Q1/ (i) State and prove "Correspondence Theorem". (12+8) marks
(ii) Let I and J be two ideals of the ring R. Define "The right quotient of I by $\mathrm{J}, \mathrm{I}: \mathrm{r}$ ". Show that $\mathrm{I}_{\mathrm{r}} \mathrm{J}$ is an ideal of R .

Q2/
(8+12) marks
(i) Show that the set of elements of the form ar + na is a right ideal of the ring R.
(ii) Let $\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots, \mathrm{I}_{\mathrm{n}}$ be n ideals of a ring R. Show that $\mathrm{I}_{1}+\mathrm{I}_{2}+\ldots+\mathrm{I}_{\mathrm{n}}=<\mathrm{I}_{1} \cup \mathrm{I}_{2} \cup \ldots \cup \mathrm{I}_{\mathrm{n}}>$.

Q3/ (i) What is mean by
$(12+8)$ marks
(1) Internal direct sum (2) Let $\left\{I_{i}\right\}$ be an arbitrary indexed collection of ideals of a ring R, what is $\sum I_{i}$? (3) The evaluation homomorphism at a point. (4) n-fold sum of 1 .
(ii) Let R be a commutative ring with unity. If every ideal of R is prime, then show that R is a field.

Q4/ (i) Suppose that R is an integral domain. Determine all the idempotent elements of R.
$(6+6+8)$ marks
(ii) Consider the map $f: \mathbf{C} \rightarrow \mathbf{C}$ such that $f(\mathrm{a}+\mathrm{ib})=\mathrm{a}-\mathrm{ib}$. Is f a ring homomorphism or not ? Explain, where $\mathbf{C}=$ complex numbers.
(iii) Write "True" or "False" of the following:
(1) In a ring $(\mathrm{R},+,$.$) with identity. No divisor of zero can posses a multiplicative$ inverse.
(2) Let $(R,+,$.$) be a ring which has the property that a^{2}=a$, for every $a \in R$. Then, $(\mathrm{R},+,$.) is commutative ring.
(3) In an integral domain the zero element is the only idempotent.
(4) The ring of real numbers $(\mathbf{R},+,$.$) is a simple ring.$
(5) Given that $(\mathrm{I},+,$.$) is an ideal of the ring (\mathrm{R},+,$.$) . If (\mathrm{R},+,$.$) is a principal ideal ring,$ then so is the quotient ring ($\mathrm{R} / \mathrm{I},+,$.).
(6) If R is any ring with identity 1 , then R has characteristic $n>0$ iff n is the positive integer for which $\mathrm{n} 1=0$.
(7) $\mathrm{I}_{\mathrm{r}_{\mathrm{r}}}(\mathrm{JK})=\left(\mathrm{I}_{\left.\mathrm{r}_{\mathrm{r}} \mathrm{K}\right)}:_{\mathrm{r}} \mathrm{J}\right.$, where $\mathrm{I}, \mathrm{J}, \mathrm{K}$ are ideals in R.
(8) If I is an ideal of the ring R and J is an ideal of I, then J is an ideal of R.

