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1 Notation for sets and functions

For any set S, we write |S| for the number of elements in S if S is finite, and put |S| = ∞ if S is
infinite. The empty set is denoted S = ∅.

If f : S → T is a function, we write f(s) or fs for the value of f at an element s ∈ S. The set
im f = f(S) = {f(s) : s ∈ S} of these values is the image of f and f−1(t) = {s ∈ S : f(s) = t} is
the fiber of f over an element t ∈ T . Thus, im f = {t ∈ T : f−1(t) 6= ∅}. For any subset T ′ ⊂ T , the
set f−1(T ′) = {s ∈ S : f(s) ∈ T ′} is the union of the fibers f−1(t) for t ∈ T ′.

A function f : S → T is injective if |f−1(t)| ≤ 1 for all t ∈ T , in this case we sometimes write
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f : S ↪→ T to emphasize injectivity, and to indicate that we may identify S with its image in T .

A function f : S → T is surjective if |f−1(t)| ≥ 1 for all t ∈ T , in this case we sometimes write
f : S � T to emphasize surjectivity.

Finally, f is bijective if it is both injective and surjective, that is, if |f−1(t)| = 1 for all t ∈ T . When
this holds, we have |S| = |T |. We sometimes write f : S

∼−→ T to indicate a bijection, or S ↔ T to
mean that there exists a bijection between S and T .

2 Basic group theory

2.1 The definition of a group

A group is a set G together with a function ∗ : G× G → G, assigning to each pair (a, b) of elements
of G another element a ∗ b ∈ G, satisfying the following three axioms:

G1 (associativity) We have a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, c ∈ G.

G2 (existence of identity) There exists an element e ∈ G such that e ∗ a = a ∗ e = a for all a ∈ G.

G3 (existence of inverses) For all a ∈ G there exists an element a′ ∈ G such that a ∗ a′ = a′ ∗ a = e,
where e is an identity element as in axiom G2.

There is no requirement that a ∗ b = b ∗ a for all a, b ∈ G. If this property does hold, we say that G is
abelian.

The element e of axiom G2 is unique: for if e′ is another identity element, then e′ = e′ ∗ e = e by
applying axiom G2 first to e, then to e′. For each a ∈ G, the inverse element a′ in axiom G3 is unique:
for if a′′ is another inverse element, we have

a′′ = a′′ ∗ e = a′′ ∗ (a ∗ a′) = (a′′ ∗ a) ∗ a′ = e ∗ a′ = a′,

by applying successively axioms G2, G3 (for a′), G1, G3 (for a′′) and finally G2 again.

We usually use multiplicative notation and abbreviate a ∗ b as ab or a · b, and write 1 or 1G instead of
e for the identity element of G, and a−1 instead of a′ for the inverse element of a. For any positive
integer n, we write an for the product of a with itself n times, and a−n for the product of a−1 with itself
n times. Finally, we put a0 = 1.

IfG is abelian, and only in this case, we sometimes use additive notation, writing a∗b = a+b, denoting
the identity element by 0, and the inverse element of a by −a.

The order ofG is the cardinality |G|, either a positive integer or∞. Any groupG of order one consists
of the identity element only and is called the trivial group.

We can extend the product of elements in G to subsets: If S and T are subsets of a group G, we define

ST = {st : s ∈ S, t ∈ T}.
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2.2 Group homomorphisms

The structure of a group G is revealed by its subgroups and homomorphisms into other groups.

A homomorphism of groups G,G′ is a function f : G→ G′ satisfying

f(ab) = f(a)f(b) ∀ a, b ∈ G.

This implies that f(1G) = 1G′ and that f(g−1) = f(g)−1 for all g ∈ G.

The kernel of a homomorphism f : G→ G′ is the subset of G defined by

ker f := {g ∈ G : f(g) = 1G′}.

For all a, b ∈ Gwe have f(a) = f(b) if and only if ab−1 ∈ ker f . Hence f is injective iff ker f = {1G}.
The image of f is the set theoretic image, defined as above by

im f := f(G) = {g′ ∈ G : f−1(g′) 6= ∅}.

There may be many homomorphisms between two given groups. We set

Hom(G,G′) = {homomorphisms f : G→ G′}.

An isomorphism f : G → G′ is a bijective group homomorphism. Thus f is an isomorphism if and
only if ker f = {1G} and im f = G′. We sometimes write f : G

∼−→ G′ to indicate that f is an
isomorphism. Two groups G,G′ are isomorphic if there exists an isomorphism f : G

∼−→ G′. We
write G ' G′ to indicate that G and G′ are isomorphic, without specifying any particular isomorphism
between them.

We sometimes abuse terminology and say that G is or is a copy of G′, when we really mean only that
G ' G′. For example, any two trivial groups are isomorphic, so we allow ourselves to say that the
trivial group is the unique group with one element.

Continuing in this vein, we say that a homomorphism f : G → G′ is trivial if im f = {1G′}. This is
equivalent to having ker f = G, so being a trivial homomorphism is the opposite of being an isomor-
phism. Hence trivial homomorphisms are just as important as isomorphisms.

An isomorphism from a group to itself is called an automorphism. We set

Aut(G) = {automorphisms of G}.

The set Aut(G) forms a group under composition, whose identity element is the identity automor-
phism, which sends g 7→ g for all g ∈ G.

Many automorphisms arise from within the group itself as follows. For each element g in a group G,
the map

cg : G→ G given by cg(x) = gxg−1 ∀x ∈ G
is an automorphism of G, called conjugation by g. Automorphisms of this form are called inner
automorphisms. The function c : G→ Aut(G) sending g 7→ cg is a homomorphism.
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2.3 Subgroups

A subgroup of G is a subset H ⊆ G with the following three properties:

SG1 (closure) ab ∈ H for all a, b ∈ H .

SG2 (identity) The identity element of G is contained in H .

SG3 (inverses) For all a ∈ H we have a−1 ∈ H .

The subsets {1} and G are subgroups of G. All other subgroups of G, if any, are called proper
subgroups. We write H ≤ G to indicate that H is a subgroup of G which is possibly equal to G itself.
We write H < G for a subgroup which is not equal to G.

Lemma 2.1 Let G be a group and let H be a nonempty finite subset of G. Then H ≤ G if and only if
SG1 holds.

Proof: Let h be an element of the nonempty set H . Since H is finite, the powers h, h2, h3, . . . must
eventually repeat, so we have hi = hj for some positive integers i < j. It follows that hj−i = 1, so
SG2 holds, and h · hj−i−1, so SG3 holds. Hence H is a subgroup of G. �

This proof moved from H to a particular kind of subgroup of G. A group C is cyclic if there exists an
element c ∈ C such that C = {cn : n ∈ Z}. In this case we write C = 〈c〉.

In an arbitrary group G, any element g ∈ G is contained in the cyclic subgroup

〈g〉 = {gn : n ∈ Z}.

The order of g is the order of the group 〈g〉. The order of g is the smallest positive power m such that
gm = 1, if such an m exists. In this case, the order can be characterized by the useful property that for
any integer d, we have gd = 1 iff m | d. If gd 6= 1 for any nonzero integer d, we say the order of g is
infinite.

More generally, if S is any subset of G, the subgroup generated by S is the smallest subgroup 〈S〉 of
G containing S. That is,

〈S〉 =
⋂

S⊆H≤G

H

is the intersection of all subgroups H of G which contain the subset S.

2.4 Cosets and quotient spaces

A left coset of a subgroup H < G is a subset of G of the form gH = {gh : h ∈ H}. Two left cosets
are either equal or disjoint; we have

gH = g′H ⇔ g−1g′ ∈ H.
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In particular, we have gH = H if and only if g ∈ H . The set of left cosets of H in G is denoted G/H ,
and is called the quotient of G by H .

A right coset of H in G is a subset of the form Hg = {hg : h ∈ H}. Two right cosets are either equal
or disjoint; we have

Hg = Hg′ ⇔ g′g−1 ∈ H.

In particular, we have Hg = H if and only if g ∈ H . The set of right cosets of H in G is denoted
H\G.

A coset is a left or right coset. Any element of a coset is called a representative of that coset. We have
canonical bijections H → gH and H → Hg, sending h 7→ gh and h 7→ hg, respectively. Hence if H
is finite, all cosets have cardinality |H|.

There are an equal number (including infinity) of left and right cosets in G. We denote this number by

[G : H] = |G/H| = |H\G|,

and call it the index of H in G. If G is finite, then G is partitioned into [G : H] cosets, each of
cardinality |H|. It follows that [G : H] = |G|/|H|. In particular we have

Lagrange’s Theorem: If H is a subgroup of a finite group G, then |H| divides |G|.

Example 1: If |G| = p a prime, then G has no proper subgroups. Hence for any nonidentity element
g ∈ G we have G = 〈g〉, so G is cyclic.

Example 2: The order of any element in a finite group G divides |G|. in particular, we have g|G| = 1
for all g ∈ G. The smallest positive integer e such that ge = 1 for all g ∈ G is called the exponent of
G. If g ∈ G has order m, then m divides e, which in turn divides |G|.

The converse of Lagrange’s theorem is false. The smallest counterexample is the group A4 of order 12,
which has no subgroup of order 6. However, the converse of Lagrange’s theorem is true for subgroups
H of prime power order. This is part of the Sylow theorems, which we will prove later. However, one
special case is easy:

Proposition 2.2 Any group of even order contains an element of order two.

Proof: Suppose G has even order |G| = 2m. Pair the nonidentity elements with their inverses. Since
there are 2m− 1 such elements, at least one of them is paired with itself. This is a nonidentity element
g ∈ G such that g = g−1. Thus, g is an element of G of order two. �

2.5 Normal subgroups and quotient groups

Let G be a group and let H ≤ G be a subgroup. One attempts to define a group structure on the set
G/H by the rule:

gH ∗ g′H = gg′H, ∀g, g′ ∈ G. (1)
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However, this rule is only well-defined when every left coset of H in G is also a right coset of H in G.
The subgroup H is said to be normal in G if gH = Hg for all g ∈ H . On the level of elements, this
means that ghg−1 ∈ H for all g ∈ G and h ∈ H . If G is abelian, then ghg−1 = h, so every subgroup
is normal in G. Thus, being normal in G is a weakening, with respect to H , of the abelian condition.
We write H / G or H E G to indicate that H is a normal subgroup of G.

When, and only when H E G, the set G/H = H\G becomes a group under the operation given by
(1). We call G/H the quotient of G by H . It is a group of order equal to the index of H in G:

|G/H| = [G : H].

Example: The center of a group G is the subgroup

Z(G) = {z ∈ G : zg = gz ∀g ∈ G}.

This is clearly a normal subgroup of G. We will see the quotient group G/Z(G) appearing in several
contexts. One useful fact is

Proposition 2.3 If G/Z(G) is cyclic then G is abelian.

Proof: Exercise. �

2.6 The first isomorphism theorem

Any group homomorphism f : G → G′ induces an isomorphism from a quotient of G to a subgroup
of G′. More precisely, we have the following.

Theorem 2.4 (First isomorphism theorem) Let f : G → G′ be a group homomorphism with kernel
K = ker f . Then K is a normal subgroup of G, and there is an isomorphism

f̄ : G/K
∼−→ im f, given by f̄(gK) = f(g). (2)

Proof: It is a good exercise to check that f̄ is well-defined and bijective. �

It is useful to have this result in slightly more general form:

Theorem 2.5 Let f : G → G′ be a group homomorphism with kernel K = ker f . Let H be a normal
subgroup of G contained in K. Then there is a surjective homomorphism

f̄ : G/H � im f, given by f̄(gH) = f(g), (3)

with ker f̄ = K/H .
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Proof: Again, this is a good exercise. �

We often say that f̄ is induced by f or that f factors through G/H .

Conversely, every normal subgroup H E G is the kernel of a surjective homomorphism from G into
another group. Namely, the canonical homomorphism

πH : G −→ G/H, given by πH(g) = gH

is surjective with kerπH = H .

Example: If x, y are two elements of G, the commutator

[x, y] = xyx−1y−1

is an element of G that measures the failure of x, y to commute. The Commutator Subgroup

[G,G] = 〈[x, y] : x, y ∈ G〉

is the subgroup generated by all commutators. For g ∈ G we have g[x, y]g−1 = [gxg−1, gxg−1]. It
follows that [G,G] E G. The quotientG/[G,G] is called the abelianization ofG, and is often denoted
Gab, because of the following result.

Proposition 2.6 The quotient G/[G,G] of a group G by its commutator subgroup is abelian. More-
over, G/[G,G] is the largest abelian quotient of G, in the following sense: If f : G → A is a homo-
morphism from G to an abelian group A, then [G,G] < ker f , so f factors through a homomorphism

f̄ : G/[G,G] −→ A.

Proof: Exercise. �

2.6.1 Exact sequences

A composition of group homomorphisms

G1
f1−→ G2

f2−→ G3

is exact at G2 if im f1 = ker f2. A sequence of group homomorphisms

. . . −→ Gi−1
fi−1−→ Gi

fi−→ Gi+1 −→ . . .

is an exact sequence if it is exact at Gi for all i. A short exact sequence is a sequence

1 −→ G1
f1−→ G2

f2−→ G3 −→ 1

with
ker f1 = {1}, im f1 = ker f2 ' G1, im f2 = G3 ' G2/G1.
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2.7 The second isomorphism theorem (correspondence theorem)

The subgroups of a quotient group G/H are related to subgroups of G as follows.

Theorem 2.7 Let G be a group with normal subgroup H E G, and let πH : G → G/H be the
canonical homomorphism.

1. If K is any subgroup of G containing H , then H E K and K/H = πH(K) is a subgroup of
G/H .

2. Conversely, if J is any subgroup of G/H , then π−1
H (J) is a subgroup of G containing H as a

normal subgroup and J = π−1
H (J)/H .

3. K/H E G/H if and only if K E G, in which case (G/H)/(K/H) ' G/K.

Thus, we have a one-to-one correspondence

{subgroups of G containing H} ↔ {subgroups of G/H}
K → K/H

π−1
H (J) ← J,

and this correspondence preserves normal subgroups.

There is also a correspondence theorem for homomorphisms, the first part of which is just Thm. 2.5
above.

Theorem 2.8 Let G be a group with normal subgroup H E G.

1. If f : G → G′ is a group homomorphism with H ≤ ker f then f induces a well-defined homo-
morphism f̄ : G/H → G′, given by f̄(gH) = f(g).

2. If ϕ : G/H → G′ is any homomorphism, then ϕ ◦ πH : G → G′ is a homomorphism whose
kernel contains H .

Thus, we have a one-to-one correspondence

Hom(G/H,G′)↔ {f ∈ Hom(G,G′) : H ≤ ker f}
ϕ → ϕ ◦ πH
f̄ ← f

2.8 The third isomorphism theorem

The final isomorphism theorem concerns products of subgroups. If H and K are subgroups of a group
G, the product HK = {hk : h ∈ H, k ∈ K} contains the identity, but it need not be closed under
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the operation in G, hence HK need not be a subgroup of G. However, it will be so under an additional
condition.

The normalizer of H in G is the subgroup

NG(H) = {g ∈ G : gHg−1 = H}.

We haveNG(H) = G if and only ifH E G. In general,NG(H) is the largest subgroup ofG containing
H as a normal subgroup.

Returning to our two subgroups H,K in G, let us assume that

K ≤ NG(H).

(This assumption holds automatically if H E G.) Then, for h, h′ ∈ H and k, k′ ∈ K, we have

(hk)(h′k′) = h(kh′k−1) · kk′

(where we insert () and · to help parse the product), and kh′k−1 belongs to H since k ∈ NG(H), so
(hk)(h′k′) ∈ HK. Similarly, (hk)−1 = k−1h−1 = (k−1h−1k) · k−1 ∈ HK. Hence HK is a subgroup
of G. Since both H and K are contained in NG(H), it follows that HK is also contained in NG(H).
In other words, H is normal in HK.

This proves the first part of the following

Theorem 2.9 (Third Isomorphism Theorem) Let H and K be subgroups of a group G and assume
that K ≤ NG(H). Then

1. HK is a subgroup of G and H is a normal subgroup of HK.

2. H ∩K is a normal subgroup of K.

3. We have a group isomorphism K/(K ∩ H) ' HK/H , induced by the map f : K → HK/H
given by k 7→ kH .

Proof: We have already proved the first part, and the second part is easy. As for the third part, it is
clear that f is surjective, so it remains to determine ker f . Let k ∈ K. Then f(k) = 1 in HK/H iff
ι(k) ∈ H , which means that k ∈ H . But k ∈ K, so we have f(k) = 1 iff k ∈ H ∩K, as claimed. �

2.9 Direct products

Let H and K be groups with identity elements 1H and 1K . Then the direct product

H ×K = {(h, k) : h ∈ H, k ∈ K}

is a group under the operation
(h, k)(h′, k′) = (hh′, kk′)
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and identity element (1H , 1K). The direct product of finitely many groups G1, . . . , Gn is defined simi-
larly; we confine our discussion to the case n = 2.

Let G = H × K, and write 1 = (1H , 1K). The maps φ : H → G and ψ : K → G given by
φ(h) = (h, 1K) and ψ(k) = (1H , k) are injective homomorphisms. Their images H ′ = φ(H) ' H
and K ′ = ψ(K) ' K are normal subgroups of G such that

H ′ ∩K ′ = {1} and H ′K ′ = G.

Conversely, this can be used to recognize direct products as follows.

Proposition 2.10 Let G be a group with subgroups H and K. Assume that

1. H and K are both normal in G;

2. H ∩K = {1};

3. G = HK.

Then G ' H ×K, via the map f : H ×K → G given by f(h, k) = hk .

Proof: Let h ∈ H , k ∈ K and parse the commutator [h, k] = hkh−1k−1 in two ways. On the one
hand, [h, k] = (hkh−1)k−1 ∈ K since K E G. On the other hand, [h, k] = h(kh−1k−1) ∈ H , since
H E G. But H ∩K is trivial, so [h, k] = 1. Hence h and k commute for all h ∈ H and k ∈ K. It is
now immediate that f is a homomorphism, which is surjective by assumption 3. Finally, if f(h, k) = 1,
we have h = k−1 ∈ H ∩K = {1}, so h = k = 1. Therefore f is an isomorphism, as claimed. �

If H and K are abelian groups then we often write H ⊕K instead of H ×K, in accordance with our
use of additive notation for abelian groups.

2.10 Semidirect products (internal view)

Recall that a group G with two normal subgroups H,K E G is the direct product G = H × K iff
HK = G and H ∩ K = {1}. This situation often occurs with the variation that only one of the
subgroups is normal.

Definition 2.11 A group G is a semidirect product of two subgroups H,K ≤ G if the following
conditions hold.

1. One of the subgroups H and/or K is normal in G.

2. H ∩K = {1}.

3. HK = G.

13



Suppose G is the semidirect product of H and K and (say) H is normal in G. On the set H×K, define
a group law as follows:

(h, k)(h′, k′) = (hkh′k−1, kk′).

Let H oK denote the set H ×K with this group law.

Proposition 2.12 If G is a semidirect product of two subgroups H and K with H E G, then the map
(h, k) 7→ hk is a group isomorphism

H oK
∼−→ G.

Proof: exercise. �

2.11 Conjugacy

For g, x ∈ G, let us set
gx = gxg−1.

Two elements x, y ∈ G are conjugate in G if y = gx for some g ∈ G. Conjugacy is an equivalence
relation onG, whose equivalence classes are the conjugacy classes ofG. Thus any group is partitioned
into conjugacy classes. We write

Gx = {gx : g ∈ G}

for the conjugacy class of x in G.

Some of our earlier notions can be expressed in terms of conjugacy. For example, we have x ∈ Z(G)
if and only if Gx = {x}. And H E G if and only if H is a union of conjugacy classes in G.

The centralizer of a given element x ∈ G is the subgroup CG(x) = {h ∈ G : hx = x} consisting of
all elements inG which commute with x. This is generally not a normal subgroup ofG, so the quotient
space G/CG(x) is not a group. However, we have

Proposition 2.13 For every x ∈ G, the map g 7→ gx induces a well-defined bijection

G/CG(x)
∼−→ Gx.

In particular, if G is finite, we have

|Gx| = [G : CG(x)] =
|G|
|CG(x)|

.

Proof: Exercise �

The last formula in Prop. 2.13 is very useful for computing the sizes of conjugacy classes and central-
izers in finite groups. It implies for example that |Gx| divides |G|. Since G is the disjoint union of its
conjugacy classes, we have
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Corollary 2.14 (The class equation) Let G be a finite group, let X1, . . . , Xk be its conjugacy classes,
choose xi ∈ Xi for 1 ≤ i ≤ k, and let Gi = CG(xi). Then we have

k∑
i=1

[G : Gi] = |G|.

