{~K}$.

Since $\mathrm{x} \in \mathrm{H} \subseteq \mathrm{G}$ and $\mathrm{h} \in \mathrm{H} \cap \mathrm{K} \Rightarrow \mathrm{h} \in \mathrm{H}$ and $\mathrm{h} \in \mathrm{K}$.
Then, $x \in G$, so $x^{*} h^{*} x^{-1} \in K$ (since $\left.K \nabla G\right)$
Since $x \in H$ and $h \in H \Rightarrow x * h \in H($ since $H \preccurlyeq G)$
Since $x \in H$, then $x^{-1} \in H$ (since $\left.H \preccurlyeq G\right)$

So, $\mathrm{x}^{*} \mathrm{~h}^{*} \mathrm{x}^{-1} \in \mathrm{H}$
$\therefore \mathrm{x}^{*} \mathrm{~h}^{*} \mathrm{x}^{-1} \in \mathrm{H} \cap \mathrm{K}$.
(2) H.W.
(3) H.W.

Q 4.26' (H.W.): Let $(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{2},+_{2}\right)$ be two groups, then show that $\mathbb{Z} /(2) \cong \mathbb{Z}_{2}$.

Q 4.26" ${ }^{\prime \prime}$ (H.W.): Let $(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{n},+_{n}\right)$ be two groups, then show that $\mathbb{Z} /(\mathrm{n}) \cong \mathbb{Z}_{n}$.

Th. 4.27: (Third Isomorphism Group Theorem)

Let (G, *) be a group, $\mathrm{H} \nabla \mathrm{G}, \mathrm{K} \nabla \mathrm{G}$ and $\mathrm{H} \nabla \mathrm{K}$, then
$\frac{\frac{G}{H}}{\frac{K}{H}} \cong \frac{G}{K}$
Proof: Let φ : G/H \rightarrow G / K such that
$\varphi\left(\mathrm{a}^{*} \mathrm{H}\right)=\mathrm{a}^{*} \mathrm{~K}, \forall \mathrm{a} \in \mathrm{G}$.
First we show that φ is well-defined.
Let $\mathrm{a}^{*} \mathrm{H}, \mathrm{b} * \mathrm{H} \in \mathrm{G} / \mathrm{H}$.
We show that $\mathrm{a}^{*} \mathrm{H}=\mathrm{b}^{*} \mathrm{H} \Rightarrow \varphi\left(\mathrm{a}^{*} \mathrm{H}\right)=\varphi\left(\mathrm{b}^{*} \mathrm{H}\right)$.
Since $a^{*} H=b^{*} H \Rightarrow a^{-1 *} b \in H \subseteq K \Rightarrow a^{-1 *} b \in K \Rightarrow a^{*} K=b^{*} K$ [why ?]
$\therefore \varphi\left(\mathrm{a}^{*} \mathrm{H}\right)=\varphi\left(\mathrm{b}^{*} \mathrm{H}\right)$.
So, φ is well-defined.

Now, we show that φ is homomorphism.
Let $a^{*} H, b * H \in G / H$.
We show that $\varphi\left(\left(a^{*} H\right) \otimes\left(b^{*} H\right)\right)=\varphi\left(a^{*} H\right) \otimes\left(b^{*} H\right)$.
Now, $\varphi\left(\left(a^{*} \mathrm{H}\right) \otimes\left(\mathrm{b}^{*} \mathrm{H}\right)\right)=\varphi\left(\mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{H}\right)$ [by Definition of quotient group]

$$
=a^{*} b^{*} \mathrm{~K}=\left(a^{*} \mathrm{~K}\right) \otimes\left(\mathrm{b}^{*} \mathrm{~K}\right)=\varphi\left(\mathrm{a}^{*} \mathrm{H}\right) \otimes(\mathrm{b} * \mathrm{H})
$$

So, φ is homomorphism.
Now, we show that φ is onto.
$\forall \mathrm{x} \in \mathrm{G} / \mathrm{K}, \exists \mathrm{a} \in \mathrm{G}$ such that $\mathrm{x}=\mathrm{a}^{*} \mathrm{~K}=\varphi\left(\mathrm{a}^{*} \mathrm{H}\right)$.
So, $x=\varphi\left(a^{*} H\right)$.
$\therefore \varphi$ is onto.
It remains to show that $\operatorname{Ker}(\varphi)=\mathrm{K} / \mathrm{H} \quad$ (H.W.).

Direct Product For Groups

Def. 4.28: (Direct Product For Groups)

Let $\left(\mathrm{G},{ }^{*}\right)$ and (H, o) be two distinct groups, then define a binary operation \otimes on $\mathrm{G} \times \mathrm{H}=\{(\mathrm{g}, \mathrm{h}): \mathrm{g} \in \mathrm{G}, \mathrm{h} \in \mathrm{H}\}$ as follows:

For each $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right) \in G \times H$, $\left(g_{1}, h_{1}\right) \otimes\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1 o} h_{2}\right)$.

