Salahaddin Univ.-Erbil Dept. of Math. Final Exam.

College of Science (2023-2024)**On Group Theory with Applications**

First Semester PhD Exam. Time: 4 hours

Q1/ (i) Let G be a group with subgroups H and K. Assume that (1) H and K are both normal in G.

(2) $H \cap K = \{1\}$. (3) G = HK. Then, show that $G \cong H \times K$.

(4+4) marks

- (ii) What is mean by:
- (1) The general linear group, GL_n
- (2) Algebraically closed field with some examples
- (3) Exact sequence and short exact sequence
- (4) Descending decomposition

Q2/ (i) Show that two elements σ , $\sigma' \in S_X$ are conjugate iff $\lambda(\sigma) = \lambda(\sigma')$, where $\lambda(\sigma)$ and $\lambda(\sigma')$ are cycle type of σ and σ' , respectively. (6+6) marks

- (ii) Define "Center of a group". If |G| is a power of a prime p, then show that G has nontrivial center.
- Q3/ (i) Let H be a subgroup of a group G. Let $g \in G$. Show that

(5+5) marks

- (1) $gHg^{-1} = \{ghg^{-1} : h \in H\}$ is a subgroup of G. (2) $|gHg^{-1}| = |H|$.
- (ii) Let G be a group, $a \in G$. Define $\sigma_a(x)$. Show that σ_a is an isomorphism.

Q4/ (i) Prove or disprove.

(5+5) marks

Let (G, .) be a finite cyclic group of order n. Then, $(G, .) \cong (\mathbf{Z_n}, +_n)$, where $\mathbf{Z_n}$ is the set of integers modulo n.

- (ii) Show that every quotient group of a cyclic group is cyclic.
- Q5/ (i) What is the conditions on a group (G, *) to become an abelian group? State (5) of them.
- (ii) Write "True" or "False" of the following:

(5+5) marks

- (1) Given a and b are elements of a group (G, *), with a*b = b*a, then $(a*b)^k = a^k * b^k$, for some integer $k \in \mathbb{Z}$, where \mathbb{Z} is the set of integers.
- (2) Given $G = \{1, -1, i, -i\}$ with $i^2 = -1$, then (G, .) is a cyclic group.
- (3) Let (G, *) be a group and $a, b \in G$. If a is of order n, then $a^i = a^j$ iff $i \equiv i \pmod{n}$.
- (4) If the quotient group $(G / Cent G, \otimes)$ is cyclic, then (G, *) is cyclic.
- (5) If the equation $x^2 \equiv a \mod (n)$ has a solution x_1 , then $x_2 = n x_1$ is also a solution.

Good Luck

Prof. Dr. Abdullah M. Abdul-Jabbar