Salahaddin University-Erbil, College of Science, Department of Mathematics

Lecture

Non-Commutative Algrbra

MSc Level

Prof. Dr. Abdullah M. Abdul-Jabbar

3 units per week

2023-2024

Chapter 1

Rings with some properties

Def. 1.1: (Rings)

Let $R \neq \emptyset$ and *, o be two operations defined on R. Then, (R, *, o) is a ring if

- (1) (R, *) is an abelian group.
- (2) (R, o) is a semi-group.
- (3) o is distributive over * from both sides.

Remark 1.2: To simplicity we use (R, +, .) instead of (R, *, o), but +, . are not usual addition and multiplication always.

The definition of rings by other way:

Def. 1.3: (Rings)

A ring (R, +, .) is a non empty set of R with two operations +, . such that

- (1) \forall a, b \in R, a+b \in R (closure law w.r.to +).
- $(2) \forall a, b, c \in R,$

a+(b+c) = (a+b)+c (associative law w.r.to +).

 $(3) \exists 0 \in R \text{ such that }$

$$a+0=0+a=a, \ \forall \ a\in R,$$

(0 is the identity element w.r.to +).

(4) $\forall a \in R, \exists -a \in R \text{ such that }$

$$(a)+(-a)=(-a)+(a)=0,$$

(-a is the inverse element of a w.r.to +).

(5) \forall a, b \in R, a+b = b+a (abelian or commutative law w.r.to +).

2

- (6) \forall a, b \in R, a.b \in R (closure law w.r.to .).
- (7) \forall a, b, c \in R,
- a.(b.c) = (a.b).c (associative law w.r.to .).
- $(8) \forall a, b, c \in \mathbb{R},$
- a. (b+c) = a.b+a.c (distributive law from the left)
- (b+c).a = b.a+c.a. (distributive law from the right).

Def. 1.4: (commutative ring)

A ring (R, +, .) is called commutative if a.b = b.a, $\forall a, b \in R$.

Def. 1.5: (ring with unity)

A ring (R, +, .) is called a ring with unity (identity) if there exists $1 \in R$ such that $a.1 = 1.a = a, \forall a \in R$.

Example 1.6:

- $(\mathbf{Z}, +, .)$, the ring of integers.
- $(\mathbf{Q}, +, .)$, the ring of rational numbers.
- $(\mathbf{R}, +, .)$, the ring of real numbers.
- $(\mathbf{Z}_n, +_n, ._n)$, the ring of integers modulo n.
- **Q 1.7 (H.W.):** Is $(I_{rr}, +, .)$ a ring or not?
- Q 1.8 (H.W.): Let X be a non-empty set,
- P(X): A collection of all subsets of X (power set of X)

For each A, B \in P(X). Define the operation Δ as follows:

$$A \Delta B = (A-B) \cup (B-A).$$

Is $(P(X), \Delta, \cap)$ a commutative ring with identity? Explain it.

a b

$$M_{2\times 2}$$
 = : a, b, c, d \in \mathbb{R}

c d

Show that $(M_{2\times 2}, +, .)$ is a ring with identity, but not commutative, where **R** is the set of real numbers.

Q 1.10 (H.W.): Let

$$a_{11} \ a_{12} \dots a_{1n}$$

 a_{n1} a_{n2} ... a_{nn}

$$M_{nn}\!=\! \quad a_{21} \ a_{22} \dots a_{2n} \quad : a_{ij} \in \textbf{R} \quad \ \forall \ i=1,2,...,n$$
 and
$$\forall \ j=1,2,...,n$$

Show that $M_{nn}(\mathbf{R})$, +, .) is a ring with identity, but not commutative, where \mathbf{R} is the set of real numbers.

Def. 1.11: If R is a ring and $0 \ne a \in R$, then a is called a left (right) zero divisor in R if there exists $0 \ne b \in R$ such that ab = 0 (ba = 0).

A zero divisor is any element of R, that is either a left zero divisor or right zero divisor.

Ex. 1.12: $(\mathbf{Z}_6, +_6, ._6)$ has zero divisor since $2 \neq 0$, $3 \neq 0$ implies 2.3 = 0.

Whence, $(\mathbf{Z}_n, +_n, ._n)$ has zero divisor if n is not prime number.

Ex. 1.13: 0 is not a zero divisor.