Alternatively,
1

|G1|
+

1

|G2|
+ · · ·+ 1

|Gk|
= 1.

Corollary 2.15 If |G| is a power of a prime p then G has nontrivial center.

Proof: We have G partitioned as G = Z(G) ∪ {noncentral elements}. Every conjugacy class has
size a power of p. This power is zero precisely for those classes consisting of a single element
in Z(G) and every conjugacy class of noncentral elements has size a positive power of p. Hence
|{noncentral elements}| is divisible by p. As |G| is also divisible by p, it follows that p divides |Z(G)|.
Since |Z(G)| ≥ 1, it follows that a positive power of p divides |Z(G)|. �

3 The Symmetric Group

Groups usually arise as symmetries of mathematical structure. The most basic structure is just a set.

For any set X , the symmetric group on X is the group SX of bijections σ : X → X from X to itself,
where the group operation is composition of functions: (στ)(x) = σ(τ(x)). The identity element is
the identity function e(x) ≡ x. The elements of SX are usually called permutations.

If β : X → Y is a bijection between two sets X and Y , then we get a group isomorphism Sβ : SX
∼−→

SY , defined by
Sβ(σ) = β ◦ σ ◦ β−1.

If X = Y then β ∈ SX and Sβ is conjugation by β.

3.1 Cycle decomposition and conjugacy classes

Assume now that X is finite, say |X| = n. Then SX is finite and one checks that

|SX | = n! = n(n− 1) · · · 2 · 1.

Given σ ∈ SX , define an equivalence relation ∼
σ

on X by the rule:

x ∼
σ
y ⇔ y = σj(x) for some j ∈ Z.
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The equivalence classes are called σ-orbits. IfO is a σ-orbit and x ∈ O, the distinct elements ofO are

x, σ(x), σ2(x), . . . , σλ−1(x),

where λ = |O|. We note that σλ(x) = x.

Number the σ-orbits in X as O1, . . .Oq, where |O1| ≥ |O2| ≥ · · · ≥ |Oq|, and set λi = |Oi| for each
i. Thus, we have a set partition

X =

q⊔
i=1

Oi

and a corresponding numerical partition

|X| =
q∑
i=1

λi.

Let us choose xi ∈ Oi, for each σ-orbit Oi, and set xji = σj−1(xi), so that

Oi = {xji : 1 ≤ λi}.

Let σi ∈ SX be the permutation sending

xi = x1
i 7→ x2

i 7→ · · · 7→ xλii 7→ xi,

and acting as the identity on Ok for k 6= i. We express σi by the symbol

σi = (x1
i x

2
i · · · x

λi
i ).

Then σiσj = σjσi for i 6= j and
σ = σ1σ2 · · ·σq, (4)

where the product may be taken in any order. This is the disjoint cycle decomposition of σ. The
partition

λ(σ) := [λ1, λ2, . . . , λq]

is called the cycle type of σ. The cycle type determines the conjugacy class, as follows.

Proposition 3.1 Two elements σ, σ′ ∈ SX are conjugate if and only if λ(σ) = λ(σ′).

Proof: Let O1, . . . ,Oq be the σ-orbits in X . If σ′ = τστ−1 for some τ ∈ SX , one checks that
τ(O1), . . . , τ(Oq) are the σ′-orbits in X . Since τ is a permutatation, we have |τ(Oi)| = |Oi| for each
i, which implies that λ(σ′) = λ(σ).

Conversely, suppose λ(σ′) = λ(σ). LetO1, . . . ,Oq be the σ-orbits and letO′1, . . . ,O′q′ be the σ′-orbits.
Since λ(σ) = λ(σ′) we have q = q′ and |Oi| = |O′i| for each i. Since the orbits are disjoint there exists
a permutation τ ∈ SX such that τ(Oi) = O′i for each i. Replacing σ by τστ−1, we may assume that
O′i = Oi for each i.
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Choose xi ∈ Oi, and set xji = σj−1(xi), yji = (σ′)j−1(xi), so that x1
i = y1

i = xi and

Oi = {x1
i , x

2
i , . . . , x

λi
i } = {y1

i , y
2
i , . . . , y

λi
i }.

Every element of X may be uniquely expressed in the form xji or in the form yji , where 1 ≤ i ≤ q and
1 ≤ j ≤ λi. Let π ∈ SX be the permutation sending xji 7→ yji for each such i, j. For x = xji , we have

πσπ−1(x) = πσσj(xi) = πσj+1(xi) = (σ′)j+1(xi) = σ′(x).

It follows that πσπ−1 = σ′, so σ and σ′ are conjugate. �

3.2 The group Sn

When X = {1, 2, . . . , n} we write Sn = SX . If X is any set with |X| = n then by labelling the
elements ofX we obtain a bijection f : X → {1, 2, . . . , n}, whence a group isomorphism Sf : SX

∼−→
Sn. This isomorphism is noncanonical, because it depends on the chosen labelling f . Moreover, the set
X need not be ordered, as {1, 2, . . . , n} is. The ordering gives additional structure to Sn that is missing
in SX when X is unordered

As in (4), an element in Sn is a product of cycles, but now the symbols in the cycle are numbers in
{1, 2, . . . , n}. For example, the element σ ∈ S6 sending

1 7→ 4, 2 7→ 6, 3 7→ 1, 4 7→ 3, 5 7→ 5, 6 7→ 2

may be written as
σ = (1 4 3)(2 6),

and has cycle type λ(σ) = [3, 2, 1]. Note that 5, which is fixed, is omitted in the cycle decomposition
of σ, but is counted in the cycle type of σ.

We multiply using the cycle decomposition by following the path of each number, starting with the
right-most cycle. For example, we have

(1 4 3)(2 6)(4 6 5) = (1 4 2 6 5 3).

Note that the cycle type of τ = (1 4 3)(2 6)(4 6 5) is not [3, 3, 2], because the cycles are not disjoint.
We first have to make them disjoint, as we have done above. We obtained a single 6-cycle (1 4 2 6 5 3),
so the cycle type of τ in S6 is λ(τ) = [6].

We illustrate the cycle types for all elements of S3 and S4, as follows.

λ σ
[3] (1 2 3), (3 2 1)

[2, 1] (1 2), (2 3), (1 3)
[1, 1, 1] e

λ σ
[4] (1 2 3 4), (1 3 2 4), (1 2 4 3), (1 4 2 3), (1 3 4 2), (1 4 3 2)

[3, 1] (1 2 3), (3 2 1), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (4 3 2)
[2, 2] (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

[2, 1, 1] (1 2), (1 3), (1 4), (2 3), (2 4), (3 4)
[1, 1, 1, 1] e
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3.2.1 Descending decomposition

The additional structure imparted to Sn by the ordering on {1, 2, . . . , n} can be seen as follows: i)
the transposition (1 3) has a gap, while its conjugates (1 2) and (2 3) do not, and ii) the cycles
(1 2 3), (3 2 1), (2 1 3) denote the same element of S3, but the numbers in the cycle are ascending,
descending and neither, respectively. The descending decomposition uses the ordering to give a unique
expression of each element in Sn in terms of descending cycles (k k − 1 k − 2 · · · ).

For later purposes it will be more convenient to work with Sn+1, permuting {0, . . . , n}. Let Kn be the
set of n-tuples k = (k1, . . . , kn) of integers satisfying i − 1 ≤ ki ≤ n for each i. Given k ∈ Kn we
define cycles π1, π2, . . . , πn ∈ Sn by

πi = (ki ki − 1 . . . i i− 1)

if ki > i− 1 and πi = e if ki = i− 1, and we set

πk = π1 . . . πn.

Proposition 3.2 Sending k 7→ πk gives a bijection Kn
∼−→ Sn+1.

Proof: We construct the inverse map. Given σ ∈ Sn+1 define k recursively by k1 = σ(0), which
defines π1 = (k1 k1 − 1 . . . 1 0), and for i > 1 set

ki = πi−1 · · · π1(i).

Since πi(j) = j for j < i, it follows that

σ = π1π2 · · · πn = πk, (5)

as claimed. �

For example, the identity element e = πk where each ki ≡ i − 1. At the other extreme, when ki ≡ n
we get the permutation

σ̃ = (n . . . 1 0)(n . . . 2 1) · · · (n n− 1). (6)

Clearly there is also an ascending decomposition, obtained by inverting (5). We have emphasized
the descending version since it appears naturally in the Bruhat decomposition of GLn for the upper-
triangular Borel subgroup, as we will see in section 7.1.

3.2.2 Length

We continue with Sn+1 permuting {0, 1, . . . , n}. The descending 2-cycles

si = (i i− 1) for 1 ≤ i ≤ n
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are called simple transpositions. A general descending cycle (k . . . i i − 1) can be expressed as a
product of simple transpositions thus:

(k . . . i i− 1) = sksk−1 · · · si. (7)

Combined with Prop. 3.2, this gives a recipe for expressing an arbitrary element σ ∈ Sn+1 as a product
of

`(σ) :=
n∑
i=1

(ki − i+ 1)

simple transpositions, where σ = πk. We call `(σ) the length of σ. For example, we have `(e) = 0
and the element σ̃ defined in (6) has length

`(σ̃) = 1 + 2 + · · ·+ n = n(n+ 1)/2.

Thus σ̃ is the longest element of Sn+1. The expression for σ̃ produced by Prop. 3.2 and (7) is

σ̃ = (snsn−1 · · · s1) · (snsn−1 · · · s2) · · · (sn).

Note that length is not constant on conjugacy-classes. For example, `(s1s2s1) = 3, while `(s2) = 1.
We see again that length depends on more than the group structure of Sn+1. It turns out that σ cannot
be expressed as a product of fewer than `(σ) simple transpositions, but we will not need this.

3.2.3 Inversions

We have defined `(σ) in terms of the descending cycle decomposition. This can be interpreted as
counting the inversions of σ.

Let R be the set of ordered pairs pairs (i, j) such that 0 ≤ i, j ≤ n and i 6= j. We have R = R+ tR−,
where R+ = {(i, j) ∈ R : i < j} and R− = {(i, j) ∈ R : i > j}. For σ ∈ Sn+1 we consider the set
of inversions

N(σ) := R+ ∩ σ−1R−.

Thus, N(σ) is the set of pairs (i, j) ∈ R such that i < j and σ(i) > σ(j).

For a descending cycle σ = [k k − 1 · · · p] we have

N(σ) = {(p, j) : p < j ≤ k} and σN(σ) = {(kp, j) : p ≤ j < kp}. (8)

We observe in this case that |N(σ)| = k − p− 1 = `(σ). This holds true in general.

Proposition 3.3 For any element σ ∈ Sn+1 we have

`(σ) = |N(σ)|.
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Proof: Let σ = σ1 · · ·σn be the descending cycle decomposition. We first show that for any 1 ≤ p <
q ≤ n that we have a disjoint union

N(σp · · ·σq) = N(σp+1 · · ·σq) t (σp+1 · · · σq)−1N(σp). (9)

Let us abbreviate τ := σp+1 · · ·σq, and note that τ(i) = i ifi < p.

Let (i, j) ∈ N(σpτ). If τ(i) > τ(j) then (i, j) ∈ N(τ). If τ(i) < τ(j) then (i, j) ∈ τ−1N(σp). Hence
(i, j) ∈ N(τ) ∪ τ−1N(σp).

From (8) we have

N(σp) = {(p− 1, j) : p ≤ j ≤ kp} and σpN(σp) = {(kp, j) : p− 1 ≤ j ≤ kp − 1}.

The right side of (9) is contained in R+. Indeed, N(τ) ⊂ R+ by definition and τ−1N(σp) ⊂ R+ since
τ(p− 1) = p− 1.

The right side of (9) is contained in N(σ). Indeed, στ−1N(σp) = σpN(σp) ⊂ R− by definition. And
if (i, j) ∈ τN(τ) then i > j ≥ p so (j, i) /∈ N(σp) so σp(j) > σp(i). It follows that σpτN(τ) ⊂ R−.

The right side of (9) is a disjoint union. Indeed, if (i, j) ∈ N(τ) then i ≥ p and that if (i, j) ∈ τ−1N(σp)
then i = p− 1. �

Applying (9) to the full descending decomposition σ = σ1 · · ·σn and using induction, we obtain

N(σ) =
n⊔
p=1

(σp+1 · · ·σn)−1N(σp). (10)

Now Prop. 3.3 follows from (8). �

We highlight an observation made in the last step of the proof; we will use later for the Bruhat decom-
position in section 8.10:

N(σ1 · · ·σq) = N(σq) t
q−1⊔
p=1

(σp+1 · · ·σq)−1N(σp),

and that

N(σq) = {(i, j) ∈ N(σ1 · · ·σq) : i = q−1}, (σp+1 · · ·σq)−1N(σp) = {(i, j) ∈ N(σ1 · · ·σq) : i = p−1}.

In particular, we have
(i, j) ∈ N(σ1 · · ·σq) ⇒ i < q. (11)

3.3 Sign character and alternating group

A permutation σ ∈ Sn is even if its cycle type λ(σ) contains an even number of even numbers;
otherwise σ is odd. This notion does not use the ordering on {1, . . . , n}. Nevertheless, a permutation
σ is even precisely when its length is even.
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Thus, (1 2)(3 4) and (1 2 3) are even, while (1 2) and (1 2)(3 4 5) are odd. We put

sgn(σ) =

{
+1 if σ is even
−1 if σ is odd

Note that {±1} is a group under multiplication.

Proposition 3.4 The function sgn : Sn → {±1} is a surjective group homomorphism.

We will prove this in section 5.1, using determinants.

The Alternating Group An is defined as

An = ker sgn = {σ ∈ Sn : σ is even}.

Thus, An / Sn and
|An| = 1

2
n! = 3 · 4 · · · · · n.

For example, A4 has order 12; it is the union of the classes of type [3], [2, 2], [1, 1, 1, 1] in S4. However,
these are not quite the conjugacy classes in A4.

The conjugacy classes in An are determined as follows. First, An consists of the even classes in Sn.
However, two elements of An which are conjugate in Sn need not be conjugate in An. Hence an even
Sn-class could break up into several An-classes. To see when this happens, let σ ∈ An and restrict the
character sgn to the centralizer CSn(σ) of σ in Sn. We have

CAn(σ) = ker[CSn(σ)
sgn−→ {±1}],

so that the index

hσ := [CSn(σ) : CAn(σ)] =

{
2 if CSn(σ) 6≤ An

1 if CSn(σ) ≤ An.

Now the size of the conjugacy class σAn in An is given by

|σAn| = |An|
|CAn(σ)|

=
1
2
|Sn|

1
hσ
|CSn(σ)|

=
hσ
2
· |σSn|.

It follows that if CSn(σ) 6≤ An then σSn is a single conjugacy class in An and if CSn(σ) ≤ An then σSn
breaks up into two An-conjugacy classes:

σSn = σAn ∪ σ̄An ,

where σ̄ is conjugate to σ in Sn but not in An.

For example, in S4 elements in the [2, 2]-class contain 2-cycles in their centralizer (which is the dihedral
group D4, see section 8.3), so the [2, 2]− class is a single class in A4. But elements in the [3, 1]-class
generate their own centralizer, which is therefore contained in A4. So the [3, 1]-class breaks up into
two classes with four elements each. These classes are mutually inverse. If A4 is viewed as rotations
of the tetrahedron, then one class consists of clockwise face rotations and the other class consists of
counterclockwise face rotations.
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4 Group actions

We say that group G acts on the set X if there is a homomorphism ϕ : G→ SX from G into the group
SX of permutations of X . The pair (X,ϕ) is sometimes called a G-set or a G-action. Thus, each
g ∈ G gives a permutation ϕg of X , which sends any x ∈ X to an element ϕ(g)x. If ϕ is understood
or is completely general, we usually omit it from the notation, writing gx or g · x instead of ϕ(g)x.

If (X,ϕ) and (Y, ψ) are two G-sets, a function f : X → Y is called G-equivariant if f(ϕ(g)x) =
ψ(g)f(x) for all g ∈ G and x ∈ X . We say that (X,ϕ) and (Y, ψ) are equivalent G-sets if there exists
a G-equivariant bijection f : X → Y .

The notion of a G-set generalizes the notion of a group. For we can regard the action as a map
G×X → X , given by (g, x) 7→ g · x such that g · (g′ · x) = (gg′) · x for all g, g′ ∈ G and x ∈ X .

Some standard terminology associated with group actions is as follows.

The stabilizer or fixer of a point x ∈ X is the subgroup of G given by

Gx = {g ∈ G : g · x = x} ≤ G.

The orbit of an element x ∈ X is the subset of X given by

G · x = {g · x : g ∈ G} ⊆ X.

Orbits are equivalence classes under the equivalence relation x ∼ y if y = g ·x for some g ∈ G. Hence
two orbits are either equal or disjoint; the orbits form a partition of X . We write G\X for the set of
orbits.

The fixed-point set of g ∈ G is the subset of X given by

Xg = {x ∈ X : g · x = x}

One can check that stabilizers and fixed-point sets behave well under conjugacy:

Proposition 4.1 For all g ∈ G and x ∈ X , we have

Gg·x = gGxg
−1.

In particular, the stabilizers of all elements of the same orbit are conjugate. Likewise, if g, h ∈ G then

h · (Xg) = Xhgh−1

.

The kernel of a group action ϕ : G → SX is the normal subgroup of G consisting of the elements
acting trivially on X . We have

kerϕ =
⋂
x∈X

Gx = {g ∈ G : Xg = X}.
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A G-action on X is faithful or effective if kerϕ is trivial. Equivalently, the action is faithful if no
nontrivial element of G acts trivially on X . In this case, G is isomorphic to a subgroup of SX .

Finally, a group action is free if g ·x = x for some x ∈ X implies g = 1. That is, a group action is free
if and only if all stabilizers are trivial. Clearly free actions are faithful. An example of a free action is
where a subgroup H of a group G acts on G by left multiplication: h · x = hx. Here, G is the set and
H is the group which is acting. The orbits are the right cosets Hx.

A G-action on X is transitive if for all x, y ∈ X there exists g ∈ G such that g · x = y. Equivalently,
the action is transitive iff X consists of a single G-orbit. For a general group action, each orbit is a
transitive G-set. Thus, transitive group actions are the essential ones. An example of a transitive group
action is where X = G/H , for some subgroup H ≤ G, and the action is g · xH = gxH . We will see
that all transitive G-actions are of this form. More generally, a G-action on X is k-transitive if G is
transitive on k-tuples of distinct elements of X . This is a measure of the strength of transitivity.

The Main Theorem of Group Actions

If a group G acts on a set X , then for each x ∈ X we have a G-equivariant bijection

f : G/Gx
∼−→ G · x, given by f(gGx) = g · x.

In particular, any transitive group action is equivalent to an action on cosets.

Proof: The map f is well-defined because for all h ∈ Gx we have (gh) · x = g · (h · x) = g · x.
The map f is injective because if g · x = g′ · x then g−1g′ · x = x, so g−1g′ ∈ Gx, which means that
gGx = g′Gx. The map f is surjective, by the definition of the orbit G · x. Finally, for all g, g′ ∈ G and
x ∈ X we have

f(g · g′Gx) = f(gg′Gx) = (gg′) · x = g · (g′ · x) = g · f(g′Gx),

which shows that f is G-equivariant. �

As a corollary, we have one of the most useful formulas in group theory.

The Counting Formula. Let G be a finite group acting on a set X . Then the cardinality of an orbit
equals the index of the stabilizer of any point in the orbit. That is, for any x ∈ X we have

|G|
|Gx|

= |G · x|. (12)

Note that the right hand side of this equation depends only on the orbit, while the left side appears to
depend on the stabilizer of a particular point in the orbit. However, by Prop. 4.1 all stabilizers Gx for
x in a given orbit are conjugate, hence have the same order.

Let O1, . . . ,Ok be the orbits of G in X , and choose xi ∈ Oi. Applying the counting formula to each
orbit, we have the weaker but still useful formula

|X| =
k∑
i=1

|Oi| =
k∑
i=1

[G : Gxi ]. (13)
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4.1 The left regular action

Any group G acts on itself by left multiplication. More precisely, this action is given by the homo-
morphism L : G → SG such that Lgx = gx for all g, x ∈ G. This is called the left regular action;
one easily checks that it is free and transitive. Moreover, any free transitive G-action on a set X is
isomorphic to the left regular action (Exercise ...). If G is finite, say |G| = n, then SG ' Sn via a
labelling of the elements of G. Since the left regular action is faithful, this proves:

Proposition 4.2 A finite group G of order n is isomorphic to a subgroup of Sn, via the left regular
action L : G→ Sn.

In other words, Sn contains every group of order n as a subgroup.

