Salahaddin UnivErbil Dept. of Math. First Trail	College of Science (2023-2024) Final Exam (First Semester)	Group Theory Third Class Time: 2 hours
Q1/ (i) Define "Isomorphic	e between two groups". Show that	$t(\mathbf{Z}, +) \cong (\mathbf{Z}_{e}, +)$, where \mathbf{Z}
is the set of integers and Z	e is the set of even integers.	(7+10) marks
(ii) Define "Quotient group	". Show that quotient group satis	fies all properties of groups.
$\mathbf{Q2}$ /(i) Let (G, *) be a group	up. Show that G is commutative if	$ff(a*b)^{-1} = a^{-1}*b^{-1},$
for each $a, b \in G$.		(9+10) marks
(ii) What is mean by Dihed	lral group ? Explain.	
Q3/		(9+7) marks
(i) Suppose $a \in \mathbf{R} \setminus \{0, 1\}$	and let $G = \{a^k : k \in \mathbb{Z}\}$, where \mathbb{R}	is the set of real numbers
and \mathbf{Z} is the set of integer 1	numbers. Is (G, .) a group or not ?	Explain.
(ii) Define "Homomorphis	m group". Let $f: (G, *) \rightarrow (G', .)$	be a group homomorphism.
If H is a subgroup of G, the	en show that $f(H)$ is a subgroup of	of G'.
Q4/ Write "True" or "Fals	e" of the following:	(8) marks
(1) If (H, *) is a subgroup	of the group (G, *) and $\phi \neq K \subseteq$	\subseteq G, then H*K \subseteq H implies
$K \subseteq H.$		
(2) Let (H, *) be s subgroup.	oup of index 2 in the group (G,	*), then (H, *) is a normal
(3) The original motivation	n for group theory was the quest	for solutions of polynomial
equations of degree higher	than 3.	
(4) Let n be a fixed positiv	re integer and a, b be arbitrary inte	egers. If $a \equiv b \mod (n)$, then
$a^k \equiv b^k \mod (n).$		
(5) Let (G, *) be a group.	Then, the order of an element x	∈G is the positive integer n
such that $x^n = e$.		
(6) Let (G, *) be a group. H	Every subgroup of the Z(G) is nor	mal.

(7) Let (G, *) be a group, then G is commutative **iff** [a, b] = e.

(8) Let n be a fixed positive integer and a, b be arbitrary integers, then $a \equiv b \mod (n)$ iff a and b have different remainder when divided by n.

Good Luck