Chapter Seven

Subrings and Ideals

Defintion: (7.1) (Subring)
Anon-empty set S of a ring R is called a subring if itself is a ring.
Defintion: (7.2) (Subring)
A non-empty subset $S \subseteq R$ of a ring R is called a subring if
(i) $\forall a, b \in S, \quad a-b \in S$
(ii) $\quad \forall a, b \in S, \quad a . b \in S$

Example: (7.3)
$(\mathbb{Z},+,$.$) is a subring of (\mathbb{R},+,$.$) .$
Example: (7.4)
Show that $\left(\mathbb{Z}_{e},+,.\right)$ is a subring of $(\mathbb{Z},+,$.$) .$

Solution:

(1) Let $a, b \in \mathbb{Z}_{e}$

We show that $a-b \in \mathbb{Z}_{e}$
Let $a=2 k_{1}$ and $b=2 k_{2}$ where $k_{1}, k_{2} \in \mathbb{Z}$.
Now, $a-b=2 k_{1}-2 k_{2}=2\left(k_{1}-k_{2}\right)$
Let $k_{3}=k_{1}-k_{2}$, then $2 k_{3} \in \mathbb{Z}_{e}$
$\therefore a-b \in \mathbb{Z}_{e}$.
(2) Let $a, b \in \mathbb{Z}_{e}$. We show that $a . b \in \mathbb{Z}_{e}$

Let $a=2 k_{1}$ and $b=2 k_{2}$ where $k_{1}, k_{2} \in \mathbb{Z}$.
Now, $a . b=2 k_{1} .2 k_{2}=2\left(2 k_{1} \cdot k_{2}\right)$
Let $k_{3}=2 k_{1} \cdot k_{2}$, then $2 k_{3} \in \mathbb{Z}_{e}$
$\Rightarrow a . b \in \mathbb{Z}_{e}$
Hence \mathbb{Z}_{e} is a subring of \mathbb{Z}.

Remark: (7.5)

There exist two trivial subrings of any rings, which are $(R,+,$.$) and (\{0\},+,$.$) .$
Example: (7.6)
Let $(\mathbb{Z},+,$.$) be the ring of integers.$

$$
S=\{3 n: n \in \mathbb{Z}\}=\langle 3\rangle=(3)
$$

$(\langle 3\rangle,+,$.$) is a subring of (\mathbb{Z},+,$.$) .$

Remark: (7.7)

For each $n \in \mathbb{Z}$.
$(\langle n\rangle,+,$.$) is a subring of (\mathbb{Z},+,$.$) .$

Defintion: (7.8) Ideals

A non - empty subset I of a ring R is said to be a right (resp. left) ideal of R if for each $a, b \in I$ and $r \in R$, then $a-b \in I$ and $a . r \in I$ (resp. r. $a \in I$).

Defintion: (7.9)

A non - empty subset I of a ring R is said to be two - sided ideal (or ideal)
if for each $a, b \in I$ and $r \in R$, then
(1) $a-b \in I$
(2) a.r \quad and $r . a \in I$.

Remark: (7.10)

If R is commutative, then right ideal $=$ left ideal $=$ deal.
Question: (7.11) H.W.
Let $P=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{Z}_{2}\right\}$. Find all right ideals and left ideals of P .
Question: (7.12) H.W.
Give an example of a ring it has right ideal, but it has no left ideal.
Question: (7.13)
Let R be a ring and $\mathrm{a} \in \mathrm{R}$, then show that $P=\{r \in R$: $a r=0\}$ is a right ideal of R .

Sol:

(1) Let $a, b \in P$, we must to prove $a-b \in P$

Since $a \in P$, then $a r=0$
And $b \in P$, then $b r=0$
Is $(a-b) r=0$?
Now, $(a-b) r=a r-b r=0-0=0$,
so, $a-b \in P$.
(2) let $\mathrm{a} \in \mathrm{P}$ and $\mathrm{K} \in \mathrm{R}$.

We show that ak $\in P$,
i. e , we show that $(a k) . r=0$.