What are the cycle types of the elements of L(G)? For any permutation σ ∈ Sn, the numbers in
the cycle type σ are the sizes of the orbits of 〈σ〉 on {1, 2, . . . , n}. Since G acts freely on itself, the
subgroup 〈g〉 also acts freely on G and the orbits of 〈g〉 on G are just the right cosets of 〈g〉. The order
d of g divides n and there are n/d right cosets of 〈g〉 in G, all of size d. This proves

Proposition 4.3 Let G be a finite group of order n, let g ∈ G, and let d be the order of g. Then under
the left regular action L : G→ Sn the cycle type of Lg is a product of n/d cycles of length d.

This has the following surprising corollary.

Corollary 4.4 Suppose G is a group of order n containing an element of order d where d is even and
n/d is odd. Then G has a normal subgroup of index two. In particular, G cannot be simple.

Proof: If g ∈ G has even order d with n/d odd, then Lg is a product of an odd number of even cycles,
so sgn(Lg) = −1. Hence the homomorphism sgn ◦L : G → {±1} is nontrivial, so ker(sgn ◦L) is a
normal subgroup of G of index two. �

From this, we can prove another partial converse to Lagrange’s theorem.

Corollary 4.5 Suppose G is a group of order 2m where m is odd. Then G has a normal subgroup of
order m.

Proof: By Prop. 2.2 there exists g ∈ G of order two, satisfying the conditions of Cor. 4.4. �

Since a group G also acts on itself by right multiplication, we also have the right regular action given
by the homomorphism R : G → SG given by ρgx = xg−1. [Check that this is a group action- in so
doing, you’ll see why we need the inverse.] Analogues of the above results all hold for R as well.
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4.2 Group actions on coset spaces

Let G be a group with identity element e, let H ≤ G be a subgroup and let G/H be the set of left
cosets of H in G. Instead of H acting on G, we can consider G acting on G/H , via left multiplication:
g · xH = gxH . When H = {1} we recover the left regular action. For nontrivial H , this action is
transitive (because any xH ∈ G/H is x · eH) but no longer free, because the stabilizer of eH is the
nontrivial subgroup H . More generally, the stabilizer of xH is xHx−1.

Every transitive group action is isomorphic to one of this form. Indeed, ifG acts transitively on a setX ,
and we pick any x ∈ X , then the Main Theorem of Group Actions shows that this action is isomorphic
to the action of G on G/H , via left multiplication as just defined, where H = Gx. However, describing
a transitive G-set as G/H contains the additional data of a basepoint, namely eH .

If G is finite, this gives a useful way to study subgroups of G, as follows.

Proposition 4.6 Let G be a finite group having a subgroup H ≤ G of index [G : H] = m. Then there
is a homomorphism σH : G −→ Sm whose image is a transitive subgroup of Sm and whose kernel is
given by

kerσH =
⋂
g∈G

gHg−1.

4.3 Double cosets

Suppose a group G acts transitively on a set X and we wish to study the action of a subgroup K < G
on X . From the Main Theorem on Group Actions, we may assume that X = G/H for some subgroup
H ≤ G, possibly equal to K.

So let us begin with a group G and arbitrary subgroups K,H . Let the group K × H act on the set G
by the rule

(k, h) · g = kgh−1.

The orbits of this action are called (K,H)-double cosets. Each double coset is of the form

KxH = {kxh : k ∈ K,h ∈ H}

for some x ∈ G. As with all group actions, the set G is partitioned as

G =
⊔
x

KxH,

where x runs over representatives for the (K,H)-double cosets.

Each double coset KxH is a union of left cosets of H and KxH/H ⊂ G/H is the set of the left cosets
of H contained in KxH . In fact KxH/H is exactly the K-orbit of xH in G/H . By the Main Theorem
of Group actions, this orbit is a K-set which must be equivalent to K/J for some subgroup J ≤ K.
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Proposition 4.7 The stabilizer of xH in K is K ∩ xHx−1. Hence we have a K-equivariant bijection

K/(K ∩ xHx−1)
∼−→ KxH/H,

sending k(K ∩ xHx−1) 7→ kxH/H .

Proof: If k ∈ K, then

kxH = xH ⇔ x−1kx ∈ H ⇔ k ∈ xHx−1 ∩K.

The rest of the proposition follows from the Main Theorem of Group Actions. �

If G is finite, we can use Prop. 4.7 to compute the number of elements in a given double coset KxH ,
namely

|KxH| = |K| · |H|
|K ∩ xHx−1|

.

We can also view KxH as the H-orbit of Kx in K\G, and the stabilizer of Kx in H is x−1Kx ∩H ,
so that K\KxH ' (x−1Kx ∩H)\H , as H-sets.

The set of (K,H)-double cosets in G is denoted by K\G/H . The number |K\G/H| of double cosets
may be thought of in three ways:

• |K\G/H| is the number of K ×H orbits on G.

• |K\G/H| is the number of K-orbits on G/H .

• |K\G/H| is the number of H-orbits on K\G.

In contrast to ordinary cosets, there is no simple formula for |K\G/H| in general, because the action
of K on G/H (or the action of H on K\G) need not be free.

It is especially interesting to know when |K\G/H| is small. For example, it follows from the defini-
tions that

|K\G/H| = 1 ⇔ G = KH ⇔ K is transitive on G/H.

Here is a deeper situation. Let G be a group acting transitively on a set X . To avoid trivialities we
assume X has more than one element. Then G also acts on X ×X , via g · (x, y) = (g · x, g · y). This
action cannot be transitive, because the diagonal ∆X = {(x, x) : x ∈ X} is an orbit. Hence there are
at least two orbits on X ×X . We say that G acts doubly transitively on X if G has exactly two orbits
on X ×X . This means G acts transitively on {(x, y) ∈ X ×X : x 6= y}. In other words, G is doubly
transitive on X if for any two pairs of distinct elements (x, y) and (x′, y′) in X ×X , there is a single
element g ∈ G such that g · x = x′ and g · y = y′.

Proposition 4.8 Let G be a group acting transitively on a set X , and assume |X| > 1. The following
are equivalent.
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1. |Gx\G/Gx| = 2 for any x ∈ X .

2. For any x ∈ X , the stabilizer Gx is transitive on X − {x}.

3. G acts doubly transitively on X .

Proof:

(1 ⇔ 2): We have |Gx\G/Gx| = 2 exactly when Gx has exactly two orbits in X . One of these orbits
is {x} so |Gx\G/Gx| = 2 exactly when Gx is transitive on X − {x}.

(2 ⇒ 3): Assume Gx is transitive on X − {x} for any x ∈ X . Let (x, y) and (x′, y′) be two pairs
of distinct elements of X . Since G is transitive on X , there is g ∈ G such that g · x′ = x. Note that
g · y′ 6= x since x′ 6= y′. By our assumption, there is h ∈ Gx such that h · (g · y′) = y. For the element
hg ∈ G we have hg · x′ = h · x = x and hg · y′ = y, so hg · (x′, y′) = (x, y). Hence G is doubly
transitive on X .

(3 ⇒ 2): Assume G is doubly transitive on X and let x ∈ X . Let y, y′ be two elements of X − {x}.
Since G is doubly transitive, there exists g ∈ G such that g · x = x and g · y = y′. This shows that Gx

is transitive on X − {x}. �

In other words, if H is any subgroup of G then G acts doubly transitively on G/H if and only if

G = H ∪HgH, (disjoint)

For any element g outside of H .

Example : Let G = Sn and let H ' Sn−1 be the subgroup stabilizing the number 1. The permutations
in H are precisely those whose disjoint cycle expression does not involve the number 1, and we have
Sn/H ' {1, 2, . . . , n} as Sn-sets. Given 1 ≤ i < j ≤ n there exists σ ∈ Sn sending 1, 2 to i, j
respectively. It follows that Sn is doubly-transitive on {1, 2, . . . , n} and we have

Sn = H ∪HσH.

The elements of HσH are precisely those permutations whose disjoint cycle expression involves the
number 1.

For any positive integer k ≤ n the group Sn acts on on the set Xk = {x ⊂ {1, 2, . . . , n} : |x| =
k} of k-element subsets of {1, 2, . . . n}. One such subset is x0 = {1, 2, . . . , k}, whose stabilizer is
isomorphic to Sk × Sn−k. The counting formula says that

|Xk| =
|Sn|

|Sk| · |Sn−k|
=

n!

k!(n− k)!
,

as it should.

4.4 Conjugation

Conjugation can be viewed as an action of G on itself. This action is the homomorphism c : G → SG
given by cg(x) = gxg−1. Understanding this action is another important way to know a given group.
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In this context, the orbit of an element x ∈ G is its conjugacy class Gx = {gxg−1 : g ∈ G} and
the stabilizer of x is the centralizer CG(x) = {g ∈ G : gxg−1 = x}. . Finally, the kernel of the
conjugation action is the center Z(G) of G.

If G is finite, the formula

|CG(x)| · |Gx| = |G|, for all x ∈ G (14)

is the Counting Formula for the conjugation action.

4.5 Burnside’s Lemma

Let G be a group acting on a set X . Consider the set

X̃ = {(g, x) ∈ G×X : g · x = x}.

The projections onto G and X give maps

p1 : X̃ → G, p2 : X̃ → X,

whose fibers are the fixed-point sets and stabilizers, respectively:

p−1
1 (g) = Xg, p−1

2 (x) = Gx.

If G and X are finite, we can compute |X̃| in two ways, by summing both sets of fibers:∑
g∈G

|Xg| = |X̃| =
∑
x∈X

|Gx|.

Since |Gx| is constant for x in an orbit, we can partition the last sum into orbits O1, . . . ,Ok, as in (13):

∑
x∈X

|Gx| =
k∑
i=1

|Oi| · |Gxi | = k · |G|.

It follows that the number of orbits is the average size of a fixed-point set:

|G\X| = 1

|G|
∑
g∈G

|Xg|. (15)

This formula is known as “Burnside’s Lemma” because he seems to have given the first published
proof, though it was apparently known to Cauchy, well before Burnside.

The sum in (15) can be condensed because |Xg| = |Xh| if g and h are conjugate elements of G. Thus,
if Λ is a set of representatives of the conjugacy-classes in G we have

|G\X| =
∑
g∈Λ

|Xg|
|CG(g)|

. (16)
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4.5.1 Application: Graph counting

Let V be a set and let V2 be the set of two-element subsets {v, v′} ⊂ V . A graph (V,E) consists of the
set V of “vertices” and a subset E ⊂ V2 of “edges”. Two graphs (V,E) and (V ′, E ′) are isomorphic if
there is a bijection f : V → V ′ such that f2(E) = E ′, where f2 : V2 → V ′2 is the map induced by f .
Now E is determined by its characteristic function

χE : V2 :−→ {0, 1},

so the isomorphism classes of graphs with vertex set V are the orbits of the symmetric group SV on the
set X consisting of all functions χ : V2 → {0, 1}.

Fix a positive integer n and let V = {1, . . . , n}, so that V2 = {{i, j} : i, j ∈ V, i 6= j}. The number
γn of isomorphism classes of graphs with n vertices is given by

γn = |Sn\Xn|,

where Xn = {χ : V2 → {0, 1}}. We will use Burnside’s Lemma (twice) to give an explicit formula for
γn.

First, we have

γn =
1

n!

∑
σ∈Sn

|Xσ
n |.

A function χ ∈ Xn is fixed by σ exactly when χ is constant on the orbits of 〈σ〉 in V2. It follows that

|Xσ
n | = 2o(σ),

where o(σ) is the number of orbits of 〈σ〉 on V2.

The number o(σ) depends only on the conjugacy class of σ, which corresponds, via cycle types, to a
partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λr > 0) of n. We set o(λ) = o(σ) where σ has cycle type λ. Using
the condensed formula (16) we have

γn =
∑
λ

2o(λ)

z(λ)
,

sum over all partitions λ of n, where z(λ) is the order of the centralizer in Sn of a permutation with
cycle type λ. In fact we have the explicit formula

z(λ) :=
n∏
k=1

[ek(λ)!] · kek(λ),

where ek(λ) = |{i : λi = k}|.

Thus the problem is to compute o(λ) = o(σ). For this we can use Burnside’s Lemma again, this time
for the cyclic group 〈σ〉. If σ has order m, we get

o(σ) =
1

m

m∑
d=1

|V σd

2 |.
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We note that

|V σ
2 | =

(
e1(λ)

2

)
+ e2(λ).

The same holds for each power σd, but with λ replaced by the cycle type of σd. Let

σ = σ1 · · · σr

be the disjoint cycle decomposition of σ, so that each σi is a λi-cycle. Then

σd = σd1 · · · σdr ,

and σdi has cycle type [
λi
di
, . . . ,

λi
di

]
, (17)

where di = gcd(λi, d), and di is also the number of parts in the partition (17). It follows that

e1(σd) =
∑
i

λi=di

di =
∑
i

λi|d

λi.

When we sum over d, each λi occurs for

d = λi, 2λi, · · · ,
m

λi
λi.

Hence
1

m

m∑
d=1

e1(σd) =
1

m

r∑
i=1

m

λi
λi = r.

Likewise, one checks that
1

m

m∑
d=1

e1(σd)2 = n+ 2(λ, λ),

where
(λ, λ) =

∑
i<j

gcd(λi, λj),

and that
1

m

m∑
d=1

e2(σd) =
r+(λ)

2
,

where r+(λ) = {i : λi ∈ 2Z} is the number of even parts of λ. Putting all this together, we find that

o(λ) = (λ, λ) +
n− r−(λ)

2
,

where r−(λ) = |i : λi ∈ 1 + 2Z} is the number of odd parts of λ.

For example, if n = 4 we find

o(1, 1, 1, 1) = 6, o(2, 1, 1) = 4, o(22) = 4, o(31) = 2, o(4) = 2,

so that

γ4 =
26

24
+

24

4
+

24

8
+

22

3
+

22

4
= 11.
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5 Linear groups

Let V be a vector space over a field F . The set GL(V ) of invertible linear transformations T : V → V
forms a group under composition, called the general linear group of V , whose identity element is the
transformation IV (v) ≡ v.

If V has finite dimension n over F and we choose an ordered basis {v1, . . . , vn} of V then each
T ∈ GL(V ) corresponds to an invertible n× n matrix AT whose jth column is

a1j

a2j
...
anj

 ,
where T (vj) = a1jv1 + a2jvj + · · ·+ anjvn. Matrix multiplication is defined so that

AS · AT = AST , for all S, T ∈ GL(V ).

It follows that sending T 7→ AT is a group isomorphism

GL(V )
∼−→ GLn(F ), (18)

where GLn(F ) is the group of n × n invertible matrices under matrix multiplication, whose identity
element is the n× n identity matrix

In =


1 0 . . . 0
0 1 . . . 0
... . . . 0
0 0 . . . 1

 .
As was the case for Sn, the isomorphism (18) is noncanonical, because it depends on a choice of
ordered basis {v1, . . . , vn} of V .

A 1× 1 matrix is just a number, so
GL1(F ) = F×

is the group of nonzero elements of the field F under multiplication. This group F× appears in GLn(F )
as both a normal subgroup and a quotient.

First, we have an injective homomorphism

F× ↪→ GLn(F ), given by a 7→ a · In =


a 0 . . . 0
0 a . . . 0
... . . . 0
0 0 . . . a

 , (19)

whose image Z ' F× is the center of GLn(F ). The Projective Linear Group PGLn(F ) is defined
as

PGLn(F ) = GLn(F )/Z.
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Elements of PGLn(F ) are no longer linear transformations, but they permute the lines in the vector
space F n. Thus, the elements of PGLn(F ) are transformations of the Projective Space Pn−1(F )
which is the set of lines in F n.

Next, recall that an n × n matrix A is invertible if and only if its determinant det(A) is nonzero.
Moreover, if A and B are two n × n matrices, we have det(AB) = det(A) · det(B). Thus, det is a
homomorphism

det : GLn(F )→ F×.

The Special Linear Group SLn(F ) is defined as

SLn(F ) = ker det = {A ∈ GLn(F ) : det(A) = 1}.

When F = R, elements of SLn(F ) are the linear transformations of Rn which preserve volume.

Returning to general F , consider the restriction of det to Z. Since

det(aIn) = an, (20)

it follows that
det(Z) = F×n

is the subgroup of nth powers in F×. Hence the composition

GLn(F )
det−→ F× −→ F×/F×n

induces a surjective homomorphism

PGLn(F )
det−→ F×/F×n.

The latter group depends on the field F . For example, we have |C×/C×n| = 1, while |R×/R×n| = 1
or 2 according as n is odd or even, and Q×/Q×n is infinite.

It also follows from (20) that the intersection

Z1 = SLn(F ) ∩ Z = {aIn : an = 1} ' µn(F ),

where µn(F ) = {a ∈ F× : an = 1} is the subgroup of nth roots of unity in F×. The group Z1 is the
center of SLn(F ) and the quotient

PSLn(F ) = SLn(F )/Z1 = ker det

is the image of SLn(F ) in PGLn(F ). The center Z1 ' µn(F ) of SLn(F ) also depends on the field F .
For example, we have |µn(C)| = n, while |µn(R)| = 1 or 2 according as n is odd or even. For general
fields F , µn(F ) is always finite of order dividing n.
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In summary, we have four closely related groups GLn(F ), SLn(F ),PGLn(F ),PSLn(F ), related to
each other via the following commutative diagram with exact rows.

1 −−−→ µn(F ) −−−→ F×
n−−−→ F×n −−−→ 1y y y

1 −−−→ SLn(F ) −−−→ GLn(F )
det−−−→ F× −−−→ 1y y y

1 −−−→ PSLn(F ) −−−→ PGLn(F )
det−−−→ F×/F×n −−−→ 1

(21)

If F is a finite field with |F | = q, we write

GLn(q), SLn(q), PGLn(q), PSLn(q)

instead of
GLn(F ), SLn(F ), PGLn(F ), PSLn(F ).

Often in the literature one finds the abbreviation Ln(q) for PSLn(q). The orders of these groups are
given as follows.

|GLn(q)| = qn(n−1)/2(q − 1)(q2 − 1) · · · (qn − 1)

|PGLn(q)| = | SLn(q)| = qn(n−1)/2(q2 − 1)(q3 − 1) · · · (qn − 1)

|PSLn(q)| = | SLn(q)|/ gcd(n, q − 1)

(22)

In the last line, recall from (24) that gcd(n, q − 1) = |µn(F )|. All of these orders then follow from the
calculation of |GLn(q)|, which can be done as follows. To have a matrix A ∈ GLn(q), we can take any
of the qn − 1 nonzero vectors in F n for the first column, then any of the qn − q vectors not in the line
spanned by the first column, then any of the qn − q2 vectors not in the plane spanned by the first two
columns, etc. This gives

|GLn(q)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)

= q1+2+···+(n−1)(qn − 1)(qn−1 − 1)(qn−2 − 1) · · · (q − 1)

= qn(n−1)/2(qn − 1)(qn−1 − 1)(qn−2 − 1) · · · (q − 1),

as claimed above.

5.1 Symmetric groups and Linear groups

Let X be a set and let F be a field. To this data we associate an F -vector space V with a canonical
basis {vx : x ∈ X}, as follows: V is the set of all functions v : X → F , and vx is the function
vx(x

′) = 1 if x = x′, zero otherwise.

The symmetric group SX acts on V in the obvious way: If σ ∈ SX and v =
∑

x∈X cxvx, (with
all cx ∈ F ) then σv =

∑
x∈X cxvσ(x). In particular we have σ(vx) = vσ(x) and this latter equation

determines the action of σ on all of V .
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Suppose σ = (i1 i2 · · · ir) is an r-cycle in Sn. The matrix Aσ sends ei1 7→ ei2 7→ · · · 7→ eir 7→ ei1 and
fixes the remaining ej’s. Since the determinant of a matrix is unchanged by simultaneous interchanges
of rows and columns, we have

det(Aσ) = det

[
A′σ 0
0 In−r

]
= det(A′σ)

where A′σ is the r × r matrix

A′σ =


0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...

... . . . . . . 0
0 0 . . . 1 0

 .
Expanding along the top row, we compute

det(A′σ) = (−1)r−1.

Hence det(Aσ) = +1 or −1 according as r is odd or even.

Now take a general σ ∈ Sn and write it as a product of disjoint cycles. We have det(Aσ) = +1 or −1
according as σ has an even or odd number of even cycles. This agrees with our definition of sgn above,
so we have shown that

det(Aσ) = sgn(σ).

Hence sgn = det ◦f is a group homomorphism, as claimed in Prop. 3.4.

It will be useful to know how Sn conjugates a general matrix. Let R be the set of ordered pairs of
distinct integers (i, j) with i, j ∈ {1, . . . , n}. The group Sn acts on R via σ · (i, j) = (σi, σj). For any
n× n matrix A = [Aij] let R(A) = {(i, j) : Aij 6= 0}.

