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Chapter Seven
Subrings and Ideals

Defintion: (7.1) (Subring)
Anon-empty set S of a ring R is called a subring if itself is a ring.

Defintion: (7.2) (Subring)

A non-empty subset � ⊆ � of a ring R is called a subring if

(i) ∀ �, � ∈ �, � – � ∈ �
(ii) ∀ �, � ∈ � , �. � ∈ �

Example: (7.3)

(ℤ , + , . ) is a subring of (ℝ, + , . ) .

Example: (7.4)

Show that (ℤ� , + , . ) is a subring of (ℤ , + , . ).

Solution:

(1) Let �, � ∈ ℤ�

We show that � − � ∈ ℤ�

Let � = 2�1 ��� � = 2�2 where �1, �2 ∈ ℤ .

Now, � − � = 2�1 − 2�2 = 2(�1 − �2)

Let �3 = �1 − �2, then 2�3∈ ℤ�

� − � ∈ ℤ�.

(2) Let �, � ∈ ℤ�. We show that �. � ∈ ℤ�

Let � = 2�1 ��� � = 2�2 where �1 , �2 ∈ ℤ .

Now, �. � = 2�1 . 2�2 = 2(2�1. �2)

Let �3 = 2�1. �2, then 2�3∈ ℤ�

⇒ �. � ∈ ℤ�

Hence ℤ� is a subring of ℤ .

Remark: (7.5)

There exist two trivial subrings of any rings, which are (�, + , . ) and ({0} , + , . ).

Example: (7.6)

Let (ℤ , + , . ) be the ring of integers.

� = 3�: � ∈ ℤ = 3 = (3).
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( 3 , + , . ) is a subring of (ℤ , + , . ).

Remark: (7.7)
For each � ∈ ℤ.
( � , + , . ) is a subring of (ℤ , + , . ).
Defintion: (7.8) Ideals
A non – empty subset I of a ring R is said to be a right (resp. left) ideal of R if

for each � , � � ��� � ∈ � , �ℎ�� � – � � ��� �. � � (����. �. � �).

Defintion: (7.9)

A non – empty subset I of a ring R is said to be two - sided ideal (or ideal)

if for each �, � � ��� � �, then

(1)� – � �
(2)� . � � ��� �. � �.

Remark: (7.10)

If R is commutative, then right ideal = left ideal = deal.

Question: (7.11) H.W.

Let � = � �
� � : �, �, �, � ∈ ℤ2 . Find all right ideals and left ideals of P.

Question: (7.12) H.W.
Give an example of a ring it has right ideal, but it has no left ideal.

Question: (7.13)

Let R be a ring and a R, then show that � = {� �: �� = 0} is a right ideal of R.

Sol:

(1) Let �, � � ,we must to prove � – � �

Since � �, then �� = 0

And � �, then �� = 0

Is (� – �) � = 0 ?

Now, (� – �) � = �� − �� = 0 – 0 = 0,

��, � – � �.
(2) let a P and K R.

We show that ak P,

i. e, we show that �� . � = 0.

���, (��). � = �. (�. �) = �. � = 0, �ℎ��� � = �. � .
�. � �
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P is a right ideal of R

Theorem: (7.14)

If (�1, + , . ) ��� (�2, + , . ) are two ideals of a ring (� , + , . ). Then (�1 �2, + , . ) also
is an ideal.

Proof:We have,

Ø �1 � ��� Ø �2 ⊆ �, �ℎ�� �1 �2 {0}.

⇒ Ø �1 �2 �.

(1)Let �, � �1 �2.
⇒ � , � �1 ��� �, � �2.
⇒ � − � �1 ��� � − � �2 (����� �1 ��� �2��� ������)
⇒ � − � �1 �2.

(2)��� � �1 �2 ��� � �
⇒ � �1 ��� � �2.

⇒ �� �1 ��� �� �2 (����� �1 ��� �2 ��� ������ )
⇒ �� �1 �2.

Also �� �1 ��� �� �2 .

�� �1 �2.

(�1 �2, + , . ) is also an ideal of (�, + , . ) .
Question: (7.15)

Is the union of two ideals an ideal? Explain.
Ans: No, for example

�1 = {0, 3, 6, 9} and �2 = {0, 2, 4, 6, 8, 10} are ideals of (ℤ12, +12 , .12)

Now, �1 ∪ �2 = {0, 2, 3, 4, 6, 8, 9, 10} is not ideal since 2, 3 �1 ∪ �2 ,

��� 3 – 2 = 1 �1 ∪ �2

Theorem: (7.16)

Let (� , + , . ) be a ring with unity and I an ideal of R containing a unity. Then � = �.

Proof:

Since I R ___________ (1)

Let r R and 1 I (since I containing the unity)

⇒ r.1 I and 1. r I (since I is an ideal)

⇒ r I
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� ⊆ � __________(2)

From (1) and (2) we get I = R.