But, $(a k) \cdot r=a .(k \cdot r)=a \cdot t=0$, where $t=k . r$.
$\therefore a . k \in P$
$\therefore \mathrm{P}$ is a right ideal of R

Theorem: (7.14)
If $\left(I_{1},+,.\right)$ and $\left(I_{2},+,.\right)$ are two ideals of a ring $(R,+,$.$) . Then \left(I_{1} \cap I_{2},+,.\right)$ also is an ideal.

Proof: We have,
$\emptyset \neq I_{1} \subseteq R$ and $\emptyset \neq I_{2} \subseteq R$, then $I_{1} \cap I_{2} \supseteq\{0\}$.
$\Rightarrow \emptyset \neq I_{1} \cap I_{2} \subseteq R$.
(1) Let $a, b \in I_{1} \cap I_{2}$.
$\Rightarrow a, b \in I_{1}$ and $a, b \in I_{2}$.
$\Rightarrow a-b \in I_{1}$ and $a-b \in I_{2}$ (since I_{1} and I_{2} are ideals)
$\Rightarrow a-b \in I_{1} \cap I_{2}$.
(2) Let $a \in I_{1} \cap I_{2}$ and $r \in R$
$\Rightarrow a \in I_{1}$ and $a \in I_{2}$.
\Rightarrow ar $\in I_{1}$ and $\operatorname{ar} \in I_{2}$ (since I_{1} and I_{2} are ideals)
$\Rightarrow \operatorname{ar} \in I_{1} \cap I_{2}$.
Also $r a \in I_{1}$ and $r a \in I_{2}$.
$r a \in I_{1} \cap I_{2}$.
$\therefore\left(I_{1} \cap I_{2},+,.\right)$ is also an ideal of $(R,+,$.$) .$
Question: (7.15)
Is the union of two ideals an ideal? Explain.
Ans: No, for example
$I_{1}=\{0,3,6,9\}$ and $I_{2}=\{0,2,4,6,8,10\}$ are ideals of $\left(\mathbb{Z}_{12},+_{12}, \cdot{ }_{12}\right)$
Now, $I_{1} \cup I_{2}=\{0,2,3,4,6,8,9,10\}$ is not ideal since $2,3 \in I_{1} \cup I_{2}$,
but $3-2=1 \notin I_{1} \cup I_{2}$

Theorem: (7.16)

Let $(R,+,$.$) be a ring with unity and \mathrm{I}$ an ideal of R containing a unity. Then $I=R$.

Proof:

Since $I \subseteq R$ \qquad
Let $r \in R$ and $1 \in I \quad$ (since I containing the unity)
$\Rightarrow \mathrm{r} .1 \in \mathrm{I}$ and $1 . \mathrm{r} \in \mathrm{I} \quad$ (since I is an ideal)
$\Rightarrow \mathrm{r} \in \mathrm{I}$
$\therefore \quad R \subseteq I$
From (1) and (2) we get $I=R$.

Defintion: (7.17) (The sum of two ideals)

Let I_{1} and I_{2} be two ideals of a ring R, then
$\mathrm{I}_{1}+\mathrm{I}_{2}=\left\{\mathrm{a}+\mathrm{b}: \mathrm{a} \in \mathrm{I}_{1}, \mathrm{~b} \in \mathrm{I}_{2}\right\}$ is said to be the sum of two ideals.
Theorem: (7.18)
For any two ideals I_{1} and I_{2} of a ring R, then $I_{1}+I_{2}$ is an ideal of R.

Proof:

(1) Let $x, y \in I_{1}+I_{2}$.

We show that $x-y \in I_{1}+I_{2}$
Since $x \in I_{1}+I_{2} \Rightarrow x=a_{1}+b_{1}$, where $a_{1} \in I_{1}, b_{1} \in I_{2}$
and $y \in I_{1}+I_{2} \Rightarrow y=a_{2}+b_{2}$, where $a_{2} \in I_{1}, b_{2} \in I_{2}$. Then,

$$
\begin{aligned}
x-y & =\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right) \\
& =\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right)
\end{aligned}
$$

$\left[\left(a_{1}-a_{2}\right) \in I_{1}\right.$ and I_{1} is an ideal] and
[$\left(b_{1}-b_{2}\right) \in I_{2}$ and I_{2} is an ideal]
So, $(x-y) \in I_{1}+I_{2}$.
(2) Let $x \in I_{1}+I_{2}$ and $r \in R$.