Lemma 5.1 If σ ∈ Sn and A is any n× n matrix over a field F then we have

1. (AσAA
−1
σ )σi,σj = Aij

2. R(AσAA
−1
σ ) = σ ·R(A).

Proof: The first assertion is a straightforward computation and the second assertion follows. �

5.1.1 Conjugacy classes in GL2(F )

We assume a bit more familiarity with fields in this section. Let F be a field. Assume either that F is
finite or that 2 6= 0 in F . Let F̄ be a fixed algebraic closure of F . We identify F× with the center of
GL2(F ), as in (19).

A quadratic extension of F is a field K such that F ⊂ K ⊂ F̄ and K is a two-dimensional F -vector
space. This means K = F ⊕ Fλ for some (any) λ ∈ K − F . The elements 1, λ, λ2 are then linearly
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dependent over F so we have a dependence relation λ2−Tλ+N = 0, where T = T(λ) and N = N(λ)
(the norm and trace) are elements of F . The roots of the polynomial x2 − Tx+ N are distinct; let λ̄ be
the root other than λ.

Using the basis {1, λ} the action of K× on K by multiplication gives an embedding

ιλ : K× ↪→ GL2(F ).

For an arbitrary element a+ bλ ∈ K× we have (a+ bλ) · 1 = a+ bλ and

(a+ bλ) · λ = aλ+ bλ2 = aλ+ b(Tλ− N) = −bN + (a+ bT)λ.

Hence ιλ is given explicitly by

ιλ(a+ bλ) =

[
a −bN
b a+ bT

]
.

The eigenvalues of this matrix are a+ bλ and a+ bλ̄; in particular these eigenvalues lie in K×.

A different choice λ′ of λ ∈ K − F gives a new basis of K over F , and the subgroups ιλ′(K×) and
ιλ(K

×) are conjugate in GL2(F ). We denote any of these subgroups by K×, with the understanding
that they are only determined up to conjugacy. If L and K are distinct quadratic extensions of F the
groups L× and K× are not conjugate in GL2(F ) and any two members in the class L× or K× will
intersect in F×. This is because the eigenvalues of elements of L× lie in L and similarly for K, and
K ∩ L = F .

For g, h ∈ GL2(F ) we write g ∼ h to mean that g and h are conjugate in GL2(F ).

Proposition 5.2 Let g ∈ GL2(F ) have eigenvalues λ, µ in F̄ .

1. If λ = µ ∈ F×, then either g =

[
λ 0
0 λ

]
or g ∼

[
λ 1
0 λ

]
.

2. If λ 6= µ ∈ F×, then g ∼
[
λ 0
0 µ

]
∼
[
µ 0
0 λ

]
.

3. If λ 6= µ /∈ F× then λ and µ = λ̄ belong to a unique quadratic extension K and g ∼ ιλ(λ) ∼
ιλ(λ̄) ∈ K×.

Proof: In case 1, the matrix g − λ · I2 has nonzero kernel. Choose any vector v ∈ F 2 such that the
vector u := (g − λ · I2)v is nonzero. Since (g − λ · I2)2 = 0, the vectors u, v are linearly independent.

Using the basis u, v, we have g ∼
[
λ 1
0 λ

]
.

In case 2, we use the basis of eigenvectors of g to see that g ∼
[
λ 0
0 µ

]
.

In case 3, λ and λ̄ are the roots of the characteristic polynomial of g so they generate a quadratic
extension K of F . The element ιλ(λ) ∈ ιλ(K×) has the same eigenvalues. Hence g and ιλ(λ) are two

35



elements of GL2(F ) which are conjugate to
[
λ 0
0 λ̄

]
in GL2(K). From the theory of rational canonical

form, or Hilbert’s theorem 90, it follows that g and ιλ(λ) are conjugate in GL2(F ).

�

If F has no quadratic extensions, for example if F = C or if F is the field of constructible numbers,
then case 3 does not arise. If F is finite, say |F | = q, then F has only one quadratic extension K, and
|K| = q2. In this case there are (q2 − q)/2 conjugacy classes of type 3.

6 Affine Groups

In space all points are the same: there is no natural origin. But the relative position of two points P,Q
in space can be described as a vector v =

−→
PQ indicating an arrow from P to Q. Thus points are fixed

in space, but vectors are the differences between points; another pair of points R, S could be in the
same relative position as P,Q, so that

−→
PQ = v =

−→
RS. In both cases we obtain Q from P and S from

R by adding the difference v. Thus the group of vectors acts on the space of points.

Based on these intuitive notions from geometry and physics, we define an affine space as follows. Let
V be a finite dimensional vector space over a field F . Regard V as an abelian group under addition.
An affine space under V is a set A on which V acts simply and transitively. We denote this action by
(v, a) 7→ a + v. Thus for any two points P,Q ∈ A there is a unique vector v such that Q = v + P .
Traditionally one writes v =

−→
PQ, as above. We will instead write v = P −Q.

For example, suppose W is an F -vector space and λ : W → F is a linear functional which is not
identically zero. Let V = kerλ and let A = {w ∈ W : λ(w) = 1}. Then A is an affine space under V
via the addition of vectors in W .

6.1 Affine functions

Let A and A′ be affine spaces under vector spaces V and V ′ respectively. A function f : A → A′ is
affine if there is a linear function, the derivative, ḟ : V → V ′ such that f(a+ v) = f(b) + ḟ(v) for any
a ∈ A and v ∈ V .

For example, the derivative of an affine function ψ : A→ R is a linear functional ψ̇ : V → F such that

ψ(x+ v) = ψ(x) + ψ̇(v),

for all x ∈ A and v ∈ V . The zero set Hψ = {x ∈ A : ψ(x) = 0} is an affine hyperplane, and
Hψ = x0 + ker ψ̇, for any x0 ∈ Hψ. Two affine functions ψ, φ : A → R have ψ̇ = φ̇ if and only if
ψ ∈ φ+R, and Hψ = Hφ if and only if ψ ∈ R ·φ. Thus, an affine function ψ is completely determined
by its derivative ψ and vanishing hyperplane Hψ.
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6.2 Affine Automorphisms

The set of affine automorphisms g : A → A forms a group under composition, denoted Aff(A). The
given action of V on A is by affine automorphisms: each v ∈ V gives an element τv ∈ Aff(A) which
is the translation τv(x) = x+ v. Thus we identify V with the subgroup of translations in Aff(A).

The derivative of an affine automorphism γ ∈ Aff(A) is a linear automorphism ġ ∈ GL(V ) such that
g(x + v) = g(x) + ġ(v) for all x ∈ A and v ∈ V . Sending g 7→ ġ gives a canonical homomorphism
Aff(A) → GL(V ). If γ̇ = IV is the identity element in GL(V ) then γ(x + v) = γ(x) + v for all
x ∈ A and v ∈ V . This implies that γ is a translation. Indeed, choose any point x0 ∈ A and let
v0 = γ(x0) − x0. Now let x ∈ A be arbitrary, and let v = x − x0. Then γ(x) = γ(x0 + v) =
γ(x0) + v = (x0 + v0) + v = (x0 + v) + v0 = x + v0, so that γ = tv0 . Thus, the translations form a
normal subgroup of Aff(A) isomorphic to V and we have an exact sequence

1→ V −→ Aff(A)
g 7→ġ−→ GL(V ).

The last map is surjective. To see this, we again choose a point x0 ∈ A. Now given g ∈ GL(V ), define
γ ∈ Aff(A) by γ(x) = x0 +γ(x−x0). We then have γ(x+v) = x0 +γ(x−x0 +v) = γ(x) +g(v), so
that γ̇ = g, as desired. Note that γ belongs to the stabilizer Aff(A, x0) of x0 in Aff(A) and that g 7→ γ
gives an isomorphism GL(V )→ Aff(A, x0), and we have a semidirect product

Aff(A) = V o Aff(A, x0).

We have just seen that linear groups are contained in affine groups. On the other hand, affine groups
are themselves contained in linear groups. As above, let W be an F -vector space and let λ : W → F
be a nonzero linear map, so that A := {x ∈ W : λ(x) = 1} is an affine space under V := kerλ. Let

GL(W,λ) = {g ∈ GL(W ) : λ(gw) = λ(w) ∀w ∈ W}.

Any g ∈ GL(W,λ) preserves both A and V . If x ∈ A and v ∈ V we have g(x + v) = g(x) + g(v). It
follows that the restriction g|A is an affine automorphism with derivative ġ = g|V , the restriction of g
to V . Thus, restriction to A defines a homomorphism

GL(W,λ) −→ Aff(A, λ).

This map is easily checked to be an isomorphism. That is, every affine automorphism of A extends
uniquely to a linear automorphism of W . For example, the translation tv(x) = x + v on A (which is
not linear on W ) extends to the map tv(w) = w + λ(w)v (which is linear on W ). Such linear maps tv
are called transvections.

For example, letW = R3 with standard coordinates x, y, z and let λ = x+y+z. Thus V = {(x, y, z) :
x + y + z = 0} and A = {(x, y, z) : x + y + z = 1}. We have GL(W ) = GL3(R) and GL(W,λ) is
the subgroup of matrices whose columns sum to 1.

The part ofA having x, y, z ≥ 0 is an equilateral triangle inAwith vertices P = (1, 0, 0),Q = (0, 1, 0),
R = (0, 0, 1). In Aff(A) we have the reflections about the lines containing the sides of the triangle. Let
` be the line though PQ. Let r` ∈ Aut(A) be the automorphism that moves a point to its mirror image
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in A on the other side of `. Then r` extends to a 180 degree rotation about ` in W . But this rotation is
not linear: it moves (0, 0, 0). The unique linear extension of r` has matrix1 0 1

0 1 1
0 0 −1

 .

6.3 Euclidean Affine spaces

The affine space A is Euclidean if F = R and V has a positive definite inner product. We denote
the inner product by (u|v), for u, v ∈ V . The orthogonal group O(V ) is the subgroup of GL(V )
preserving the inner product. That is,

O(V ) = {g ∈ GL(V ) : (gu, gv) = (u, v) ∀ u, v ∈ V }

An affine automorphism f : A → A is an isometry if ḟ ∈ O(V ). We write E(A) for the group of
isometries of A. For any x ∈ A the stabilizer E(A, x) is isomorphic to O(V ) and we have a semidirect
product

E(A) = V o E(A, x).

7 Projective Groups

A set X has Projective Geometry if X admits a transitive action by the group PGLn+1(F ) for some
integer n ≥ 1 and some field F .

The first example is the projective space Pn, whose points are lines in an F -vector space V of dimension
n+ 1. A line is determined by a nonzero vector in it, so we denote points in Pn(F ) as [v], where v ∈ V
is a nonzero vector and [cv] = [v], where c ∈ F×.

The group GL(V ) acts on Pn by g · [v] = [g · v]. Note that the center of GL(V ) acts trivially, so
this action factors through the quotient group PGL(V ) ' PGLn+1(V ). Thus, projective space has
projective geometry.

There are other examples: Instead of lines we could consider the set Xk of subspaces of some fixed
dimension k ∈ [1, n]. Again GL(V ) acts transitively on Xk and the action factors through PGL(V ).

Then we can refine. For example, suppose dimV = 3, and let X be the set of pairs (`, P ), where ` is
a line in V , P is a plane in V , and ` ⊂ P . Again the group PGL(V ) acts transitively on X .

Taking this to the extreme, let dimV = n + 1 and let Fn be the set of sequences of subspaces
(V1, V2, . . . , Vn) of V such that dimVk = k and Vk ⊂ Vk+1 for 1 ≤ k < n. An element of Fn is
called a flag in V , by analogy with polyhedra, where a flag is a vertex contained in an edge contained
in a face, like an ordinary flag. Again the group GL(V ) acts transitively on Fn and this action factors
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through PGL(V ). A Borel subgroup is the stabilizer in GL(V ) or PGL(V ) of a flag in V . That is, the
stabilizer of (V1, V2, . . . , Vn) ∈ Fn is the Borel subgroup

B = {b ∈ G : bVk = Vk ∀1 ≤ k ≤ n},

and we have a GL(V )-equivariant bijection

GL(V )/B
∼−→ Fn.

Each ordered basis (e0, . . . , en) of V determines a flag (V1, . . . , Vn) ∈ Fn where Vk is spanned by
(e0, . . . , ek−1). Using this basis we may identify GL(V ) = GLn+1(F ), and then B is identified with
the subgroup of upper triangular matrices in GLn+1(F ).

7.1 The Bruhat decomposition

Elements in GLn(F ) are matrices whose determinant is nonzero. However, it is not obvious how to
write down the general such matrix. That is, we have the locus, but not the parametrization of GLn(F )
in the space of all n × n matrices. The Bruhat decomposition remedies this by partitioning GLn(F )
into B −B double cosets, called Bruhat cells which can themselves be parameterized.

This is easy to see for n = 2. Consider the upper triangular subgroup

B =

[
× ∗
0 ×

]
⊂ GL2(F ).

One checks that if g ∈ GL2(F ) has nonzero lower left entry then there are elements b1, b2 ∈ B such
that g = b1σb2, where σ is the permutation matrix

σ =

[
0 1
1 0

]
Thus GL2(F ) is partitioned as

GL2(F ) = B t BσB.

This generalizes to GLn(F ) as follows. We have seen that the we may identify the symmetric group
Sn as a subgroup of GLn(F ), whereby the permutation σ becomes the matrix sending ei 7→ eσ(i). We
also have the subgroup B < GLn(F ) consisting of upper triangular matrices with all diagonal entries
nonzero.

Theorem 7.1 (Bruhat Decomposition) The group G = GLn(F ) is a disjoint union

G =
⊔
τ∈Sn

BτB,

where BτB = {b1τb2 : bi ∈ B}.
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Proof: The result is obvious for n = 1 and we have seen that it is is true for n = 2. We now assume
the result is true for GLn(F ), and use induction.

Let V be an n + 1-dimensional vector space over F . To prove the theorem we study the action of
G = GL(V ) on the projective space Pn of lines in V through the origin. See section 4 for background
on group actions.

A typical point in Pn is a line [v] through a nonzero vector v ∈ V and [cv] = [v] if c ∈ F×. The group
G acts on V via g · [v] = [gv]. This action is transitive: if v ∈ V is nonzero then v is contained in a
basis of V so there is an element g ∈ G such that ge0 = v, hence g · `0 = [v].

We choose an ordered basis e0, e1, . . . , en of V , and will often regard elements of G as matrices with
respect to this basis. We also write [v] = [x0, x1, . . . , xn] for the line through v =

∑
xkek. Our choice

of basis also determines particular lines `k = [ek] ∈ Pn which play a key role in what follows. The
ordering of the basis determines subspaces Vk = `0 + · · · + `k−1, the span of the first k lines. In turn
these subspaces determine the subgroup preserving each Vk:

B = {b ∈ G : bVk = Vk ∀k}.

The elements of B are precisely those whose matrices with respect to the ordered basis {ek} are upper
triangular.

The transitive action of G on Pn restricts to an action of B which is no longer transitive: each B-orbit
contains a unique line `k and the B-orbit of `k is the subset

Ok := B · `k = {[v + ek] : v ∈ Vk}.

Thus O0 = `0 is a single point in Pn and in general Ok is an affine space of dimension k. The whole
projective space is partitioned into B-orbits as

Pn =
n⊔
k=0

Ok.

We have a parallel partition of the symmetric group Sn+1 on {0, 1, . . . , n}, as follows. For each 1 ≤
k ≤ n we have a descending cycle σk = (k k − 1 · · · 2 1 0). Since σk(0) = k, it follows that

Sn+1 =
n⊔
k=0

σkSn, (23)

where Sn is the symmetric group on {1, 2, . . . , n}, regarded as the stabilizer of 0 in Sn+1.

Regarding Sn+1 < G, we also have σk · `0 = `k. It follows that

G =
n⊔
k=0

BσkP,

where P is the stabilizer in G of the line `0. We note that P = G1 n Q, where G1 ' GLn(F ) is the
subgroup of G fixing e0 and preserving the span of {e1, . . . , en} and Q = {g ∈ G : (g − 1)V ⊂ `0}.
By induction we have

G1 =
⊔
σ∈Sn

B1σB1,
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where B1 = B ∩G1. Note also that B1Q = B. It follows that

G =
n⊔
k=0

BσkG1Q =
n⊔
k=0

⊔
σ∈Sn

BσkB1σB.

Now for 1 ≤ i we have

σk(i) =

{
i− 1 if 1 ≤ i ≤ k

i if k < i ≤ n

so if 1 ≤ i < j then σk(i) < σk(j). By Lemma 5.1 we have that σkB1σ
−1
k ⊂ B. It follows that

G =
n⊔
k=0

⊔
σ∈Sn

BσkσB =
⊔

σ∈Sn+1

BσB,

by (23), as desired. �

Thus G is partitioned into Bruhat cells BσB, in each of which one can write down every element.
However, in a given cell BσB it is possible to have b1σb2 = b′1σb

′
2 for bi 6= b′i.

We can sharpen the Bruhat decompositon to obtain uniqueness of expression. We continue with V of
dimension n+ 1 and our choice of ordered basis {e0, . . . , en}, as in the proof of Thm. 8.10. Recall that
Vk = `0+· · ·+`k−1 is the span of the first k basis elements. As a first step, we note thatB = UT = TU ,
where

T = {t ∈ G : t · `k = `k ∀ k} and U = {u ∈ G : u · ek ∈ ek + Vk ∀ k}

and that Sn+1 normalizes T . Hence

BσB = UTσB = UσTB = UσB.

However it is still possible to have uσb = u′σb′ for distinct u, u′ and b, b′, so we must refine further.

For each k ∈ [0, n] let

Uk = {u ∈ B : uek ∈ ek + Vk and uej = ej ∀j 6= k}.

If u ∈ Uk then uek = ek + v for a unique v ∈ Vk. One checks that Uk is a subgroup of B and
that the assignment u 7→ v is an isomorphism Uk

∼→ Vk, where Vk is regarded as an abelian group
(under vector addition). We see that Uk acts simply and transitively on the B-orbit Ok in Pn. With this
observation we now re-examine the proof of Thm. 8.10 to obtain the following sharper form of the
Bruhat decomposition.

For each k ∈ [0, n] let V k be the span of the ej for k ≤ j ≤ n, so that V = Vk ⊕ V k, and let

Gk = {g ∈ G : gv = v ∀v ∈ Vk and gV k = V k}.

Thus, we have G = G0 > G1 > · · · > Gn and Gk ' GL(V k). Noting that `k ⊂ V k, let Pk be the
stabilizer of `k in Gk and let Qk = {q ∈ Gk : (q − 1)V k ⊂ `k}. We have Pk = Gk+1 nQk.
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Theorem 7.2 Let σ in Sn+1 have descending decomposition σ = σ1 · · ·σn, corresponding to the n-
tuple of integers (k1, . . . , kn) as in Prop. 3.2. Then for each g ∈ BσB there exist unique elements
ui ∈ Uki ∩Gi−1 and an element b ∈ B such that

g = u1σ1 · u2σ2 · · ·unσn · b.

Proof:

The following algorithm gives a constructive proof of the theorem.

1. Let k1 ∈ [0, n] be the unique index such that g · `0 ∈ Ok1 .

2. Let u1 ∈ Uk1 be the unique element such that g · `0 = u1 · `k1 .

3. Let σ1 = (k1 . . . 2 1 0) ∈ Sn+1. This is the unique descending cycle such that σ1 · `0 = `k1 . We now
have

g · `0 = u1σ1 · `0,

so g = u1σ1 · p0 for a unique element p0 ∈ P0.

4. Let g1 ∈ G1 and q0 ∈ Q0 be the unique elements such that p0 = g1q0. We now have

g = u1σ1 · g1q0.

5. Repeat steps 1-4 with g replaced by g1 and `0 replaced by `1. This gives a unique index k2 ∈ [1, n]
and element u2 ∈ Uk2 ∩G1 such that g1 · `1 = u2 · `1 ∈ Ok2 , and the decending cycle σ2 = (k2 . . . 2 1)
such that σ2 · `1 = `k2 , so that g1 = u2σ2 · p1 for a unique element p1 ∈ P1. Writing p1 = g2q1 for
unique g2 ∈ G2 and q1 ∈ Q1 we have

g = u1σ1 · u2σ2 · g2q1q2.

We eventually get
g = u1σ1 · u2σ2 · · ·unσn · b,

where ui ∈ Uki ∩Gi−1 and b = q1q2 · · · qn ∈ B, with uniqueness at every step. �

Thm. 7.2 gives a unique expression for every element in BσB. We will next see that the product
u1σ1 · u2σ2 · · ·unσn lies in Uσ, and we will characterize which elements of Uσ are of this form.

Let U be the transpose of U . Note that U ∩B = {1}.

Corollary 7.3 Every element g ∈ BσB may be uniquely expressed as g = uσb where u ∈ U ∩σUσ−1

and b ∈ B.