Defintion: (7.17) (The sum of two ideals)

Let I1 and I2 be two ideals of a ring R, then
I1 + I2 = {a + b: a I1 , b I2 } is said to be the sum of two ideals.

Theorem: (7.18)

For any two ideals �1 and �2 of a ring �, then �1 + �2 is an ideal of R.

Proof:

(1) Let �, � �1 + �2 .

We show that � – � �1 + �2

Since � �1 + �2 ⇒ � = �1 + �1 , �ℎ��� �1 �1 , �1 �2

and � �1 + �2 ⇒ � = �2 + �2 , �ℎ��� �2 �1 , �2 �2. Then,

� – � = (�1 + �1) – (�2 + �2)

= (�1 − �2) + (�1 − �2)

[ (�1 − �2) �1and �1 is an ideal] and

[(�1 − �2) �2 and �2 is an ideal]

��, (� – �) �1 + �2 .

(2) Let � �1 + �2 ��� � �.

We want to show that �� ∈ �1 + �2 ��� �� ∈ �1 + �2.

Since � ∈ �1 + �2 ⇒ � = � + �, where � ∈ �1 ��� � ∈ �2.

�� = (� + �) �

= �� + �� (�� ∈ �1 since �1 is an ideal of � and �� ∈ �2 since �2 is an ideal of �)

So, �� ∈ �1 + �2

Also, �� = �(� + �)

= �� + �� (�� ∈ �1 since �1is an ideal of � and � � ∈ �2 since �2 is an ideal of �)

So, �� ∈ �1 + �2

∴ �1 + �2 �� �� ����� �� �.

Defintion: (7.18) (The multiplication of two ideals)

Let I1 and I2 be two ideals, then
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�1 �2 = { �=1
� �� ��� : �� ∈ �1 , �� ∈ �2}

Question: (7.18) (H.W.)

Show that I1 I2 is an ideal of R.

Defintion: (7.19) (Ideal generated by a subset)

Let S be a non-empty subset of the ring R and let � = �� �∈� be the family of ideals.

Then, ∩�∈��� is an ideal such that � ⊆ ∩�∈��� , then ∩�∈��� is an ideal generated by
S and dented by < � > = ∩�∈��� .
Defintion: (7.20) (Principal Ideal)

If R is a ring and a ∈ R, then the ideal generated by a is said to be principal ideal and it is
denoted by ( < � > , + , . ) �� ((�) , + , . ), i.e,

an ideal generated by a single ring element, say a is called a principal ideal.

Remark: (7.20)

Also, we use the symbol aR (resp. Ra) for right (resp. left) principal ideal of R.

Ex 7.21:

Let (ℤ , + , . ) be the ring of integers.

(2) , (3) , (5) , … are principal ideals, where
2 = 2ℤ
3 = 3ℤ
5 = 5ℤ , …

Theorem: (7.22)

Let I1 and �2 be two ideals of a ring �, then �1 + �2 = < �1 ∪ �2 >.

Proof: (H.W.)
Defintion : (7.23)

A ring � is called principal ideal ring if every ideal of � is principal.

Theorem: (7.24)

The ring ℤ of integers is principal ideal ring; in fact if � is an ideal of ℤ , then � = (�)
for some non-negative integer n.

Proof: (H.W.)

Defintion: (7.25) (Simple ring)

A ring � is to be simple if it has no proper ideals.

Example: (7.26)



13

(ℝ , + , . ) is the simple ring, where ℝ is the set of all real numbers.

Lemma: (7.27)
Every division ring is a simple ring.

Proof:

Let R be a division ring and let I be an ideal of R.

Suppose I ≠ {0}. Then ∃ 0 ≠ a ∈ I.

Since R is a division ring, then a has multiplicative inverse.

Therefor, ∃ b ∈ R such that a. b = 1 ∈ I.

Therefor, by Theorem 7.16, I = R.

∴ R is a simple ring.

---------------------------------------------------------------------------------------------

Idempotent and Nilpotent elements of a ring

Defintion: (7.28) (Nilpotent element)
An element a of a ring R is said to be nilpotent if there exists a positive
integer n such that an = 0.

Defintion: (7.29) (Idempotent element)

An element a of a ring R is said to be idempotent if a2 = a.

Example: (7.30)

The nilpotent elements in ℤ8 are 2, 4 since ∃ � = 3 ∈ ℕ such that 23= 0 ⇒ 23 = 8= 0 and

∃ � = 2 ∈ ℕ such that 42= 0 .

Example: (7.31)

3 and 4 are idempotent elements in ℤ6 since 32= 3 and 42= 4.

Question: (7.32) (H. W.)

Find all nilpotent and idempotent elements in Z12 and Z24.