We want to show that $x r \in I_{1}+I_{2}$ and $r x \in I_{1}+I_{2}$.
Since $x \in I_{1}+I_{2} \Rightarrow x=a+b$, where $a \in I_{1}$ and $b \in I_{2}$.
$x r=(a+b) r$
$=a r+b r \quad\left(a r \in I_{1}\right.$ since I_{1} is an ideal of R and $b r \in I_{2}$ since I_{2} is an ideal of $\left.R\right)$
So, $x r \in I_{1}+I_{2}$
Also, $r x=r(a+b)$
$=r a+r b \quad\left(r a \in I_{1}\right.$ since I_{1} is an ideal of R and $r b \in I_{2}$ since I_{2} is an ideal of $\left.R\right)$
So, $r x \in I_{1}+I_{2}$
$\therefore I_{1}+I_{2}$ is an ideal of R.

Defintion: (7.18') (The multiplication of two ideals)

Let I_{1} and I_{2} be two ideals, then

$$
I_{1} I_{2}=\left\{\sum_{i=1}^{n} a_{i} b_{i}: a_{i} \in I_{1}, b_{i} \in I_{2}\right\}
$$

Question: (7.18") (H.W.)

Show that $\mathrm{I}_{1} \mathrm{I}_{2}$ is an ideal of R .

Defintion: (7.19) (Ideal generated by a subset)

Let S be a non-empty subset of the ring R and let $G=\left\{A_{\alpha}\right\}_{\alpha \in J}$ be the family of ideals.
Then, $\bigcap_{\alpha \in J} A_{\alpha}$ is an ideal such that $S \subseteq \bigcap_{\alpha \in J} A_{\alpha}$, then $\bigcap_{\alpha \in J} A_{\alpha}$ is an ideal generated by S and dented by $\langle S\rangle=\bigcap_{\alpha \in J} A_{\alpha}$.
Defintion: (7.20) (Principal Ideal)
If R is a ring and $a \in R$, then the ideal generated by a is said to be principal ideal and it is denoted by $(\langle a\rangle,+,$.$) or ((a),+,$.$) , i.e,$
an ideal generated by a single ring element, say a is called a principal ideal.

Remark: (7.20')

Also, we use the symbol aR (resp. Ra) for right (resp. left) principal ideal of R.

Ex 7.21:

Let $(\mathbb{Z},+,$.$) be the ring of integers.$
(2) , (3) , (5) , \ldots are principal ideals, where
(2) $=2 \mathbb{Z}$
(3) $=3 \mathbb{Z}$
(5) $=5 \mathbb{Z}, \ldots$

Theorem: (7.22)

Let I_{1} and I_{2} be two ideals of a ring R, then $I_{1}+I_{2}=\left\langle I_{1} \cup I_{2}\right\rangle$.
Proof: (H.W.)
Defintion: (7.23)
A ring R is called principal ideal ring if every ideal of R is principal.
Theorem: (7.24)
The ring \mathbb{Z} of integers is principal ideal ring; in fact if I is an ideal of \mathbb{Z}, then $I=(n)$ for some non-negative integer n .

Proof: (H.W.)

Defintion: (7.25) (Simple ring)

A ring R is to be simple if it has no proper ideals.

Example: (7.26)

$(\mathbb{R},+,$.$) is the simple ring, where \mathbb{R}$ is the set of all real numbers.
Lemma: (7.27)
Every division ring is a simple ring.

Proof:

Let R be a division ring and let I be an ideal of R .
Suppose $I \neq\{0\}$. Then $\exists 0 \neq a \in I$.
Since R is a division ring, then a has multiplicative inverse.
Therefor, $\exists \mathrm{b} \in \mathrm{R}$ such that $\mathrm{a} . \mathrm{b}=1 \in \mathrm{I}$.
Therefor, by Theorem 7.16, I = R.
$\therefore \mathrm{R}$ is a simple ring.

Idempotent and Nilpotent elements of a ring

Defintion: (7.28) (Nilpotent element)
An element a of a ring R is said to be nilpotent if there exists a positive integer n such that $\mathrm{a}^{\mathrm{n}}=0$.