Def. 1.14: A ring (R, +, .) has no zero divisor if

$$a \neq 0$$
, $a.b = 0 \Rightarrow b = 0$.

Or, $a.b = 0 \Rightarrow \text{ either } a = 0 \text{ or } b = 0.$

Q 1.15 (H.W.): Give an example of zero divisor for non commutative ring.

Th. 1.16 (H.W.): Let (R, +, .) be a ring without zero divisor **iff** the cancellation law holds for multiplication.

Def. 1.17: If (R, +, .) is a ring, then

$$na = a+a+...+a, \forall a \in R.$$

Remark 1.18: (mn)a = m(na)

$$(n+m)a = na+ma$$

Def. 1.19: For a, $b \in R$.

$$a-b = a+(-b)$$
.

Def. 1.20: By an integral domain is meant a commutative ring with identity which has no zero divisors.

Remark 1.21: The best-known example of an integral domain is the ring of integers. By Th. 1.16 shows that the cancellation laws for multiplication hold in any integral domain.

Def. 1.22: (Sub ring)

Let (R, +, .) be a ring and $S \subseteq R$ a non empty subset of R. If the system (S, +, .) is itself a ring (using the induced operations), then (S, +, .) is said to be a sub ring of (R, +, .). Or,

Def. 1.23: (Sub ring)

The system (S, +, .) forms a sub ring of the ring (R, +, .) iff

- (1) $S \neq \emptyset$, $S \subseteq R$.
- (2) \forall a, b \in S imply a-b \in S (closure under differences).
- (3) \forall a, b \in S imply a.b \in S (closure under multiplication).

Ex. 1.24: Every ring R has two obvious sub rings, namely the set $\{0\}$ and R itself.

They are called trivial sub rings of R; all other sub rings (if any exist) are called nontrivial.

Ex. 1.25: The set Z_e of even integers forms a sub ring of Z since

$$2n-2m = 2(n-m) \in \mathbf{Z}_{e}$$
.

$$(2n)(2m) = 2(2nm) \in \mathbf{Z}_e$$
.

Remark 1.26: (\mathbb{Z} , +, .) is the ring of integers with identity, but (\mathbb{Z}_e ,+, .) is a sub ring of \mathbb{Z} does not contain the identity element.

Q 1.27: (H.W.)

Let $(\mathbf{R}, +, .)$ be the ring of real numbers,

$$\mathbf{R} \times \mathbf{R} = \{(a, b): a, b \in \mathbf{R}\} \text{ and } S = \mathbf{R} \times \{0\}.$$

Define \oplus , \otimes on $\mathbf{R} \times \mathbf{R}$,

$$(a, b) \oplus (c, d) = (a+c, b+d).$$

$$(a, b) \otimes (c, d) = (a.c, b.d).$$

- (1) Is $(\mathbf{R} \times \mathbf{R}, \oplus, \otimes)$ a ring? Explain your answer.
- (2) Is $S = \mathbf{R} \times \{0\}$ a sub ring of $\mathbf{R} \times \mathbf{R}$? Explain your answer.

Def. 1.28: (Center of a ring)

The center of a ring R, denoted by Cent R, to be the set

Cent
$$R = \{a \in R : ar = ra, \text{ for all } r \in R\}, \text{ i.e.,}$$

Cent R consists of those elements which commute with every member of R.

Q 1.29 (H.W.):

A ring R is commutative **iff** Cent R = R.

Th. 1.30 (H.W.):

For any ring R, Cent R is a sub ring of R.

Q 1.30' (H.W.): Is Cent R an ideal? Explain your answer.

Def. 1.31: If R is an arbitrary ring and n a positive integer, then the n^{th} power a^n of an element $a \in R$ is defined by the inductive conditions $a^1 = a$ and $a^n = a^{n-1}.a$.

Q. 1.32 (H.W.): From the usual laws of exponents follow:

$$a^n a^m = a^{n+m},$$

$$(a^n)^m = a^{nm} \quad (n, m \in Z^+).$$

Hint: To prove these rules, fix m and proceed by induction on n.

Q 1.33 (H.W.): If two elements $a, b \in R$ happen to commute, so do all powers of a and b, whence $(ab)^n = a^n b^n$, for each positive integer n.