Q 4.29: Show that $(\mathrm{G} \times \mathrm{H}, \otimes)$ form a group.
Solution: (1) Let $\left(\mathrm{g}_{1}, \mathrm{~h}_{1}\right),\left(\mathrm{g}_{2}, \mathrm{~h}_{2}\right) \in \mathrm{G} \times \mathrm{H}$.
We show that $\left(\mathrm{g}_{1}, \mathrm{~h}_{1}\right) \otimes\left(\mathrm{g}_{2}, \mathrm{~h}_{2}\right) \in \mathrm{G} \times \mathrm{H}$.
Now, $\left(\mathrm{g}_{1}, \mathrm{~h}_{1}\right) \otimes\left(\mathrm{g}_{2}, \mathrm{~h}_{2}\right)=\left(\mathrm{g}_{1}{ }^{*} \mathrm{~g}_{2}, \mathrm{~h}_{10} \mathrm{~h}_{2}\right) \in \mathrm{G} \times \mathrm{H}$.
$\therefore \mathrm{G} \times \mathrm{H}$ is closed under \otimes.
(2) Let $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right),\left(g_{3}, h_{3}\right) \in G \times H$.

We show that
$\left(\left(\mathrm{g}_{1}, \mathrm{~h}_{1}\right) \otimes\left(\mathrm{g}_{2}, \mathrm{~h}_{2}\right)\right) \otimes\left(\mathrm{g}_{3}, \mathrm{~h}_{3}\right)=\left(\mathrm{g}_{1}, \mathrm{~h}_{1}\right) \otimes\left(\left(\mathrm{g}_{2}, \mathrm{~h}_{2}\right) \otimes\left(\mathrm{g}_{3}, \mathrm{~h}_{3}\right)\right) \quad \ldots(1)$
L.H.S. of $(1)=\left(\left(g_{1}, h_{1}\right) \otimes\left(g_{2}, h_{2}\right)\right) \otimes\left(g_{3}, h_{3}\right)$

$$
\begin{aligned}
& =\left(\left(\mathrm{g}_{1} * \mathrm{~g}_{2}\right),\left(\mathrm{h}_{1 \mathrm{o}} \mathrm{~h}_{2}\right)\right) \otimes\left(\mathrm{g}_{3}, \mathrm{~h}_{3}\right) \\
& =\left(\left(\mathrm{g}_{1} * \mathrm{~g}_{2}\right)^{*} \mathrm{~g}_{3},\left(\mathrm{~h}_{10} \mathrm{~h}_{2}\right)_{\mathrm{o}} \mathrm{~h}_{3}\right) \\
& =\left(\mathrm{g}_{1} *\left(\mathrm{~g}_{2} * \mathrm{~g}_{3}\right), \mathrm{h}_{10}\left(\mathrm{~h}_{2 \mathrm{o}} \mathrm{~h}_{3}\right)\right) \quad[\text { why } ?] \\
& =\left(\mathrm{g}_{1}, \mathrm{~h}_{1}\right) \otimes\left(\left(\mathrm{g}_{2}, \mathrm{~h}_{2}\right) \otimes\left(\mathrm{g}_{3}, \mathrm{~h}_{3}\right)\right) \text { [write in detail] }
\end{aligned}
$$

$\therefore \otimes$ is associative.
(3) $\left(\mathrm{g}_{1}, \mathrm{~h}_{1}\right) \otimes\left(\mathrm{e}_{\mathrm{G}}, \mathrm{e}_{\mathrm{H}}\right)=\left(\mathrm{g}_{1} * \mathrm{e}_{\mathrm{G}}, \mathrm{h}_{10} \mathrm{e}_{\mathrm{H}}\right)=\left(\mathrm{g}_{1}, \mathrm{~h}_{1}\right)$.

Also, $\left(\mathrm{e}_{\mathrm{G}}, \mathrm{e}_{\mathrm{H}}\right) \otimes\left(\mathrm{g}_{1}, \mathrm{~h}_{1}\right)=\left(\mathrm{e}_{\mathrm{G}}{ }^{*} \mathrm{~g}_{1}, \mathrm{e}_{\mathrm{Ho}} \mathrm{h}_{1}\right)=\left(\mathrm{g}_{1}, \mathrm{~h}_{1}\right)$.
$\therefore\left(\mathrm{e}_{\mathrm{G}}, \mathrm{e}_{\mathrm{H}}\right)$ is the identity element.
(4) (H.W.)
Q.4.30 (H.W.): Give an example on Def. 4.28.
Q.4.31 (H.W.): State and prove some (three) properties of direct product of two groups.