Defintion: (7.29) (Idempotent element)

An element a of a ring R is said to be idempotent if $\mathrm{a}^{2}=\mathrm{a}$.
Example: (7.30)
The nilpotent elements in \mathbb{Z}_{8} are 2,4 since $\exists n=3 \in \mathbb{N}$ such that $2^{3}=0 \Rightarrow 2^{3}=8=0$ and $\exists m=2 \in \mathbb{N}$ such that $4^{2}=0$.

Example: (7.31)
3 and 4 are idempotent elements in \mathbb{Z}_{6} since $3^{2}=3$ and $4^{2}=4$.
Question: (7.32) (H. W.)
Find all nilpotent and idempotent elements in Z_{12} and Z_{24}.
Theorem: (7.33)
If R is a ring with identity and R has no zero divisor, then the only idempotent element is either zero or 1.

Proof: Let a be an idempotent element, then $\mathrm{a}^{2}=\mathrm{a}$.
Since $a .(a-1)=a .(a+(-1))$

$$
\begin{aligned}
& =\mathrm{a} \cdot \mathrm{a}+\mathrm{a} \cdot(-1) \\
& =\mathrm{a}^{2}-(\mathrm{a} \cdot 1) \quad[\text { Th. } \mathrm{a} \cdot(-1)=-(\mathrm{a} \cdot 1)] \\
& =\mathrm{a}-\mathrm{a}=0
\end{aligned}
$$

So, $a .(a-1)=0$.
Since R has no zero divisor, then either $\mathrm{a}=0$ or $\mathrm{a}=1$.
Defintion: (7.34) (Boolean ring)
A ring R is said be a Boolean ring if every element of R is idempotent, i.e., $\mathrm{a}^{2}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{R}$.

Example: (7.35)
$\left(\mathbb{Z}_{2},+_{2}, \cdot 2\right)$ is the standard example of Boolean ring.
Theorem: (7.36)
If R is a Boolean ring, then R is (1) a commutative ring of (2) characteristic 2 .

Proof:

(1) Let $a \in R$. Then
$(a+a)^{2}=a+a$
$\Rightarrow(a+a)(a+a)=a+a$
$\Rightarrow a^{2}+a^{2}+a^{2}+a^{2}=a+a$
Since R is Boolean ring, then $\mathrm{a}^{2}=\mathrm{a}$
$\Rightarrow \mathrm{a}+\mathrm{a}+\mathrm{a}+\mathrm{a}=\mathrm{a}+\mathrm{a}$
$\Rightarrow \mathrm{a}+\mathrm{a}=0$ (by cancellation law)
$\Rightarrow 2 \mathrm{a}=0$
$\therefore \mathrm{R}$ is of characteristic 2 .
(2) To prove that R is commutative.

Let $(\mathrm{R},+,$.$) be a Boolean ring, then \mathrm{a}^{2}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{R}$.
$\forall \mathrm{a}, \mathrm{b} \in \mathrm{R},(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}+\mathrm{b}$
$\Rightarrow \mathrm{a}^{2}+2(\mathrm{a} . \mathrm{b})+\mathrm{b}^{2}=\mathrm{a}+\mathrm{b}$
Since R is Boolean, then $\mathrm{a}+\mathrm{a} \cdot \mathrm{b}+\mathrm{a} \cdot \mathrm{b}+\mathrm{b}=\mathrm{a}+\mathrm{b}$.
$\therefore \mathrm{a} . \mathrm{b}+\mathrm{a} . \mathrm{b}=0$ \qquad (1) (by cancellation law)

Also,
$(a+b)^{2}=a+b \Rightarrow(a+b)(a+b)=a+b$.
$\Rightarrow(a+b) \cdot a+(a+b) \cdot b=a+b$
$\Rightarrow a^{2}+b \cdot a+a \cdot b+b^{2}=a+b$.

Since R is Boolean, then

$$
\begin{aligned}
& a+b \cdot a+a \cdot b+b=a+b \\
\Rightarrow & b \cdot a+a \cdot b=0
\end{aligned}
$$

From (1) \& (2) we get
$a . b+a . b=b . a+a . b$
$\Rightarrow a . b=b . a \quad$ (by cancellation law)
$\therefore R$ is commutative.

