Salahaddin Univ.-Erbil Dept. of Math. Final Exam.

College of Science (2023-2024) Non-Commutative Algebra

First Semester MSc Exam. Time: 3 hours

Q1/ (i) Define "Imbedded ring". State and prove "Dorroh Extension Theorem".

(6+4) marks

- (ii) Show that any homomorphism from any arbitrary ring R onto the ring Z of integers is uniquely determined by its kernel.
- **Q2/ (i)** Define "nil ideal" and "nilpotent ideal". What is the relation between them? Prove it. Define "nil (nilpotent) ring". If R contains an ideal I such that I and R / I are both nil ring, then show that R is a nil ring.

 (6+4) marks
- (ii) Show that the set $I_i = \{(0, ..., 0, a_i, 0, ..., 0): ai \in Ri \}$ forms an ideal of R isomorphic to Ri under the mapping which sends $(0, ..., 0, a_i, 0, ..., 0)$ to the element a_i .

Q3/ (i) State or what is mean by:

(4+5+5) marks

- (1) Factorization of Homomorphism
- (2) External direct sum
- (ii) Let R be a commutative ring with identity and I is an ideal of R. If J is an ideal of R such that $I \subseteq J$, then show that J / I is an ideal of R / I.
- (iii) Let R be a commutative ring with identity and I is an ideal of R. If P is a prime ideal of R such that $I \subseteq P$, then show that P / I is a prime ideal of R / I.

[Hint: Use part (i)].

Q4/ (i) Assume that R is a ring and $a \in R$. If C(a) denotes the set of all elements with commute with a, $C(a) = \{r \in R: ar = ra\}$. Show that C(a) is a subring of R. Also verify the equality Cent R =

- Q1/ (i) State and prove "Correspondence Theorem". (12+8) marks
- (ii) Let I and J be two ideals of the ring R. Define "The right quotient of I by J, I:_rJ". Show that I:_rJ is an ideal of R.

Q2/ (8+12) marks

- (i) Show that the set of elements of the form ar+na is a right ideal of the ring R.
- (ii) Let $I_1, I_2, ..., I_n$ be n ideals of a ring R. Show that $I_1+I_2+...+I_n=\langle I_1 \cup I_2 \cup ... \cup I_n \rangle$.

Q3/(i) What is mean by

(12+8) marks

- (1) Internal direct sum (2) Let $\{I_i\}$ be an arbitrary indexed collection of ideals of a ring R, what is $\sum I_i$? (3) The evaluation homomorphism at a point. (4) n-fold sum of 1.
- (ii) Let R be a commutative ring with unity. If every ideal of R is prime, then show that R is a field.
- Q4/ (i) Suppose that R is an integral domain. Determine all the idempotent elements of R. (6+6+8) marks

- (ii) Consider the map $f: \mathbb{C} \to \mathbb{C}$ such that f(a+ib) = a-ib. Is f a ring homomorphism or not? Explain, where C = complex numbers.
- (iii) Write "True" or "False" of the following:
- (1) In a ring (R, +, .) with identity. No divisor of zero can posses a multiplicative inverse.
- (2) Let (R, +, .) be a ring which has the property that $a^2 = a$, for every $a \in R$. Then, (R,+, .) is commutative ring.
- (3) In an integral domain the zero element is the only idempotent.
- (4) The ring of real numbers $(\mathbf{R}, +, .)$ is a simple ring.
- (5) Given that (I, +, .) is an ideal of the ring (R, +, .). If (R, +, .) is a principal ideal ring, then so is the quotient ring (R / I,+, .).
- (6) If R is any ring with identity 1, then R has characteristic n > 0 iff n is the positive integer for which n1 = 0.
- (7) $I:_r(JK) = (I:_rK):_rJ$, where I, J, K are ideals in R.
- (8) If I is an ideal of the ring R and J is an ideal of I, then J is an ideal of R.

- Q1/ (i) Let G be a group with subgroups H and K. Assume that (1) H and K are both normal in G.
- (2) $H \cap K = \{1\}$. (3) G = HK. Then, show that $G \cong H \times K$.
- (4+4) marks

- (ii) What is mean by:
- (1) The general linear group, GL_n
- (2) Algebraically closed field with some examples
- (3) Exact sequence and short exact sequence
- (4) Descending decomposition
- **Q2/** (i) Show that two elements σ , $\sigma' \in S_X$ are conjugate iff λ (σ) = λ (σ'), where λ (σ) and λ (σ') are cycle type of σ and σ' , respectively. (6+6) marks
- (ii) Define "Center of a group". If |G| is a power of a prime p, then show that G has nontrivial center.
- Q3/ (i) Let H be a subgroup of a group G. Let $g \in G$. Show that
- (5+5) marks
- (1) $gHg^{-1} = \{ghg^{-1} : h \in H\}$ is a subgroup of G. (2) $|gHg^{-1}| = |H|$.
- (ii) Let G be a group, $a \in G$. Define $\sigma_a(x)$. Show that σ_a is an isomorphism.
- **Q4/ (i)** Prove or disprove.

- Let (G, .) be a finite cyclic group of order n. Then, $(G, .) \cong (\mathbf{Z}_n, +_n)$, where \mathbf{Z}_n is the set of integers modulo n.
- (ii) Show that every quotient group of a cyclic group is cyclic.
- Q5/ (i) What is the conditions on a group (G, *) to become an abelian group? State (5) of them.
- (ii) Write "True" or "False" of the following:

- (5+5) marks
- (1) Given a and b are elements of a group (G, *), with a*b = b*a, then $(a*b)^k = a^k * b^k$, for some integer $k \in \mathbb{Z}$, where \mathbb{Z} is the set of integers.
- (2) Given $G = \{1, -1, i, -i\}$ with $i^2 = -1$, then (G, .) is a cyclic group.
- (3) Let (G, *) be a group and $a, b \in G$. If a is of order n, then $a^i = a^j$ iff $i \equiv j \pmod{n}$.
- (4) If the quotient group $(G / Cent G, \otimes)$ is cyclic, then (G, *) is cyclic.
- (5) If the equation $x^2 \equiv a \mod (n)$ has a solution x_1 , then $x_2 = n x_1$ is also a solution.

Good Luck

Prof. Dr. Abdullah M. Abdul-Jabbar