Proof: We have
u1σ1 · u2σ2 · · ·unσn ·B = uσB,

where
u = u1(σ1u2σ

−1
1 )(σ1σ2u3σ

−1
2 σ−1

1 ) · · · (σ1 · · · σn−1unσ
−1
n−1 · · ·σ−1

1 ).
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I claim that each term in parentheses belongs to U . Since each uq has all eigenvalues equal to 1, it
suffices to show that each term is in B. As in section ??, let R be the set of ordered pairs (i, j) of
distinct integers in [0, n], and let R+ = {(i, j) ∈ R : i < j}, R− = {(i, j) ∈ R : i > j}. For
any g ∈ G let R(g) = {(i, j) : gij 6= 0}. Since B = {b ∈ G : R(b) ⊂ R+}, we must show that
R(u) ⊂ R+.

For 0 ≤ q < n we have R(uq+1) = {(i, kq) : q ≤ i < kq}. From Lemma 11 we have

σ1σ2 · · ·σqR(uq+1) ⊂ R+

for all 1 ≤ q < n. The claim now follows from Lemma 5.1.

Next the element σ−1uσ is a product of terms of the form

xp = σ−1
n σ−1

n−1 · · ·σ−1
p upσp · · · σn−1σn

for p ∈ [1, n]. One checks that

σ−1
p R(up) = {(p, p− 1), (p+ 1, p− 1), . . . , (kp, p− 1)}.

If q > p then σ−1
q = (q − 1, q, . . . , kq) fixes p− 1 and preserves [p, n]. It follows that

R(xp) = σ−1
n σ−1

n−1 · · ·σ−1
p R(up) ⊂ R−

so xp ∈ U . It follows that u ∈ σUσ−1, as claimed.

If uσb = u′σb′ with u, u′ both in U ∩ σUσ−1 then b(b′)−1 = σ−1uu′σ ∈ B ∩ U = {1}. It follows that
b = b′ and u = u′, so we have uniqueness of expression.

�

Note that
U ∩ σUσ−1 = {u ∈ U : R(u) ⊂ N(σ−1)

so that U ∩ σUσ−1 is an affine space of dimension equal to the length `(σ).

We have already seen that Sn+1 has a unique longest element σ̃ = (n · · · 0)(n · · · 1) · · · (n n− 1). It
has order two. As a matrix, σ̃ is the unique permutation matrix with the property that U ∩ σ̃Uσ̃ = U
is maximal. The Bruhat cell Uσ̃B is called the big cell. If we multiply the big cell on the left by σ̃ we
obtain

σ̃Uσ̃B = UB.

These are the matrices admitting an “LU” decomposition, as it is called in elementary linear algebra.
The matrices which have no LU decomposition are exactly those in the translates σ̃UσB for σ 6= σ̃.

Example: We give the explicit Bruhat decomposition for G = GL3(F ). Let ∆1,∆2 be the functions
on G given for g = [gij] by

∆1(g) = g31, ∆2(g) = g21g32 − g31g22.
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One checks that for b, b′ ∈ B we have ∆i(bgb
′) = χi(b, b

′)∆i(g) where χi(b, b′) ∈ F×. It follows that
the zero-sets Zi of ∆i are unions of Bruhat cells. Writing elements of S3 in their descending cycle
decomposition, let

W1 = {(1 0)(2 1), (1 0), (2 1), e}, W2 = {(2 1 0), (1 0), (2 1), e}.

Using the algorithm in the proof above we find that

Zi =
⊔
σ∈Wi

BσB, so Z1 ∩ Z2 =
⊔

σ∈W1∩W2

BσB,

and also (using the notation of the proof) that B t B(1 0)B = P0, B t B(2 1)B = P1. One can now
decide which Bruhat cell contains a given g ∈ G according to the vanishing of certain minors.

8 Abelian Groups

We give brief introductions to the most fundamentally important groups here.

8.1 Cyclic groups

Let Z be the group of integers under addition, with identity element 0. Since addition of integers is
commutative, the group Z is abelian. Using the division algorithm, one proves that for any subgroup
H ≤ Z, there is an integer n ≥ 0 such that H = nZ, the set of multiples of n. If n = 0 we have
H = {0}. Assume now that n ≥ 1. Then the quotient Z/nZ is finite of order n, and consists of
the cosets nZ, 1 + nZ, . . . , (n − 1) + nZ. The subgroups of Z/nZ correspond to the subgroups of Z
containing nZ. These are the subgroups dZ/nZ, for positive integers d | n. Note that multiplication
by d−1 induces an isomorphism

dZ/nZ ' Z/d−1nZ.

Every subgroup is normal in Z, and we have

(Z/nZ)/(dZ/nZ) ' Z/dZ.

Cyclic groups play an important role in any group G. For each element g ∈ G determines a homomor-
phism

eg : Z→ G, given by eg(n) = gn.

The image of eg is the subgroup generated by g

im eg = 〈g〉 = {gn : n ∈ Z}.

The kernel of eg is a subgroup of Z, hence is of the form mZ, for some integer m ≥ 0. If m = 0 then
g has infinite order and 〈g〉 ' Z. If m > 0 then m is the order of g.
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A group G is cyclic if G = 〈g〉 for some g ∈ G. That is, G is cyclic iff there exists g ∈ G such that
every element of G is a power of g. We can also say that G is cyclic iff there exists g ∈ G such that the
homomorphism eg : Z→ G is surjective.

We have seen that every infinite cyclic group G is isomorphic to Z, and every finite cyclic group of
order n is isomorphic to Z/nZ. Usually we will encounter cyclic groups while we are working with
multiplicative notation, where we will let Cn denote a generic cyclic group of order n. Thus, Cn = 〈g〉,
for any element g ∈ G of order n.

Since Cn ' Z/nZ, it is immediate from our discussion of Z and its subgroups that Cn has a unique
subgroup of every order d dividing n, namely 〈gd〉 ' Cd. Every subgroup of Cn is of this form and we
have

Cn/Cd ' Cn/d.

This is a complete description of all of the subgroups and quotients of Cn.

Example: Let m,n be positive integers. The subgroups Cn[m] = {x ∈ Cn : xm = 1} and (Cn)m =
{xm : x ∈ Cn} of Cn are the kernel and image of the homomorphism Cn

m−→ Cn sending x 7→ xm,
so these fit into the exact sequence

1 −→ Cn[m] −→ Cn −→ (Cn)m −→ 1.

If g is a generator of Cn, one can check that Cn[m] = 〈gn/d〉, where d = gcd(m,n). Thus, Cn[m] ' Cd
and (Cn)m ' Cn/d.

A final remark on cyclic groups: The word “isomorphic” does not mean “equal”. We have Z/nZ ' Cn,
but there is a subtle distinction between these groups: Note that Z/nZ has a canonical generator,
namely 1 + nZ. But Cn has no canonical generator. For if 〈g〉 generates Cn then so does gk for any
integer k with gcd(k, n) = 1 (exercise...). For example, if

G =

{[
1 0
0 1

]
,

[
0 1
−1 −1

]
,

[
−1 −1
1 0

]}
then G ' C3 and either nonidentity matrix generates G, but there is no natural preference for either
generator. The root of this issue is that the isomorphism Z/nZ ∼−→ Cn induced by eg depends on the
choice of generator g of Cn; a different choice would give a different isomorphism. An isomorphism
of this sort, which depends on one or more arbitrary choices, is called noncanonical.

8.2 Finite abelian groups

Every finite abelian group is a direct product of cyclic groups. The first basic result in this direction is
as follows.

Proposition 8.1 Let A,B,C be finite abelian groups fitting into the exact sequence

1 −→ A −→ C
π−→ B −→ 1.

Assume that the orders of A and B are relatively prime. Then C ' A×B.
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Proof: Set m = |A| and n = |B|, so that |C| = mn. Let D be the set of elements in C whose
order is relatively prime to m. Then D ∩ A = {1}. I claim that π(D) = B. Let b ∈ B and choose
c ∈ C such that π(c) = b. Since |C| = mn we have (cm)n = 1, so the order of cm divides n, which is
relatively prime to m. Hence cm ∈ D, and π(cm) = bm. But the map x 7→ xm is an automorphism of
B, again since gcd(m,n) = 1. Hence π(D) = Bm = B. It follows that C = AD, and that π maps D
isomorphically onto B. By Prop. 2.10 we have

C = A×D ' A×B.

�

However, a direct product decomposition of an abelian group need not be unique.

Proposition 8.2 Suppose n1, n2, . . . , nk are relatively prime integers with product n = n1n2 · · ·nk.
Then

Cn1 × Cn2 × · · · × Cnk ' Cn.

Proof: Let gi be a generator ofCni for each i. I claim that the element (g1, g2, . . . , gk) ∈ Cn1×· · ·×Cnk
has order n. We have (g1, g2, . . . , gk)

n = (gn1 , g
n
2 , . . . , g

n
k ) = (1, 1, . . . , 1), since ni | n for all i. And if

gmi = 1 for all i then ni | m for all i, so n | m, since the ni are relatively prime. Hence n is the order
of (g1, g2, . . . , gk). �

We can get a unique decomposition of a finite abelian group G as follows. For each prime p let G(p)
be the set of elements of G whose order is a power of p.

Theorem 8.3 Let G be a finite abelian group of order n. Then

1. G '
∏

p|nG(p) is the direct product of its nontrivial subgroups G(p).

2. For each prime p there exist unique positive integers e1 ≥ e2 ≥ · · · ≥ ek > 0 such that
e1 + e2 + · · ·+ ek is the power of p dividing n and

G(p) ' Cpe1 × Cpe2 × · · · × Cpek .

Proof: Part 1 follows from Prop. 8.2, using induction on the number of primes dividing |G|. We will
prove part 2 later, using modules over principal ideal domains. See Milne for an elementary proof. �

Example 1: If n = p1p2 · · · pk is a product of distinct primes, then there is only one abelian group of
order n, up to isomorphism, namely Cn. For the unique decomposition of Thm. 8.3 would be

G ' Cp1 × Cp2 × · · · × Cpk ,

which is isomorphic to Cn, by Prop. 8.2.

Corollary 8.4 A finite subgroup of the multiplicative group of a field is cyclic.
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Proof: Let F be a field and let G be a finite subgroup of the multiplicative group F×. If n is a positive
integer and g ∈ G has order dividing n, then g is a root of the polynomial xn − 1, which has at most n
roots in F . Hence G has at most n elements of order dividing n, for any n ≥ 1. Write G =

∏
pG(p),

according to part 1 of Thm. 8.3. Each G(p) has at most p elements of order dividing p. Hence G(p) is
cyclic, by part 2 of Thm. 8.3. Now G is cyclic, by Prop. 8.2. �

Example 2: If F is a finite field with |F | = q, then F× ' Cq−1. Consequently, for any positive integer
m the subgroup µm(F ) = {x ∈ F : xm = 1} is also cyclic, of order gcd(m, q − 1):

µn(F ) ' Cgcd(m,q−1) (24)

8.2.1 Unit Groups

Let m be a positive integer and consider Z/mZ under multiplication (that is, as a ring):

(k +mZ)(k′ +mZ) = kk′ +mZ,

which is a well-defined operation. It is not a group operation, however, since the element 0+mZ has no
multiplicative inverse. In fact, from the Euclidean algorithm it follows that k+mZ has a multiplicative
inverse in Z/mZ iff gcd(k,m) = 1. Hence the set

(Z/mZ)× = {k +mZ : gcd(k, n) = 1}

forms a group under multiplication in Z/mZ, with identity element 1 +mZ. Since multiplication in Z
is commutative, the group (Z/mZ)× is abelian, of order

φ(m) = {k ∈ Z : 1 ≤ k < m, gcd(k,m) = 1}.

Proposition 8.5 Let m = pr11 · · · p
rk
k be the factorization of m into a product of powers of distinct

primes pi. Then

1.

(Z/mZ)× '
k∏
i=1

(Z/prii Z)×.

2. For any prime p and integer r ≥ 1 we have

(Z/prZ)× '


C(p−1)pr−1 ' Cp−1 × Cpr−1 if p ≥ 3

C2 × C2r−2 if p = 2 and r ≥ 2

1 if p = 2 and r = 1.

Proof: Part 1 follows from the Chinese Remainder Theorem. We prove part 2 for p ≥ 3 and leave
p = 2 as an exercise. Reduction modulo p gives a surjective map

π : (Z/prZ)× −→ (Z/pZ)×.
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By Prop. 8.2 and Example 2 above, it suffices to show that kerπ is cyclic. Clearly 1 + p ∈ kerπ. We
will show that 1 + p has order pr−1 modulo pr.

Recall that p |
(
p
k

)
for all positive integers k < p. Now if a and b are congruent integers modulo some

power p`, it follows that ap ≡ bp mod p`+1. Now using induction on ` ≥ 2 we have

(1 + p)p
`−2 ≡ 1 + p`−1 mod p`,

which implies that 1 + p has order p`−1 modulo ` for any ` ≥ 2. �

8.3 The dihedral groups Dn

A dihedral group is a group generated by two distinct elements of order two. As the name indicates,
they arise naturally from pairs of reflections in affine spaces.

A reflection is an isometry of a Euclidean space E whose set of fixed-points in E is a hyperplane.
Suppose E is a plane. Each line ` in E determines a reflection r with fixed-point set `. If P is a point
not on `, then r(P ) is the mirror image of P with respect to `. We say that r is the “reflection about `”.
Note that r is a nontrivial involution of the isometry group of the plane.

Suppose ` and `′ are two lines in the plane, with reflections r and r′. If ` and `′ are not parallel, then
they meet in a point P , and the product rr′ is rotation about twice the angle at P from `′ to `. In
particular, r and r′ commute precisely when ` and `′ are perpendicular. If ` and `′ are parallel, the
product rr′ is translation by twice the perpendicular vector from `′ to `.

For any integer n ≥ 1 consider n lines `1, . . . , `n in the plane meeting in a common point, with equal
angles (= π/n) between adjacent lines. Let ri be the reflection about `i. The dihedral group Dn is the
group generated by the reflections r1, . . . , rn. We define D∞ similarly, by taking a countable number
of parallel lines equally spaced apart (all meeting at infinity, with equal angle zero).

For n = 1 we have just one line, with reflection r and

D1 = {1, r} ' C2.

For n = 2 we have two perpendicular lines `1, `2, whose reflections r1, r2 commute. Hence

D2 = {1, r1, r2, r1r2} ' C2 × C2.

For n = 3 we have three lines `1, `2, `3 intersecting at the angle π/3. Let r, s be reflections about
adjacent lines. Then rs is a rotation of order 2π/3, hence has order three. The equation (rs)3 = 1 can
be written as

rsr = srs.

This element rsr = srs is the third reflection. It follows that D3 is generated by r and s only, and its
elements are

D3 = {1, r, s, rs, sr, rsr}.
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The product of any two elements in D3 is completely determined by the three rules:

r2 = 1, s2 = 1, rsr = srs.

For example, we have rs · rsr = rs · srs = r · rs = s.

It is a similar story for an arbitrary finite n ≥ 2. We again let r, s be reflections about adjacent lines
`r, `s, so that rs is a rotation by 2π/n and hence has order n. The equation (rs)n = 1 can be written as

rsrs . . .︸ ︷︷ ︸
n terms

= srsr . . .︸ ︷︷ ︸
n terms

The element srs is reflection about the line s(`r), which is the other line adjacent to s. It follows that
all reflections can be written in terms of r and s, as s(rs)i for some 1 ≤ i ≤ n and that the elements of
Dn are

Dn = {(rs)i, s(rs)i : 1 ≤ i ≤ n}
and |Dn| = 2n. The element t = rs generates a cyclic subgroup 〈t〉 ' Cn, consisting of all rotations
in Dn, which has index two in Dn. The reflections in Dn are precisely the elements outside of 〈t〉, and
for any reflection r′, we have r′tr′ = t−1.

As with cyclic groups, we can describe the subgroup lattice of Dn. For each divisor m of n, we
have first of all the unique cyclic subgroup Cm ≤ Cn = 〈t〉, as well as n/m copies of Dm obtained
as follows. Index the lines by Z/nZ, and partition them according to the fibers of the natural map
πm : Z/nZ → Z/(n/m)Z. Let D(i)

m be the subgroup of Dn generated by the reflections about lines in
the fiber π−1

m (i). Since this fiber has m equiangular lines, we indeed have D(i)
m ' Dm. As i ranges over

Z/(n/m)Z, we obtain n/m subgroups D(i)
m , all containing the same cyclic subgroup Cm. In particular,

we have n/1 = n subgroups D(i)
1 ' D1, each generated by the reflections about one of the lines.

Finally, if ` | m | n, we have D(j)
` ≤ D

(i)
m iff π−1

` (j) ⊆ π−1
m (i) iff j ≡ i mod n

m
.

The situation forD∞ is similar but simpler. The element t = rs now has infinite order, hence generates
a copy of Z in D∞, and for any reflection r′ we again have r′tr′ = t−1. We leave the subgroups of D∞
to the exercises.

Returning to finite n, we can view Dn as a subgroup of GL2(R). Assume the lines intersect at (0, 0) ∈
R2 and that the reflecting line `1 is the x-axis. The reflection r1 has matrix

r1 =

[
1 0
0 −1

]
.

For 1 ≤ k < n let `k+1 be the line rotated from ` counterclockwise by kπ/n. Then `2 is adjacent to `1

and the rotation (r1r2)k has matrix

(r1r2)k =

[
cos(2kπ/n) − sin(2kπ/n)
sin(2kπ/n) cos(2kπ/n)

]
.

8.4 The quaternion and generalized quaternion groups Q4n

The generalized quaternion groups are best understood as subgroups of the group SL2(C) of 2 × 2
complex matrices with determinant =1. Let T be the subgroup of diagonal matrices in SL2(C). Its
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normalizer N(T ) in SL2(C) consists of two cosets of T :

N(T ) = T ∪ wT, where w =

[
0 −1
1 0

]
.

The finite subgroups of N(T ) are of two types: Those contained in T are cyclic. The generalized
quaternion groups are the finite subgroups of N(T ) which are not contained in T . Let Q < N(T ) be
such a subgroup. Since Q 6< T , it contains an element of the form wt for some t ∈ T . Replacing Q by
s−1Qs, where s2 = t, we may and shall assume that t = 1, so that w ∈ Q. Since w has order four, the
order of Q is divisible by four.

The generalized quaternion group Q4n is the unique subgroup of N(T ) containing w and having order
4n.

To see Q4n explicitly, let ζn = eπi/n, which has order 2n as an element of C×. Then Q4n is generated
by the two matrices

tn =

[
ζn 0
0 ζ−1

n

]
, and w =

[
0 −1
1 0

]
.

Note that tn has order 2n, that w has order four, and we have

wtnw
−1 = t−1, w2 = tn = −I.

Thus, we have
Q4n = {tinwj : 0 ≤ i ≤ 2n− 1, j = 0 or 1},

so that |Q4n| = 4n, as claimed. Note that

〈tn〉 ∩ 〈w〉 = 〈tnn〉 = 〈−I〉,

where −I =

[
−1 0
0 −1

]
. This is the unique element of order two in Q4n, and the subgroup 〈−I〉 is

normal in Q4n, with quotient
Q4n/〈−I〉 ' Dn.

Hence the subgroups of Q4n containing 〈−I〉 are in bijection with the subgroups of Dn. Recall the
subgroups of Dn are cyclic rotations or dihedral. The subgroups of Q4n corresponding to cyclic rota-
tions are cyclic. These are precisely the subgroups of even order in Q4n. The odd-order subgroups are
cyclic and contained in 〈tn〉.

For k = 1 we have Q4 = 〈w〉 ' C4. This is the only generalized quaternion group which is abelian.
Indeed, we have Z(Q4n) = 〈−I〉 when n ≥ 2.

For k = 2 the group Q8 is commonly known as the quaternion group (of order eight), and has different
notation. It is common to write

Q8 = {±1,±i,±j,±k},

where

1 =

[
1 0
0 1

]
, i =

[√
−1 0
0

√
−1

]
, j =

[
0 −1
1 0

]
, k =

[
0

√
−1√

−1 0

]
,

50



which have relations i2 = j2 = k2 = −1 and

ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

The proper subgroups of Q8 are 〈i〉, 〈j〉, 〈k〉, 〈−1〉. We have

〈−1〉 = 〈i〉 ∩ 〈j〉 ∩ 〈k〉

and this subgroup is both the center Z(Q8) and the commutator subgroup [Q8, Q8]. The group Q8 is
the simplest non-abelian group in which every subgroup is normal. It can be shown that any finite
non-abelian group with all subgroups normal is isomorphic to Q8 × A, where A is abelian.

8.5 p-groups, a first look

A finite group G is a p-group if the order of G a power of a prime p.