Defintion: (7.37) (Centre of a ring)

Let $(\mathrm{R},+,$.$) be a ring, then C(R)=\{x \in R: x \cdot y=y \cdot x, \quad \forall y \in R\}$ is said to be centre of a ring.

Theorem: (7.38)

The centre of a ring is subring of R .

Proof:

$0 \in R \Rightarrow 0 . x=x .0, \forall x \in R \Rightarrow C(R) \neq \emptyset$.
Let $a, b \in C(R)$.
We prove that $a-b \in C(R)$, i.e.,
we prove that
$(a-b) \cdot x=x \cdot(a-b)$ \qquad
Since $a \in C(R) \Rightarrow a \cdot x=x \cdot a, \forall x \in R$ and
$b \in C(R) \Rightarrow b \cdot x=x \cdot b, \forall x \in R$
L.H.S of $(1)=(a-b) \cdot x$

$$
\begin{array}{ll}
=a \cdot x-b \cdot x & \quad(\text { Distributive law) } \\
=x \cdot a-x \cdot b & \quad(\text { since } a \in C(R) \text { and } b \in C(R) \\
=x \cdot(a-b) & \text { (Distributive law) }
\end{array}
$$

So, $(a-b) \cdot x=x .(a-b)$.
Also, we show that

$$
(a . b) \cdot x=x \cdot(a . b)
$$

Now,
(a.b). $x=$
a. (b.x) (Associative law)

$$
\begin{aligned}
&=a \cdot(x . b) \quad(b \in C(R)) . \\
&=(a \cdot x) \cdot b \quad(\text { Associative law }) \\
&=(x . a) \cdot b \quad(a \in C(R)) \\
&=x \cdot(a . b) \quad(\text { Associative law }) \\
& \therefore \mathrm{C}(\mathrm{R}) \text { is a subring of } \mathrm{R} .
\end{aligned}
$$

Defintion: (7.38) (Radical Ideal)

Let I be an ideal of a commutative ring R. Then the radical of I is defined by
$\sqrt{I}=\left\{a \in \mathrm{R}: \mathrm{a}^{\mathrm{n}} \in \mathrm{I}\right.$, for some positive integer n$\}$
Question: (7.39)
Show that \sqrt{I} is an ideal of a commutative ring of R .
Solution: H.W.

Theorem: (7.40)

If I and J are ideals of a commutative ring of R , then

1) $\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$
2) $\sqrt{I \cap J} \supseteq(\sqrt{I}+\sqrt{J})$ (Equality does not hold in general, give an example)

Proof:

(1) Let $a \in \sqrt{I \cap J}$ then $\exists n \in \mathbb{N}$ such that
$a^{n} \in I \cap J \Rightarrow \mathrm{a}^{\mathrm{n}} \in \mathrm{I}$ and $\mathrm{a}^{\mathrm{n}} \in \mathrm{J}$.
$\Rightarrow a \in \sqrt{I}$ and $a \in \sqrt{J} \Rightarrow a \in(\sqrt{I} \cap \sqrt{J})$
$\therefore \sqrt{I \cap J} \subseteq(\sqrt{I} \cap \sqrt{J})$
Let $a \in(\sqrt{I} \cap \sqrt{J})$
$\Rightarrow a \in \sqrt{I}$ and $a \in \sqrt{J}$
$\Rightarrow \exists$ positive integers n , m such
that $\mathrm{a}^{\mathrm{n}} \in \mathrm{I}$ and $\mathrm{a}^{\mathrm{m}} \in J$.
$\Rightarrow \mathrm{a}^{\mathrm{n}+\mathrm{m}}=\mathrm{a}^{\mathrm{n}} \mathrm{a}^{\mathrm{m}} \in \mathrm{I} \cap \mathrm{J} ;$ let $k=n+m$ (positive integer), then $a^{k} \in I \cap J \Rightarrow a \in \sqrt{I \cap J}$
$(\sqrt{I} \cap \sqrt{J}) \subseteq \sqrt{I \cap J}$
From (1) \& (2) we get
$(\sqrt{I} \cap \sqrt{J})=\sqrt{I \cap J}$.
(2) H.W. (equality does not hold, give an example). Question: (4.40') (H.W.)
State and prove some other (five) properties for \sqrt{I}.