Def. 1.34: (Negative powers of a)

Let R be a ring with identity element 1 and a^{-1} exists, negative power of a can be defined as: $a^{-n} = (a^{-1})^n$, where n > 0.

Def. 1.35: For each positive integer n, define the nth natural multiple na as follows:

1a = a and

$$na = (n-1)a+a$$
, where $n > 1$.

Remark 1.36: If it is also agreed to let 0a = 0 and (-n)a = -(na), then the definition of na can be extended to all integers.

Q 1.37 (H.W.): In general multiples satisfy several identities which are easy to establish:

$$(1) (n+m)a = na+ma,$$

$$(2) (nm)a = n(ma),$$

$$(3) n(a+b) = na + nb,$$

for a, $b \in R$ and arbitrary integers n and m.

Q 1.38 (H.W.): Show that

$$(1) n(ab) = (na)b = a(nb),$$

$$(2) (na)(mb) = (nm)(ab),$$

for all $a, b \in R$ and arbitrary integers n and m.

Def. 1.39: (characteristic of a ring)

Let R be an arbitrary ring. If there exists a positive integer n such that na = 0, for all $a \in R$, then the smallest positive integer with this property is called the characteristic of the ring.

If no such positive integer exists (that is, n = 0 is the only integer for which na = 0 for all $a \in R$), then R is said to be of characteristic zero.

We shall write char R for the characteristic of R.

Ex. 1.40: Z, Q and R are standard examples of system having characteristic zero.

Ex. 1.41: The ring P(X) of subsets of a fixed set X in Q. 1.8 is of characteristic 2 since

 $2A = A \Delta A = (A-A) \cup (A-A) = \emptyset$, for every subset $A \subseteq X$.

Th. 1.42: If R is any ring with identity 1, then R has characteristic n > 0 iff n is the least positive integer for which n1 = 0.

Proof: H.W.

Def. 1.43: For an element $a \ne 0$ of the group (R, +) to have order m means that ma = 0 and $ka \ne 0$ if 0 < k < m.

Q 1.43' (H.W.): Give an example of **Def. 1.43**.

Corollary 1.44:

(1) In an integral domain R all the non zero elements have the same additive order; this order is the characteristic of the domain when char R > 0 and (2) infinite when char R = 0.

Proof: (H.W.).

Remark 1.45: When char R = 0. The equation ma = 0 would lead, as before to m1 = 0 or m = 0.

In this case every no zero element $a \in R$ must be of infinite order.

Corollary 1.46: An integral domain R has positive characteristic **iff** na = 0, for some $0 \neq a \in R$ and some integer $n \in \mathbb{Z}^+$.

Proof: (H.W.).

Th. 1.47: The characteristic of an integral domain is either zero or a prime number.

Proof: Let R be positive characteristic n and assume that n is not a prime.

Then, n has a nontrivial factorization $n = n_1 n_2$, with $1 < n_1, n_2 < n$.

It follows that,

$$0 = n1 = (n_1n_2)1 = (n_1n_2)1^2 = (n_11).(n_21).$$

By supposition, R is without zero divisors, so that either $n_1 1 = 0$ or $n_2 1 = 0$.

Since both n_1 and n_2 are less than n, this contradicts the choice of n as the least positive integer for which $n_1 = 0$.

Whence char R must be prime.

Corollary 1.48: If R is a finite integral domain, then char R = p, where p is a prime.

Proof: (H.W.).

Remark 1.49: Let R be any ring with identity and consider the set **Z**1 of integral multiples of the identity; stated symbolically

$$Z1 = \{n1: n \in Z\}.$$

From the relations

$$n1-m1 = (n-m)1,$$

$$(n1)(m1) = (nm)1$$

Q.1.50 (H.W.): Show that Z1 form a commutative ring with identity.

Q.1.51 (H.W.): The order of the additive cyclic group ($\mathbb{Z}1$, +) is the characteristic of the given ring R.

Q.1.52 (H.W.): If R is an integral domain, then Z1 is a subdomain of R (that is, Z1 is also an integral domain with respect to the operations in R).

In fact, show that **Z**1 is the smallest subdomain of R, in the sense that it is contained in every other subdomain of R.

Q1.53 (H.W.): If R is a domain of characteristic p, where p is a prime, then show that each non zero element of Z1 is invertible.