Each abelian p-group is a direct product G = Cpn1 ×Cpn2 × · · · ×Cpnk of cyclic p-groups, there being
one isomorphism class of such groups for every set of positive integers {n1, . . . , nk}. When all ni = 1,
the group Ck

p = Cp×Cp× · · · ×Cp is called elementary abelian of rank k. The dihedral groups D2n

and generalized quaternion groups Q2n are examples of nonabelian 2-groups.

One cannot hope to classify all p-groups, except those whose orders are small powers of p.

Proposition 8.6 Let p be a prime and let G be a p-group.

1. If |G| = p then G ' Cp.

2. If |G| = p2 then G is abelian. We have G ' Cp2 if G is cyclic and G ' Cp × Cp if G is not
cyclic.

3. If |G| = p3 then either G is one of two nonabelian groups or G is one of Cp3 , Cp × Cp2 or
Cp × Cp × Cp.

Proof: We already noted that part 1 is a consequence of Lagrange’s theorem. We will prove part 2
here, and postpone the proof and a more detailed statement of part 3.

Assume |G| = p2. We have seen in Cof. 2.15 that every p-group has a nontrivial center Z(G). By
Lagrange’s theorem, we have |Z(G)| = p or p2. If |Z(G)| = p then G/Z(G) has order p, hence is
cyclic, so G is abelian, contradicting Z(G) 6= G. Hence G is abelian.

The order of every element ofG also divides p2. IfG has an element of order p2 thenG ' Cp2 . Assume
G has no element of order p2. Then every nonidentity element of G has order p. Choose h, k ∈ G with
h 6= 1 and k /∈ 〈h〉. The subgroups H = 〈h〉 and K = 〈k〉 haver order p and are both normal in the
abelian group G. Now HK is a subgroup of G properly containing H . Since [G : H] = p, it follows
that HK = G. Likewise, H ∩K is a proper subgroup of K, which has order p, so H ∩K = {1}. Now
by Prop. 2.10 we have G ' H ×K ' Cp × Cp. �
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Prop. 2.15 can be extended to prove the converse of Lagrange’s theorem for p-groups. First we need a
lemma.

Lemma 8.7 If A is a finite abelian group whose order is divisible by a prime p then A contains an
element of order p.

Proof: By induction, we may assume the result is true for groups of smaller order. Let b ∈ A have
orderm > 1, and letB = 〈b〉. If p | m then bm/p has order p. Assume p - m. Then p divides |A/B| and
|A/B| < |A|, so A/B has an element of order p, by the induction hypothesis. This element is aB for
some a ∈ A such that a /∈ B, but ap ∈ B. Therefore ap = br for some integer r. Since gcd(p,m) = 1,
we can write r = kp + `m for integers r, `. The element c = ab−k does not belong to B since a /∈ B,
but since A is abelian we have

cp = apb−kp = br−kp = b`m = 1.

Hence c ∈ A has order p. �

As we will see in the next result, the lemma is true without the assumption that A is abelian, but the
proof is not as constructive.

Proposition 8.8 Let G be a finite group of order pr, where p is a prime. Then G has a chain of
subgroups

1 = G0 < G1 < G2 < · · · < Gr−1 < Gr = G

such that for all 0 ≤ i < r we have

1. |Gi| = pi;

2. Gi is a normal subgroup of G and Gi+1/Gi ' Cp;

3. Gi+1/Gi is contained in the center of G/Gi.

Proof: We argue by induction on r. By Cor. 2.15, the center Z(G) is a nontrivial abelian p-group. By
Lemma 8.7, there exists a subgroup G1 ≤ Z(G) of order p. Since G1 is central in G we have G1 / G.
The group G = G/G1 has order pr−1. Applying the induction hypothesis to G, there is a chain of
subgroups

1 = G0 < G1 < G2 < · · · < Gr−2 < Gr−1 = G

such that for all 0 ≤ i < r− 1 we have |Gi| = pi and Gi / G and Gi+1/Gi is contained in the center of
G/Gi.

By the Correspondence Theorem applied to G/G1 there are normal subgroups Gi E G such that

Gi = Gi/G1.

Moreover, the canonical projection G→ G induces isomorphisms

G/Gi
∼−→ G/Gi
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which restrict to isomorphisms
Gi+1/Gi

∼−→ Gi+1/Gi

for each 0 ≤ i < r. It follows that Gi+1/Gi is contained in the center of G/Gi, as claimed. �

Thus, every p-group has a tower of normal subgroups whose quotients are cyclic of order p. Despite
this apparent simplicity, the number of isomorphism classes of groups of order pr grows rapidly with
r, especially for the prime p = 2. Below is a table of the number of 2-groups for exponent r ≤ 10.

|G| number of groups
2 1
22 2
23 5
24 15
25 51
26 267
27 2 328
28 56 092
29 10 494 213
210 49 487 365 422

It has been determined 1 that the total number of all groups of order ≤ 2000 is 49 910 529 484, so over
99% of these groups have order 210.

8.6 Simple groups

A group G is simple if G has no normal subgroups other than {1} and G itself. Such groups have
remarkable properties. For example,

Every homomorphism from a simple group to another group is either injective or trivial.

For if f : G→ G′ is a nontrivial homomorphism from a simple group G into some other group G′ then
f is automatically injective, since ker f is a normal subgroup of G.

Likewise,

If G is nonabelian simple, then the center Z(G) = {1} and the commutator [G,G] = G.

For both Z(G) and [G,G] are normal subgroups of G. As G is nonabelian, we have Z(G) 6= G and
[G,G] 6= {1}, so we must have Z(G) = {1} and [G,G] = G.

By Lagrange’s Theorem, any group of prime order is simple. All other simple groups are nonabelian;
they are extremely rare and interesting. Of the 49 910 529 484 groups of order at most 2000, exactly

1The groups of order at most 2000, Besche et al., AMS Elec.Res.Ann. 2001.
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six are nonabelian simple groups, namely

simple group G |G|
A5 ' PSL2(5) 60

PSL2(7) ' GL3(2) 168
A6 ' PSL2(9) 360

PSL2(8) 504
PSL2(11) 660
PSL2(13) 1092

These small simple groups belong to two families An and PSL2(q) for n ≥ 5 and q ≥ 5 a prime
power. We prove that the groups in these families are simple.

8.6.1 Simplicity of alternating groups

Theorem 8.9 For n ≥ 5 the alternating group An is simple.

Proof: Every element of An is a product of an even number of transpositions. Hence An is generated
by elements of the form (a b)(c d) and (a b)(b c). Now

(a b)(c d) = (a c b)(a c d), and (a b)(b c) = (a b c),

so An is also generated by 3-cycles.

Since n ≥ 5, the centralizer of a 3-cycle in Sn contains a transposition, so this centralizer is not
contained in An. It follows that the 3-cycles form a single conjugacy class in An.

Let N E An be a nontrivial normal subgroup of An. We must show that N = An. For all σ ∈ N and
α ∈ An the commutator σ−1ασα−1 belongs to N , since N E An. We use this procedure to show that
N contains a 3-cycle or a 22-cycle. Since N is a union of conjugacy classes of An, it will follow that
N contains all 3-cycles or 22-cycles and therefore N = An by our previous remarks.

We write elements of N as products of disjoint cycles.

Case 1: Suppose N contains a disjoint product of the form

σ = τ · (a1 a2 . . . ar), r ≥ 4.

Let α = (a1 a2 a3). Then we compute

σ−1ασα−1 = (a1 a3 ar) ∈ N,

so that N contains a 3-cycle in this case.

Case 2: Suppose N contains a disjoint product of the form

σ = τ · (a b c)(d e f).
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Let α = (a b d). Then we compute

σ−1ασα−1 = (a d b f c) ∈ N.

Then case 1 applies, and shows that N contains a 3-cycle.

Case 3: Suppose N contains a disjoint product of the form

σ = τ · (a b c)

where τ is a product of transpositions. Then σ2 = (c b a) so N contains a 3-cycle.

Case 4: Suppose N contains a disjoint product of the form

σ = τ · (a b)(c d),

where τ is a product of transpositions. Since CSn(σ) contains the transposition (c d), it follows that N
also contains

σ′ = τ · (a c)(b d),

which has the same cycle type as σ. Hence N contains

σσ′ = (a b)(c d)(a c)(b d) = (a d)(c b)

Hence N contains all elements of the class [2, 2].

Every nonidentity element of An can be written in one of these four forms. Hence N must contain a
3-cycle or a 22-cycle. �

8.6.2 Simplicity of PSL2(F )

We next prove that the group PSL2(F ) is simple for any field with at least four elements. The proof
depends on a series of lemmas, each interesting in its own right. We work in the group G = SL2(F ),
with the following subgroups and element:

B =

{[
a b
0 a−1

]
: a ∈ F×, b ∈ F

}
, U =

{[
1 b
0 1

]
: b ∈ F

}
, U =

{[
1 0
c 1

]
: c ∈ F

}
,

T =

{[
a 0
0 a−1

]
: a ∈ F×

}
, Z =

{[
1 0
0 1

]
,

[
−1 0
0 −1

]}
= Z(G), w =

[
0 −1
1 0

]
.

Lemma 8.10 (Bruhat Decomposition) We have G = B ∪BwB, a disjoint union.

Proof: A matrix
[
a b
c d

]
∈ G lies outside of B exactly if c 6= 0. In this case,[
a b
c d

]
=

[
c−1 a
0 c

]
·
[
0 −1
1 0

]
·
[
1 dc−1

0 1

]
∈ BwB.

�
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Lemma 8.11 The subgroup B is a maximal proper subgroup of G.

Proof: Suppose H is a subgroup of G properly containing B. Then there exists h ∈ H with h /∈ B.
By Lemma 8.10, we can write h = b1wb2, with bi ∈ B. It follows that w ∈ H , hence BwB ⊂ H , so
H = G. �

Lemma 8.12 The group G is generated by U and U .

Proof: Let H be the subgroup of G generated by U and U . If a ∈ F×, we have[
a 0
0 a−1

]
=

[
1 1
0 1

]
·
[

1 0
a− 1 1

]
·
[
1 −a−1

0 1

]
·
[

1 0
a− a2 1

]
.

Since B = TU , we have B ≤ H . And

w =

[
1 −1
0 1

]
·
[
1 0
1 1

]
·
[
1 −1
0 1

]
,

so w ∈ H . From Lemma 8.10, it follows that H = G. �

Lemma 8.13 If |F | ≥ 4 then SL2(F ) is its own commutator subgroup.

Proof: By Lemma 8.12 it suffices to show that the elements of U and Ū are commutators. This
depends on the fact that T normalizes U and U . Indeed, we have[

a 0
0 a−1

] [
1 b
0 1

] [
a 0
0 a−1

]−1

=

[
1 ba2

0 1

]
, and

[
a 0
0 a−1

] [
1 0
c 1

] [
a 0
0 a−1

]−1

=

[
1 0

ca−2 1

]
.

We get the following commutators[[
a 0
0 a−1

]
,

[
1 b
0 1

]]
=

[
1 b(a2 − 1)
0 1

]
, and

[[
a 0
0 a−1

]
,

[
1 0
c 1

]]
=

[
1 0

c(a−2 − 1) 1

]
.

Now if F has at least four elements, we can find a ∈ F such that a /∈ {0,+1,−1}. For any x ∈ F we
take b = x/(a2 − 1) and c = x/(a−2 − 1), and find that[

1 x
0 1

]
and

[
1 0
x 1

]
are commutators, as claimed. �

Lemma 8.14 The intersection
⋂
g∈G

gB = Z.

Proof: Since Z < B, and Z is central, it is clear that Z < gB for all g ∈ G. Conversely, we have

B ∩ wB = T . Letting v =

[
1 0
1 1

]
∈ U , one checks that T ∩ vB = Z. Hence

⋂
g∈G

gB ≤ Z, proving

equality. �
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Lemma 8.15 Assume that |F | ≥ 4. Let H be a normal subgroup of G = SL2(F ). Then either H ≤ Z
or H = G.

Proof: Since H E G, the product HB is a subgroup of G containing B. By Lemma 8.11 we have
either HB = B or HB = G. If HB = B then H ≤ B. But since H E G, we have H ⊂

⋂
g∈G

gB =
Z.

Suppose HB = G. Then we can write w = hb for some h ∈ H , and b ∈ B. One checks that B
normalizes U and wU = U . It follows that U = wU = hbU =hU . As U and U generate G, we have
then G = HU . By the second isomorphism theorem, we have

G/H = HU/H ' U/U ∩H.

The latter group is abelian since U is abelian. Hence H ≥ [G,G]. But [G,G] = G, as we proved in
Lemma 12.1. Hence H = G, as claimed. �

Now we can prove our result.

Theorem 8.16 If F is a field with at least four elements then the group PSL2(F ) is simple.

Proof: By the Correspondence Theorem, the normal subgroups of PSL2(F ) are the projections of
the normal subgroups of SL2(F ) which contain Z. From Lemma 8.15 it follows that every normal
subgroup of PSL2(F ) is either trivial or all of PSL2(F ). Hence PSL2(F ) is simple. �

Remark: If |F | ≤ 3 then PSL2(F ) is not simple. Indeed, we have

PSL2(2) ' S3, PSL2(3) ' A4.

These are the first two of the “exceptional isomorphisms” discussed in the next section. For n ≥ 3, the
group PSLn(F ) is simple for every field F (see [Lang, XIII.9]).

8.7 Exceptional isomorphisms

The previous two sections exhibit two families of finite simple groups, namely the alternating groups
An for n ≥ 5 and the groups PSL2(q) = PSL2(F ) where F is a finite field with |F | = q ≥ 4. A
small number of groups are common to both families via isomorphisms whose subtlety ranges from
the non-obvious to the miraculous. We list these exceptional isomorphisms, and a few others.

S3 ' GL2(2) = PSL2(2)

A4 ' PSL2(3)

A5 ' PSL2(4) ' PSL2(5)

PSL2(7) ' GL3(2) = PSL3(2)

A6 ' PSL2(9)

A8 ' PSL4(2).

(25)
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The first two, as well as the isomorphism A5 ' PSL2(4), arise easily from the theory of group actions
in the next section. For the remaining exceptional isomorphisms, see sections 10.4.1, 10.4.2, 13.5.2
and ??.

8.7.1 Applications to simple groups

Proposition 8.17 Let G be a simple group of order |G| > 2 and let H be a subgroup of G of index m.
Then G is isomorphic to a subgroup of the alternating group Am. In particular, the order of G divides
1
2
m!.

Proof: The action of G on G/H gives a homomorphism σH : G → Sm which is automatically
injective so G is isomorphic to the image G′ = σH(G). The composition

G
σH−→ Sm

sgn−→ {±1}

cannot be injective since |G| > 2, so it must be trivial. This means that G′ ≤ Am. �

Corollary 8.18 Let G be a nonabelian simple group and let H be a proper subgroup of G. Then
[G : H] ≥ 5.

Proof: We know that [G : H] 6= 2. If [G : H] = 3 then |G| divides 3, so G is abelian, a contradiction.
If [G : H] = 4 then G is a subgroup of A4. The subgroup K < A4 generated by the 22-cycles is
abelian and normal in A4, so G∩K is normal in G. If G∩K = G then G < K so G is abelian, which
it is not. So G ∩K = 1. Then the composition G ↪→ A4 → A4/K is injective. As |A4/K| = 3, we
get same contradiction as before. Thus, we cannot have [G : H] = 4 either. �

The inequality in Cor. 8.18 is sharp. For we have seen in Thm. 8.9 that the alternating group A5 is
simple. And A5 contains A4 with index [A5 : A4] = 5.

9 Finite linear groups

Let F be a finite field, say |F | = q. ThenGLn(F ) = GLn(q) is a finite group. We can use the Counting
Formula to re-compute |GLn(F )| and |Xk| (cf. (22)). First, for n = 1 we have GL1(F ) = F×, so

|GL1(F )| = |F×| = q − 1.

For n > 1 the group GLn(F ) acts transitively on the set Yn of nonzero vectors in F n. The stabilizer of
the vector e1 is the subgroup

Hn =

{[
1 C
0 B

]
: B ∈ GLn−1(F ), C an arbitrary 1× (n− 1) matrix over F

}
.
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Counting the possible choices for B and C and observing that |F n| = qn, we find that

|Yn| = qn − 1, |Hn| = |GLn−1(F )| · qn−1.

The Counting Formula says that

qn − 1 = |Yn| =
|GLn(F )|
|Hn|

=
|GLn(F )|

|GLn−1(F )| · qn−1
.

This gives the recursive formula

|GLn(F )| = qn−1(qn − 1) · |GLn−1(F )|.

and by induction we recover the formula from (22):

|GLn(F )| = qn(n−1)/2(qn − 1)(qn−1 − 1) · · · (q2 − 1)(q − 1). (26)

To simplify this formula, we define the q-factorial

[n!]q =
(qn − 1)(qn−1 − 1) · · · (q2 − 1)(q − 1)

(q − 1)n
.

If we pretend that q is a variable, we have (n!)q → n!, the usual factorial, as q → 1. With this notation,
we have

|GLn(F )| = qn(n−1)/2 · (q − 1)n · [n!]q.

Now to find |Xk| we need only divide by |Hk|. Considering the possible choices for A,B,C in the

element
[
A C
0 B

]
∈ Hk, we find

|Pk| = |GLk(F )| · |GLn−k(F )| · qk(n−k)

= qk(k−1)/2 · (q − 1)k · [k!]q · q(n−k)(n−k−1)/2 · (q − 1)n−k · [(n− k)!]q · qk(n−k)

= qn(n−1)/2(q − 1)n · [k!]q · [(n− k)!]q.

It follows that the number of k-dimensional subspaces of F n is given by

|Xk| =
[n!]q

[k!]q · [(n− k)!]q
,

the q-binomial coefficient. If we pretend that q is a variable, this reduces to the ordinary binomial co-
effiecient

(
n
k

)
as q → 1. In this vague sense, k-element subsets of {1, 2, . . . , n} are like k-dimensional

subspaces of F n over the (nonexistent) “field of one element”, and Sn is like GLn(F ) over this “field”.

All of these formulas came from the Counting Formula. Later we will see other relations between Sn
and GLn(F ), where the field F is arbitrary.
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10 Sylow Theorems and Applications

We have seen that the converse of Lagrange’s Theorem is false, in general: If G is a group and d is
a divisor of |G| then G need not have a subgroup of order d. The simplest example is G = A4 with
|G| = 12, which has no subgroup of order d = 6. Note that 6 is a product of the two smallest distinct
primes. On the other hand, A4 does have proper subgroups of orders 2, 3, 4, which are the other proper
divisors of 12.

10.1 Sylow p-subgroups

A p-subgroup of a finite group G is a subgroup of G whose order is a power of a prime p. By
Lagrange’s theorem, G can have nontrivial p-subgroups only if p divides the order of G. Write the
order as |G| = m · pr, where p - m. A Sylow p-subgroup of G is a p-subgroup P ≤ G having the
maximal order |P | = pr allowed by Lagrange’s theorem. Equivalently, a p-subgroup P ≤ G is a Sylow
p-subgroup exactly when p does not divide the index [G : P ].

Example: Let F be a field with |F | = q, a power of a prime p. We have seen that the group
GLn(F ) = GLn(q) has order

|GLn(q)| = qn(n−1)/2(q − 1)(q2 − 1) · · · (qn − 1).

Let Un(q) ≤ GLn(q) be the subgroup of upper triangular matrices with 1’s on the diagonal. Thus Un(q)
consists of all matrices of the form 

1 ∗ ∗ . . . ∗
0 1 ∗ . . . ∗
0 0 1

. . . ∗
...

...
... . . . ∗

0 0 0 . . . 1

 ,
where the entries “∗” above the diagonal of a matrix in Un(q) can be arbitrary elements of F , so we
have

|Un(q)| = q0+1+2+···+(n−1) = qn(n−1)/2,

which is a power of p. Since p does not divide (q − 1)(q2 − 1) · · · (qn − 1), it follows that Un(q) is a
Sylow p-subgroup of GLn(q).

For general groups it is not obvious that Sylow p-subgroups exist.

Lemma 10.1 Let G be a finite group and let H be a subgroup of G. Assume that G has a Sylow
p-subgroup. Then H has a Sylow p-subgroup.

Proof: Let P be a Sylow p-subgroup ofG and consider theH-orbits onG/P under the action h·gP =
hgP . Since p does not divide the index [G : P ], there exists an H-orbit O ⊂ G/P such that p does not
divide |O|. Let gP ∈ O and let Q be the stabilizer in H of gP .
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For all q ∈ Q we have qgP = gP , which implies that q ∈ gPg−1. Hence Q is contained in the Sylow
p-subgroup gPg−1. By Lagrange’s theorem, Q is a p-group. We chose O so that p does not divide
|O| = [H : Q]. It follows that Q is a Sylow p-subgroup of H . �

Remark: The proof actually shows that if G has Sylow p-subgroups, then one of them meets H in a
Sylow p-subgroup of H .