Theorem: (7.33)

If R is a ring with identity and R has no zero divisor, then the only idempotent element is
either zero or 1.

Proof: Let a be an idempotent element, then a2 = a.

Since a. (a – 1) = a. (a + (-1))
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= a. a + a. (-1)

= a2 – (a.1) [Th. a.(-1)= -(a.1)]

= a – a = 0

So, a. (a – 1) = 0.

Since R has no zero divisor, then either a = 0 or a = 1.

Defintion: (7.34) (Boolean ring)
A ring R is said be a Boolean ring if every element of R is idempotent,

i.e., a2 = a, ∀ a ∈ R.

Example: (7.35)

( ℤ2, +2, .2) is the standard example of Boolean ring.
Theorem: (7.36)

If R is a Boolean ring, then R is (1) a commutative ring of (2) characteristic 2.

Proof:

(1) Let a ∈ R. Then
(a + a)2 = a + a

⇒ (a + a)(a + a) = a + a
⇒ a2 + a2 + a2 + a2= a + a

Since R is Boolean ring, then a2 = a

⇒ a + a+ a + a = a + a

⇒ a + a = 0 (by cancellation law)

⇒ 2a = 0

∴ R is of characteristic 2.

(2) To prove that R is commutative.

Let (R , + , .) be a Boolean ring, then a2= a, ∀a ∈ R.

∀ a, b ∈ R , (a + b)2 = a + b

⇒ a2 + 2 (a.b) + b2 = a + b

Since R is Boolean, then a + a.b + a.b + b = a+b .

∴ a.b + a.b = 0 ________(1) (by cancellation law)

Also,

(� + � )2 = � + � ⇒ (� + �) (� + �) = � + �.
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⇒ (� + �). � + (� + �). � = � + �
⇒ � 2 + �. � + �. � + � 2 = � + �.

Since R is Boolean, then

� + �. � + �. � + � = � + �
⇒ �. � + �. � = 0 _______(2) (by cancellation law)

From (1) & (2) we get

�. � + �. � = �. � + �. �

⇒ �. � = �. � (by cancellation law)

∴ � is commutative.

Defintion: (7.37) (Centre of a ring)

Let (R, +, .) be a ring, then �(�) = {� ∈ �: �. � = �. �, ∀ � ∈ �} is said to be centre of
a ring.

Theorem: (7.38)

The centre of a ring is subring of R.

Proof:

0 ∈ � ⇒ 0. � = �. 0, ∀ � ∈ � ⇒ �(�) ≠ Ø.

Let �, � ∈ �(�).

We prove that � – � ∈ � (�), i.e.,

we prove that

(� – �). � = �. (� – �) ___(1)

Since � ∈ � (�) ⇒ �. � = �. � , ∀ � ∈ � and

� ∈ �(�) ⇒ �. � = �. � , ∀ � ∈ �

L.H.S of (1) = (� – �). �

= �. � – �. � (������������ ���)
= �. � – �. � (����� � ∈ �(�) ��� � ∈ �(�).
= �. (� – �) (������������ ���)

��, (� – �). � = �. (� – �).
Also, we show that

(�. �). � = �. (�. �)
���,

(�. �). � =

�. (�. �) (����������� ���)
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= �. (�. �) (� ∈ �(�)).
= (�. �). � (����������� ���)

= (�. �). � (� ∈ �(�))
= �. (�. �) (����������� ���)

∴ C(R) is a subring of R.

Defintion: (7.38) (Radical Ideal)

Let I be an ideal of a commutative ring R. Then the radical of I is defined by

� = {� ∈ R: an I, for some positive integer n}

Question: (7.39)

Show that � is an ideal of a commutative ring of R.

Solution: H.W.

Theorem: (7.40)

If I and J are ideals of a commutative ring of R, then

1) � ∩ � = � ∩ �
2) � ∩ � ⊇ ( � + �) (Equality does not hold in general, give an example)

Proof:

(1) Let � ∈ � ∩ � then ∃ � ∈ ℕ such that

�� ∈ � ∩ � ⇒ an I and an J.

⇒ � ∈ � ��� � ∈ � ⇒ � ∈ ( � ∩ �)

∴ � ∩ � ⊆ ( � ∩ �)______(1)

Let � ∈ ( � ∩ �)

⇒ � ∈ � ��� � ∈ �

⇒ ∃ positive integers n , m such

that an I and am J.

⇒ an+ m = an am I J; let � = � + � (�������� �������), then �� � � ⇒ � ∈ � ∩ �

( � ∩ �) ⊆ � ∩ �______(2)

From (1) & (2) we get

� ∩ � = � ∩ �.
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(2) H.W. (equality does not hold, give an example).
Question: (4.40) (H.W.)
State and prove some other (five) properties for �.