Theorem 10.2 (Sylow I) Let G be a finite group whose order is divisible by a power pi of a prime p.
Then G has a subgroup of order pi.

Proof: By Prop. 8.8 it suffices to prove that G has a Sylow p-subgroup. Let n = |G|. Then G is
isomorphic to a subgroup of Sn by Cayley’s theorem. And Sn is isomorphic to a subgroup of GLn(p).
Hence G is isomorphic to a subgroup of GLn(p). We have seen in the example above that GLn(p) has
a Sylow p- subgroup. By Lemma 10.1, the group G has a Sylow p-subgroup P . �

Alternate proof: The proof just given is very simple, and is my favorite, but one can object that such
a fundamental fact as Thm. 10.2 should not depend on auxiliary groups like Sn and GLn(p). Here
is another, more intrinsic proof that produces p-subgroups for all 0 ≤ i ≤ r at once. We first need a
lemma about finite sets. For any nonzero integer n, let vp(n) be the highest power of p dividing n.

Lemma 10.3 Let S be a finite set of cardinality mpr, where p is a prime. Let X be the set of subsets
of S of cardinality pr: X = {A ⊂ S : |A| = pr}. Then vp(|X|) = vp(m).

Proof of the lemma: We have

|X| =
(
mpr

pr

)
= m ·

pr−1∏
k=1

[
mpr − k
pr − k

]
.

Let 1 ≤ k ≤ pr − 1 and write k = nps for some integer n not divisible by p, with s = vp(k) < r. Then

mpr − k = mpr − nps = ps(mpr−s − n),

so vp(mp
r − k) = vp(k) does not depend on m. Hence vp(mp

r − k) = vp(p
r − k) and the lemma is

proved.

Now we can prove Thm. 10.2. Let X be the set of subsets of G of cardinality pr and let s = vp(m), so
that vp(|G|) = r + s.

The groupG acts onX by left multiplication: g ·A = gA, for g ∈ G andA ∈ X . Thus,X is partitioned
into G-orbits. By the lemma, vp(|X|) = s. Hence there exists a G-orbit O ⊂ X such that |O| is not
divisible by ps+1. Choose A ∈ O and let GA be the stabilizer of A. That is,

GA = {g ∈ G : gA = A}.

We will prove the theorem by showing that |GA| = pr.
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By the Orbit Counting Theorem, we have

|O| = [G : GA].

Since ps+1 does not divide |O|, it follows that pr must divide |GA|. On the other hand, choose a ∈ A
and let f : GA → A be the function f(g) = ga, which makes sense for g ∈ GA. If f(g) = f(g′) for
g, g′ ∈ GA then ga = g′a so g = g′. Hence f is injective. Since |A| = pr, this shows that |GA| ≤ pr.
It now follows that |GA| = pr, as claimed. �

The next Sylow Theorem asserts that Sylow p-subgroups are unique up to conjugation. The proof of
this also reveals information about the number of Sylow p-subgroups, which we put in the statement.

First we need two lemmas.

Lemma 10.4 Let P be a Sylow p-subgroup of a group G. Then every p-subgroup of the normalizer
NG(P ) is contained in P .

Proof: Let H ≤ NG(P ) be a p-subgroup. Since H normalizes P , the product HP is a subgroup of
NG(P ) and P E HP . Since

HP/P ' H/H ∩ P

is a quotient of the p-group H , and P is a p-group, it follows that HP is a p-group. And P ≤ HP . But
P is a maximal p-subgroup of G, by the definition of Sylow p-subgroup. Hence HP = P , meaning
that H ≤ P . �

Lemma 10.5 Let H be a p-group acting on a finite set X , and let XH = {x ∈ X : h · x = x} be the
fixed-point set of H in X . Then

|XH | ≡ |X| mod p.

Proof: The size |X| of X is the sum of the sizes of the orbits of H in X . If O is an H-orbit in X
and |O| ≥ 1 then |O| is a power of p, since H is a p-group. In this case |O| ≡ 0 mod p. Hence |X|
is congruent modulo p to the number of orbits consisting of one element only. That is, |X| ≡ |XH |
mod p. �.

Now we can state and prove the second Sylow theorem.

Theorem 10.6 (Sylow II) Let G be a finite group of order mpr, where p is a prime not dividing m.
Then the following hold.

1. Any two Sylow p-subgroups of G are conjugate. That is, if P and Q are two subgroups of G of
order pr then there exists g ∈ G such that gPg−1 = Q.

2. The number np of p-Sylow subgroups of G divides m and is of the form 1 + kp where k is an
integer.

3. Every p-subgroup of G is contained in a Sylow p-subgroup of G.
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Proof: Let X = {P ≤ G : |P | = pr} be the set of Sylow p-subgroups of G. Then G acts on X by
conjugation. For this action we have g · P = gPg−1 for g ∈ G and P ∈ X , and the stabilizer of P is
the normalizer NG(P ).

Consider the fixed points of a Sylow p-subgroup P acting on X by conjugation. I claim that

XP = {P}. (27)

That is, I claim that P normalizes no other Sylow p-subgroup but itself. For suppose Q ∈ XP is any
fixed point of P in X . This means P ≤ NG(Q), so that P is p-subgroup of the normalizer of the Sylow
p-subgroup Q. By Lemma 10.4, we have P ≤ Q, hence P = Q since both P and Q have order pr.
This proves (27).

Now let P ∈ X and letO = {gPg−1 : g ∈ G} be theG-orbit of P inX . By (27), we haveOP = {P}.
From Lemma 10.5 we have |O| ≡ |OP | mod p. Since |OP | = 1, this means that

|O| ≡ 1 mod p. (28)

I claim that that X = O. Suppose not. Then there exists Q ∈ X with Q /∈ O. Applying (27) to
the Sylow p-subgroup Q, we have XQ = {Q}. Since Q /∈ O, it follows that OQ is empty. Applying
Lemma 10.5 to the action of the p-group Q on the set O, we have

|O| ≡ |OQ| = 0 mod p. (29)

This contradicts equation (28). Hence Q cannot exist and we have X = O.

Now equation (28) says that |X| ≡ 1 mod p. And since X is a single orbit, the Orbit Counting
Formula says that

np = |X| = [G : NG(P )] = [G : P ]/[NG(P ) : P ] = m/[NG(P ) : P ],

or
m = [NG(P ) : P ] · np,

so np | m. Thus, items 1 and 2 are proved.

For item 3, let H be any p-subgroup of G. Then |XH | ≡ |X| ≡ 1 mod p, by Lemma 10.5 again and
item 2 which has been proved. It follows that XH is nonempty. This means H ≤ NG(P ) for some
P ∈ X . By Lemma 10.4 again, we have H ≤ P . �

From item 1 of Thm. 10.6 we get the following condition for a Sylow p-subgroup to be normal.

Corollary 10.7 A Sylow p-subgroup ofG is normal inG if and only if it is the unique Sylow p-subgroup
of G.

It follows from Thm. 10.6 that the order of G may be written as

|G| = pr · ν · (1 + kp), (30)
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where
pr = |P |, ν = |NG(P )/P |, 1 + kp = [G : NG(P )].

Of course r, ν, k all depend on p, and p - ν. Let us call (30) the p-factorization of |G|. Besides giving
|G|, it displays |P | = pr and |NG(P )| = pr · ν, as well as np = 1 + kp. We have k = 0 if and only if
P E G.

10.1.1 Small examples.

ForG = A4, S4, A5, S5, SL2(7),PSL2(7), the p-factorizations for each prime p dividing |G| are shown.

A4 :
pr · ν · (1 + pk) NG(P )
3 · 1 · (1 + 3) C3

22 · 3 · (1 + 0) A4

S4 :
|pr · ν · (1 + pk) NG(P )

3 · 2 · (1 + 3) S3

23 · 1 · (1 + 2) D4

A5 :

pr · ν · (1 + pk) NG(P )
5 · 2 · (1 + 5) D5

3 · 2 · (1 + 3) S3

22 · 3 · (1 + 2 · 2) A4

S5 :

pr · ν · (1 + pk) NG(P )
5 · 4 · (1 + 5) F20

3 · 4 · (1 + 3 · 3) S3 × S2

23 · 1 · (1 + 2 · 7) D4

The normalizer NS5(P ) of the Sylow 5-subgroup P = 〈(1 2 3 4 5)〉 in S5 is generated by P and the 4-
cycle which squares (1 2 3 4 5) via conjugation, namely (2 3 5 4). It is called F20 in honor of Frobenius,
although Galois discussed it at length much earlier. One can think of F20 as the ax+ b-group over the
field of five elements, isomorphic to{[

a b
0 1

]
: a ∈ (Z/5Z)×, b ∈ Z/5Z

}
,

which corresponds to a Borel subgroup of PGL2(5) under the isomorphism S5 ' PGL2(5).

SL2(7) :

pr · ν · (1 + pk) NG(P )
7 · 6 · (1 + 7) G21 × C2

3 · 4 · (1 + 3 · 3) C3 o C4

24 · 1 · (1 + 2 · 10) Q16

PSL2(7) :

pr · ν · (1 + pk) NG(P )
7 · 3 · (1 + 7) G21

3 · 2 · (1 + 3 · 3) S3

23 · 1 · (1 + 2 · 10) D4

Here G21 is the unique nonabelian group of order 21 (see Prop. 14.6) realized here as the subgroup of
the upper-triangular matrices in SL2(7) whose diagonal entries have odd order. The group C3 o C4 is
the nonabelian group of order 12 other than A4 and Q16 is the generalized quaternion group of order
16 (see 8.4).

10.1.2 Groups of order pq

We can use Sylow’s theorems to classify groups of order pq, where p and q are distinct primes. Assume
p < q and let P,Q be Sylow p- and q- subgroups of G, respectively. Consider the q-factorization
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qp = q · ν · (1 + qk). Since p is prime and p < q we must have k = 0 and ν = p. Hence Q E G
and QP is a subgroup of G, with Q ∩ P = {1} because the orders of P,Q are relatively prime. Since
QP/P ' Q/Q∩P = Q, it follows that |QP | = pq, so QP = G. Therefore G is a semidirect product:
G = Qo P .

The structure of G is now completely determined by the homomorphism

α : P → (Z/qZ)× given by xyx−1 = yα(x),

where x ∈ P and y ∈ Q. For if y generates Q then every element g ∈ G can be uniquely expressed as
g = yb · x, for b ∈ Z/qZ and x ∈ P , and the product of two such elements is

(yb · x)(yb
′ · x′) = yb · (xyb′x−1) · xx′ = yb · yb′α(x) · xx′ = yb+b

′α(x) · xx′.

If α is trivial then G is abelian and G = Q× P ' Cpq.

Suppose α is nontrivial. Then α is injective, since p is prime, and we must have q ≡ 1 mod p. The
group (Z/qZ)× is cyclic of order q − 1, hence has a unique subgroup Ap of order p, and we have
α(P ) = Ap.

Let Gpq be the following subgroup of the ax+ b-group over Z/qZ:

Gpq =

{[
a b
0 1

]
: a ∈ Ap, b ∈ Z/qZ

}
.

The function ϕ : G→ Gpq defined by

ϕ(yb · x) =

[
α(x) b

0 1

]
is clearly bijective. In fact it is a group homomorphism, for we have

ϕ(ybx·yb′x′) = ϕ(yb+b
′α(x)·xx′) =

[
α(xx′) b+ b′α(x)

0 1

]
=

[
α(x) b

0 1

]
·
[
α(x′) b′

0 1

]
= ϕ(ybx)·ϕ(yb

′
x).

Hence ϕ is an isomorphism G ' Gpq. To summarize, we have shown the following.

Proposition 10.8 Let G be a group of order pq where p, q are primes with p < q.

1. If G is abelian then G ' Cpq is cyclic of order pq.

2. If G is nonabelian then q ≡ 1 mod p and G ' Gpq.

For example the two groups of order 2q, where q is an odd prime, are C2q and the dihedral group
Dq ' G2q.
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10.2 Sylow subgroups in GLn and flag varieties

Let F be a finite field with |F | = q, a power of a prime p and let G = GLn(q). We have seen that the
subgroup

U = Un(q) =


1 ∗ ∗ . . . ∗
0 1 ∗ . . . ∗
0 0 1

. . . ∗
...

...
... . . . ∗

0 0 0 . . . 1

 ≤ G (31)

is a Sylow p-subgroup of G. The normalizer of U is the Borel subgroup B appearing in the Bruhat
decomposition:

NG(U) = B =


× ∗ ∗ . . . ∗
0 × ∗ . . . ∗
0 0 × . . . ∗
...

...
... . . . ∗

0 0 0 . . . ×

 ,
where the entries ∗ are arbitrary in F as before, and the diagonal entries × are nonzero elements of F .
We have B = U o T , where T is the diagonal subgroup of G, and |B| = qn(n−1)/2 · (q − 1)n. The
p-factorization of |G| is therefore

|G| = qn(n−1)/2 · (q − 1)n · (qn − 1) · · · (q2 − 1)(q − 1)

(q − 1)n
.

We observe that

(qn − 1) · · · (q2 − 1)(q − 1)

(q − 1)n
=

n∏
k=1

(1 + q + · · ·+ qk−1) ≡ 1 mod p,

as guaranteed by Sylow’s theorem. This is the number of Sylow p-subgroups of G, of which U is only
one. Let X be the set of all Sylow p-subgroups of G. By the Main Theorem of Group Actions, the
mapping

G/B −→ X, sending gB 7→ gUg−1

is a G-equivariant bijection. The set X involves the complete projective geometry of the vector space
V = F n, as I will explain.

For n = 2, we have seen that B is the stabilizer of the line `o = Fe1 in V , so in this case G/B is also
identified with the set P(V ) of all lines ` ⊂ V . Thus we have a G-equivariant bijective correspondence

P(V ) 3 ` = g · `o ↔ gB ↔ gUg−1 = U` ∈ X

between lines in V and Sylow p-subgroups of G = GL2(q). Given a line `, the subgroup U` is the set

of elements in G which act trivially on both ` and V/`. All elements of U` have the form
[
1 ∗
0 1

]
with

respect to any basis {v1, v2} of V with v1 ∈ `, but not all elements of U` have this form with respect to
the original basis {e1, e2}, unless ` = `o.
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For n = 3 we have both lines and planes in V = F 3, and a given plane may or may not contain a given
line. A flag in V is a pair (`, π), where ` is a line contained in a plane π ⊂ V . Such configurations
comprise the complete projective geometry of V . Let F(V ) be the set of all flags in V . The group
G = GL3(F ) acts on F(V ) via g · (`, π) = (g · `, g · π). This G-action is transitive and B is the
stabilizer of the flag (`o, πo), where `o = Fe1 and πo = Fe1 ⊕ Fe2. Thus we have a G-equivariant
bijective correspondence

F(V ) 3 (`, π) = g · (`o, πo) ↔ gB ↔ gUg−1 = U(`,π) ∈ X

between flags in V and Sylow p-subgroups of G = GL3(q). Given a flag (`, π), the subgroup U(`,π)

is the set of elements in G which preserve ` and π and act trivially on `, π/` and V/π. All elements

of U(`,π) have the form

1 ∗ ∗
0 1 ∗
0 0 1

 with respect to any basis {v1, v2, v3} of V for which v1 ∈ ` and

v1, v2 ∈ π, but not all elements of U`,π will have this form with respect to the original basis {e1, e2, e3},
unless ` = `o and π = πo.

For general n ≥ 2, a flag in V = F n is a sequence of subspaces

f = (V0, V1, . . . , Vn−1, Vn), where {0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V,

and dimVi = i for all 0 ≤ i ≤ n. The flag variety of G is the set F(V ) of all flags f ∈ V . The action
of G = GLn(q) on F(V ) permutes the flags in V . That is, we have

g · (V0, V1, . . . , Vn) = (V0, gV1, . . . , gVn−1, Vn).

This G-action is transitive and B is the stabilizer of the flag

fo = (0, Fe1, Fe1 ⊕ Fe2, · · · , Fe1 ⊕ Fe2 ⊕ · · · ⊕ Fen−1, V ).

Thus we have a G-equivariant bijective correspondence

F(V ) 3 f = g · fo ↔ gB ↔ gUg−1 = Uf ∈ X

between flags f ∈ V and Sylow p-subgroups Uf ≤ G = GLn(q). Given a flag f = (V0, V1, . . . , Vn),
the subgroup Uf is given by

Uf = {g ∈ G : gVi = Vi and g acts trivially on Vi/Vi−1 for all ≤ i ≤ n}.

All elements of Uf have the form (31) with respect to any basis {v1, v2, . . . , vn} of V for which Vi =
Fv1 ⊕ · · · ⊕ Fvi, but not all elements of Uf have this form for the original basis {e1, . . . , en} unless
f = fo.

The total number of flags in V is

|F(V )| = |G/B| = (qn − 1) · · · (q2 − 1)(q − 1)

(q − 1)n
,

which we have seen to be a polynomial Pn(q) in q of degree n(n− 1)/2.
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For any field F there is still a complete geometry of flags in V , defined in the same way. Let us take
F = C, with G = GLn(C) and U,B defined as above for the field F = C. The polyomial Pn(q) still
counts something about G/B, but not something so elementary as points, because now the flag variety
G/B is infinite.

In fact, G/B is a complex projective variety of dimension n(n − 1)/2. 2 Any smooth complex pro-
jective variety X of dimension d has cohomology groups H i(X) for i = 0, 1, . . . , 2d which are finite
dimensional complex vector spaces whose dimensions dimH i(X) are called the Betti numbers of
X . For example if X = Pd(C) then dimX = d and the Betti numbers are dimH i(X) = 1 for
i = 0, 2, 4, . . . , 2d and dimH i(X) = 0 for all other i.

It turns out that the polynomial Pn(q) above encodes the Betti numbers of G/B: Regarding q as a
variable, we have

n(n−1)/2∑
i=0

dimH2i(G/B)qi = Pn(q) =
(qn − 1) · · · (q2 − 1)(q − 1)

(q − 1)n
.

The observation that Betti numbers of G/B over C are determined by the number of points on G/B
over finite fields is deep; it led to Weil’s conjectures, which were eventually proved by Deligne.

10.3 The Burnside Transfer Theorem

If the order of a finite group G factors as |G| = mpr with p a prime not dividing m, it is natural to ask
if the group G itself has a corresponding factorization as G ' MṖ , where P is a Sylow p-subgroup
of G and M ≤ G has order m. For example if G = Cmpr is cyclic then G ' Cm × Cpr . Since Sylow
p-subgroups are not normal in general groups, the only reasonable hope would be that M E G and
G 'M o P . Such a subgroup M , if it exists, is called a normal p-complement.

Normal p-complements do not always exist. For example, S4 has no normal p-complement for either
p = 2 or p = 3.

Lemma 10.9 Suppose |G| = mpr, where p - m. Then G has a normal p-complement if and only if the
elements of G of order prime to p form a subgroup of G.

Proof: Suppose the elements of G of order prime to p form a subgroup M ≤ G. Then M is normal in
G, since conjugation preserves orders of elements. Hence MP 'M oP is a subgroup of G. To show
that MP = G, we must show that |M | = m. By Cauchy’s theorem, p does not divide |M | since M
has no elements of order p. It therefore suffices to show that G/M is a p-group. If this fails, then G/M
has an element xM of order d > 1, where p - d. Then xd ∈ M , so xd has order k, where p - k. That
means the order of x divides kd, and p - kd, so x ∈M , a contradiction. Hence G/M is a p-group, and
G = MP as claimed.

2A complex projective variety is a closed subset of some projective space PN (C) defined by polynomial equations. It
turns out that G/B ⊂ PN (C) for N = 2n(n−1)/2 − 1.
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Conversely, let M be a normal subgroup of G of order m. Since p - m, every element of M has order
prime to p. Suppose g ∈ G has order k, with p - k. Then the order of gM in G/M has order dividing
k. But G/M is a p-group, so gM = 1, meaning that so g ∈ M . Therefore M is exactly the set of
elements of G of order prime to p, and this set is a subgroup of G. �

Example 1: Let G = Dn be dihedral of order 2n. Write n = m2r, where m is odd. Let M ' Cm be
the subgroup generated by a rotation of order m. Then M is a normal 2-complement in G. The Sylow
2-subgroups are isomorphic to D2r , and we have

Dn ' Cm oD2r ,

where the reflections in D2r act by inversion on Cm.

Example 2: Let G = A4. The subgroup of elements of order prime to 2 forms a subgroup K '
C2 × C2, and A4 = K o P , where P is a Sylow 3-subgroup, acting on M via an element of order
three in Aut(M) = GL2(2). Thus, K is a normal 3-complement. However, A4 has no normal 2-
complement, since the elements of order three lie in no proper subgroup of A4.

Having a normal p-complement is equivalent to having a surjective homomorphism

f : G −→ P.

In general, a group G does not admit nontrivial homomorphisms onto a proper subgroup H ≤ G.
Suppose, however that H is abelian, and let n = [G : H]. Let x1, x2, . . . , xn be representatives for the
cosets in G/H , and let σ : G→ Sn be the action of G on G/H . Thus, each g ∈ G gives a permutation
σg ∈ Sn such that

gxiH = xσg(i)H, ∀ 1 ≤ i ≤ n.

This means that for each i we have an element hi(g) ∈ H such that

gxi = xσg(i)hi(g).

Thus, for each i we have a function hi : G→ H given by

hi(g) = x−1
σg(i) · g · xi.

Each individual function hi is not a group homomorphism. However, we have

Lemma 10.10 If H is an abelian subgroup of G then the function T : G→ H given by

T (g) =
n∏
i=1

hi(g)

is a group homomorphism which does not depend on the choice of coset representatives {xi}.

Proof: Let {x′i} be another set of coset representatives for G/H . Then x′i = xiki for some elements
ki ∈ H . The new functions h′i(g) are given by

h′i(g) = (x′σg(i))
−1 · g · x′i = k−1

σg(i)x
−1
σg(i) · g · xiki = k−1

σg(i)hi(g)ki = hi(g)k−1
σg(i)ki,
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since H is abelian. Taking the product we get
n∏
i=1

h′i(g) =
n∏
i=1

hi(g)k−1
σg(i)ki = T (g),

since
∏
kσg(i) =

∏
ki. Hence T (g) is independent of the choice of coset representatives {xi}.

If g, y are two elements of G, we have

T (gy) =
n∏
i=1

x−1
σgy(i)gyxi

=
n∏
i=1

(x−1
σgy(i)gxσy(i)) · (x−1

σy(i)yxi)

=
n∏
i=1

(x−1
σg(σy(i))gxσy(i)) · T (y)

=
n∏
i=1

(x−1
σg(i)gxi) · T (y) = T (g)T (y),

again since the product over σy(i) equals the product over i. Hence T : G→ H is a homomorphism.

�

The homomorphism T in Lemma 10.10 is called the Transfer map. We can compute T (g), for fixed
g ∈ G, as a product over double cosets as follows. Let Γ = 〈g〉 and choose a Γ-orbit O = Γ · xH in
G/H , and set a = |O|. Let x1 = x, x2 = gx, x3 = g2x, . . . , xa = ga−1x. Then

h1 = h2 = · · · = ha−1 = 1 and ha = x−1gxa = x−1gax.

The last term is the only contribution fromO to the product in T (g). Note that if Γ acts freely onO then
ga = 1, so x−1gax = 1. Doing this for each orbit, we find that if xH, yH, zH, . . . are representatives
of the distinct Γ-orbits on G/H , having sizes a, b, c, . . . , then

T (g) = (x−1gax) · (y−1gby) · (z−1gcz) · · · .

Each term in parentheses lies in the abelian group H , so the product can be taken in any order, and the
only terms contributing to T (g) come from Γ-orbits which are not free.

Now suppose p is a prime dividing |G| and P is a Sylow p-subgroup of G. The center Z(P ) is
nontrivial, and abelian, so we have the transfer homomorphism

T : G −→ Z(P ).

Lemma 10.11 If x, y ∈ Z(P ) are conjugate in G, then they are conjugate in NG(P ).

Proof: If xg = y, then y ∈ Z(P ) ∩ Z(P )g = Z(P ) ∩ Z(P g), so P, P g ≤ CG(y). Thus, P and P g are
two Sylow p-subgroups of CG(y), so there is h ∈ CG(y) such that P = P gh. Then gh ∈ N(P ) and
xgh = yh = y, so x and y are conjugate in N(P ), as claimed. �

70



Remark: Two elements x, y in a subgroup H ≤ G are fused in G if they are conjugate in G, but not
necessarily conjugate by an element of NG(H). A result like Lemma 10.11 is therefore said to control
fusion.

Now, if g ∈ Z(P ), each term x−1gax in T (g) is conjugate in G to ga hence is conjugate in NG(P ) to
ga, by Lemma 10.11.

Let us now assume that that
NG(P ) = CG(P ).

This is equivalent to assuming that P = Z(P ) (that is, P is abelian) and that the conjugation action of
NG(P ) on P is trivial. Consider the transfer map

T : G −→ P.

Then x−1gax = ga for each term in T (g), so that

T (g) = ga+b+c+··· = gm,

where a, b, c, . . . are the sizes of the P -orbits on G/P and m = [G : P ]. Since p - m, the map g 7→ gm

is an automorphism of the abelian group P . Hence the transfer map T : G→ P is surjective; we even
have T (P ) = P . This proves the following.

Theorem 10.12 (Burnside Transfer Theorem) LetG be a finite group and let P be a Sylow p-subgroup
of G such that NG(P ) = CG(P ). Then G has a normal p-complement. In fact, G = M o P , where M
is the kernel of the transfer map T : G→ P .

Example 3: Let G be a group of order 728 = 23 · 7 · 13 and consider the 7-factorization

|G| = 7 · ν · (1 + 7k).

Assume the Sylow 7-subgroups of G are not normal in G. Then, since n7 = 1 + 7k divides 8 · 13 and
k > 0, we must have n7 = 8. Hence |NG(P )| = 7 · 13. Since 7 6≡ 1 mod 13, it follows from Prop.
14.6 that NG(P ) is abelian, so that NG(P ) = CG(P ). Hence G contains a normal 7-complement M of
order 8 · 13.

Corollary 10.13 Let p be the smallest prime dividing |G|. If the Sylow p-subgroups in G are cyclic,
then G has a normal p-complement.

Proof: Let P be a Sylow p-subgroup of G and assume that P is cyclic of order pr. Then

NG(P )/CG(P ) ≤ Aut(P ) ' (Z/prZ)×.

The latter group has order pr−1(p − 1). Since P is abelian, we have P ≤ CG(P ), so that the order of
NG(P )/CG(P ) is prime to p, hence must divide p− 1. But p is the smallest prime dividing |G|, so no
prime can divide NG(P )/CG(P ). Hence NG(P ) = CG(P ) and G has a normal p-complement, by the
Burnside Transfer Theorem. �
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Corollary 10.14 Suppose |G| = p1 ·p2 · · · pk is a product of distinct primes, ordered so that p1 > p2 >
· · · > pk. Let Pi be a Sylow pi-subgroup of G for each i. Then P1P2 · · ·Pi is a normal subgroup of
Pi+1 for each i = 1, . . . , k − 1. In particular, we have G = P1P2 · · ·Pk.

Proof: Each Pi is cyclic. By Cor. 10.13 the Sylow pk-subgroup Pk has a normal complement M of
order p1 · p2 · p3 · · · pk−1, so G = M o Pk. Repeat with G replaced by M , etc. �

Corollary 10.15 Let p be the smallest prime dividing |G|. If the Sylow p-subgroups in G are iso-
morphic to Cp × Cp then either G has a normal p-complement or the following holds: p = 2 and
|NG(P )/CG(P )| = 3 and G has a unique conjugacy class of elements of order two.

Proof: The idea is similar to that of Cor. 10.13, so we sketch the proof and leave the details as an
exercise. In this situation we have

NG(P )/CG(P ) ↪→ Aut(P ) = GL2(p),

which leads to |NG(P )/CG(P )| dividing p+ 1. If NG(P ) 6= CG(P ) then p = 2 and the result follows
from Lemma 10.11. �

The second possibility in Cor. 10.15 occurs for the alternating group A5.

10.4 Simple groups

The Sylow and Burnside Transfer Theorems can be used to narrow the possible orders of small simple
groups, and to prove uniqueness of simple groups of a given order.

Throughout this section P is a Sylow p-subgroup of a simple group G with p-factorization

|G| = pr · ν · (1 + pk),

where ν = [NG(P ) : P ] and 1 + pk = np = [G : NG(P )].

The first lemma is a variant of the Burnside Transfer Theorem with a weaker hypothesis, and weaker,
but still useful result.

Lemma 10.16 If P is abelian then no non-identity element g ∈ P is centralized by NG(P ).

Proof: The proof of Thm. 10.12 shows that the transfer T : G → P is nontrivial on any non-identity
element of P which is centralized by NG(P ). �

Lemma 10.17 We have k ≥ 1. If ν = 1 then r ≥ 3.

Proof: If k = 0 then G has a normal Sylow p-subgroup. If r ≤ 2 then the Sylow p-subgroups P ≤ G
are abelian, hence ν ≥ 2 by Lemma 10.16. �
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Lemma 10.18 If k = 1 then r = 1 and ν | (p− 1).

Proof: Let X be the set of Sylow p-subgroups of G. The action of G on X embeds G ↪→ Sp+1. Since
p2 - (p+ 1)! we have r = 1.

The condition k = 1 also implies that P is transitive on X − {P}. If g ∈ CG(P ) fixes some Q ∈
X − {P}, then gxQ = xQ for all x ∈ P , so g is trivial on X , hence g = 1, since G is simple.
Hence CG(P ) acts freely on X − {P}, so CG(P ) = P and NG(P )/P = NG(P )/CG(P ) embeds in
Aut(P ) ' (Z/pZ)×. Therefore ν | (p− 1). �

We study the minimal case:

Proposition 10.19 Let G be a simple group of order p · 2 · (1 + p), where p is a prime. Then this is the
p-factorization of G and we have

1. The normalizer of a Sylow p-subgroup of G is dihedral of order 2p.

2. p ≡ 5 mod 24.

Proof: Note that p > 2 since no group of order 12 is simple. Hence vp(|G|) = 1, so the p-factorization
of |G| is p · ν · (1 + kp) for some ν ≥ 2 and k ≥ 1. Thus we have 2 · (1 + p) = ν · (1 + kp), which
implies ν = 2 and k = 1.

Now N(P )/P is the unique subgroup of order two in Aut(P ) = Cp−1, hence acts by inversion on P .
This proves that N(P ) ' Dp. More precisely, we have N(P ) = 〈a〉 o 〈s〉 where a has order p and s
has order two and sas = a−1. Moreover, N(P ) contains p involutions aisa−i, for 1 ≤ i ≤ p.

The set X of Sylow p-subgroups of G has cardinality |X| = np = p+ 1 and the conjugation action of
G on X gives a homomorphism

σ : G→ Sp+1

whose image lies in Ap+1 since G is simple.

Since σ(a) normalizes P and no other Sylow p-subgroup, the cycle type of σ(a) is [p, 1]. This element
generates its own centralizer in Sp+1. We number the elements of X so that σ(a) = (1 2 . . . p). This
element is inverted by the involution τ = (1 p)(2 p − 1) · · · ((p − 1)/2 (p + 3)/2), as well as the
involution σ(s) ∈ σ(G). It follows that τ−1 · σ(a) ∈ σ(P ), so τ ∈ σ(P ) ⊂ Ap+1. It follows that p ≡ 1
mod 4.

Now the 2-factorization of |G| is
22 · ν2 · (1 + 2k2).

And a Sylow 2-subgroup Q is isomorphic to C2×C2. The centralizer C(s) of an involution s ∈ N(P )
must permute its two fixed points {P, P1} on X , but s generates its own centralizer in N(P ), so C(s)
acts transitively on {P, P1}. Hence |C(s)| = 4 and C(s) = Q is a Sylow 2-subgroup of G and
C(Q) = Q.
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The quotient N(Q)/Q is a nontrivial subgroup of Aut(P ) = GL2(2) of order three. Hence N(Q) '
A4, acting transitively on Q − {1}, so G has exactly one conjugacy class of involutions and there are
p(p+ 1)/2 of them. Also G has

n2 = p

(
p+ 1

6

)
Sylow 2-subgroups. In particular, we must have p ≡ 2 mod 3.

Having established that
p ≡ 1 mod 4 and p ≡ 2 mod 3,

we conclude from the Chinese Remainder theorem that p ≡ 5 mod 12.

Each of the
(
p+1

2

)
involutions in G can be conjugated into Q and all involutions in Q are conjugate

by N(Q). Since Q is the full centralizer of its involutions, it follows that s can normalize no other
2-Sylow but Q, hence s has cycle type 12(n2−1)/2 on the set of 2-Sylows, so (n2−1)/2 is even. Writing
p = 12k + 5, it follows that (n2 − 1)/2 = (3k + 2)(4k + 1) is even, so k is even and p ≡ 5 mod 24.

�

If p = 5 such a simple group exists, namely A5 has 5-factorization

|A5| = 60 = 5 · 2 · (1 + 5).

Perhaps this is the only simple group of order 2p(p+1). For the next possibility p = 29 we would have

|G| = 29 · 2 · (1 + 29) = 5724,

whose 5-factorization shows that G is not simple.

10.4.1 The simple group of order 60

The smallest group order divisible by three primes p < q < r for which the Sylow p-subgroup is not
cyclic is 22 · 3 · 5 = 60. We have proved that such a simple group exists, namely the alternating group
A5. We now prove that this simple group is the unique one of its order.

Corollary 10.20 Any simple group G of order 60 is isomorphic to the alternating group A5.

Proof: The 2-factorization is 60 = 22 · ν · (1 + 2k), so ν = 3 or ν = 5. But a Sylow 2-subgroup
P ≤ G is isomorphic to C2 × C2, by Prop. 10.13, so Aut(P ) = GL2(2) has order six. Hence ν = 3,
and n2 = 5, giving an injective homomorphism ϕ : G ↪→ S5, whose image is contained in A5, since G
is simple. Since G and A5 have the same order, ϕ is an isomorphism G ' A5. �

The group PSL2(5) has order 5 · (52 − 1)/2 = 60 and is simple. See Thm. 8.16. Hence Cor. 10.20
implies that

PSL2(5) ' A5. (32)
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An explicit isomorphism
PGL2(5) ' S5 (33)

which restricts to an isomorphism (32) may be obtained as follows.

The group PGL2(5) acts faithfully by fractional transformations ax+b
cx+d

on the projective space P1(5) =
F ∪ {∞} over the field F of five elements. Thus, PGL2(5) ↪→ S6 and elements of PGL2(5) may be
regarded as permutations of {∞, 0, 1, 2, 3, 4}. From the Bruhat decomposition, PGL2(5) is generated
by three elements a, b, w, where

a(x) = 2x, b(x) = x+ 1, w(x) = 1/x

as fractional transformations. As permutations, we have

a = (1 2 4 3), b = (0 1 2 3 4), w = (∞ 0)(2 3).

Consider the 222 cycle π0 = (∞ 0)(1 4)(2 3) ∈ S6. This is the unique 222-cycle fixed under conjuga-
tion by both a and w, which follows from the fact that 1 + 4 = 2 + 3 = 0. We take the conjugates of
π0 under b, obtaining π1, π2, π3, π4, where πi = biπ0b

−i. Explicitly, we have 3

π0 = (∞ 0)(1 4)(2 3)

π1 = (∞ 1)(2 0)(3 4)

π2 = (∞ 2)(3 1)(4 0)

π3 = (∞ 3)(4 2)(0 1)

π4 = (∞ 4)(0 3)(1 2).

The set Π = {πi : i ∈ Z/5Z} is closed under conjugation by all of PGL2(5). To see this, we note first
that Π is closed under b by construction, and since aπ0a

−1 = π0, it follows that aπia−1 = π2i. So far
we could have made similar 2k-cycles for any prime p = 2k + 1. But since p = 5, it happens that w
interchanges π1 ↔ π3 and π2 ↔ π4. As π0 has been chosen to be fixed by w, it follows that Π is indeed
closed under conjugation by PGL2(5), so we have a homomorphism ϕ : PGL2(5)→ S5 sending

a 7→ (1 2 4 3)

b 7→ (0 1 2 3 4)

w 7→ (1 3)(2 4).

Since PSL2(5) is simple, it follows that ϕ is injective, hence is an isomorphism by orders, and it must
restrict to an isomorphism PSL2(5)

∼−→ A5.

10.4.2 The simple group of order 168

Proposition 10.21 Let G be a group of order 168 = 7 · 3 · 8 such that no Sylow subgroup of G is
normal in G. Then G ' PSL2(7).

3As an aside, note that these 222-cycles partition the 15 transpositions of S6 into five sets of three.
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Proof: 4 The idea is to find a copy of the Bruhat decomposition in G and use this to determine the
multiplication table. For p ∈ {2, 3, 7}, let np be the number of Sylow p-subgroups of G.

The 7-factorization of G has the form 7 · ν · (1 + 7k) = 7 · 24. Since n7 > 1, we must have n7 = 8.
Let P be a Sylow 7-subgroup. Its normalizer H = NG(P ) has order |H| = 21, and H = PQ, where
Q is a Sylow 3-subgroup of G contained in H .

(i) H is a maximal proper subgroup of G.
Suppose H ≤ K ≤ G. Then H = NK(P ), so there are [K : H] Sylow 7-subgroups of K and
[K : H] = 1 + 7` divides [G : H] = 8. Hence [K : H] = 1 or 8, meaning K = H or K = G.

(ii) H is the unique nonabelian group of order 21
If H were abelian, we would have H ≤ NG(Q) 6= G, forcing H = NG(Q) by maximality. But then
n3 = [G : H] = 8, which is impossible since 8 6≡ 1 mod 3. Therefore H is nonabelian. We have seen
there is a unique nonabelian group of order 21; it is isomorphic to a Borel subgroup of PSL2(7).

(iii) G has 28 Sylow 3-subgroups
We have seen that Q is not normal in H . Since [H : Q] = 7 is prime, it follows that NH(Q) = Q, so
H has 7 Sylow 3-subgroups, any two of which generate H . If these were all of the Sylow 3-subgroups
of G then they would generate a normal subgroup of G, implying H / G. But H has only one Sylow
7-subgroup, and G has a Sylow 7-subgroup not contained in H , contradicting the conjugacy of Sylow
7-subgroups. Hence n3 > 7, with n3 ≡ 1 mod 3 and n3 | 56. The only possibility is n3 = 28.

(iv) The normalizer K = NG(Q) is isomorphic to the symmetric group S3.
From the previous step, we have |K| = 168/28 = 6. Any Sylow subgroup is characteristic in its
normalizer, so NG(K) = K. Hence K has 28 conjugates. If K were abelian, it would be cyclic. If
this were true, each conjugate of K would contain a distinct pair of generators of order six, giving 56
elements of order six, along with 56 = 2 · n3 elements of order 3 and 48 = 6 · n7 elements of order 7.
This makes 160 elements, forcing n2 = 1, a contradiction.

Let t be an element in K of order two.

(v) The group H × P acts freely on the double coset HtP , and G = H ∪HtP .
Since |H| = 21, we have t /∈ H , so P t 6= P . Since P is the unique Sylow 7-subgroup of H , we
have H ∩ P t = {1}. It follows that H × P acts freely on HtP . Hence |HtP | = 21 · 7 = |G| − |H|.
Therefore H and HtP are distinct and exhaust G.

The preceding step shows that every element g ∈ G −H can be decomposed as g = pqtp′ for unique
elements p, p′ ∈ P and q ∈ Q. We wish to calculate this decomposition for certain elements in G−H .
Let P ∗ = P − {1}. Then tP ∗t ⊂ G−H since H ∩ P t = {1}.

Lemma 10.22 The intersection P ∩ tP tP t consists of a pair of distinct mutually inverse elements:

P ∩ tP tP t = {u, u−1} ⊂ P ∗.

Let s ∈ Q be the unique element such that us = u2. Then P ∗ = {u, u−1, u2, u−2, u4, u−4} and the

4This proof comes from [Suzuki Group Theory I], with some simplifications made.
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elements of tP ∗t decompose in PQtP as

tut = u−1tu−1 tu2t = u−4s2tu−4 tu4t = u−2stu−2

tu−1t = utu tu−2t = u4stu4 tu−4t = u2stu2.
(34)

Proof: Since Q = {1, s, s2}, we have a partition

PQtP = PtP ∪ PstP ∪ Ps2tP.

Since tP ∗t ⊂ PQtP , we have a partition

tP ∗t = A0 ∪ A1 ∪ A2,

where Ai = tP ∗t ∩ PsitP . Since s normalizes P , we have

[tP ∗t]s = tsP ∗s−1t = tP ∗t,

and
[PsitP ]s = Ps−1sitsP = Psi−2tP = Psi+1tP.

It follows that Asi = Ai+1, with subscripts read modulo 3. As |tP ∗t| = |P ∗| = 6, it follows that
|Ai| = 2 for each i. And as each Ai is closed under inversion, we must have

A0 = {tu±1t}, A1 = {s−1tu±1ts}, A2 = {stu±1ts−1}.

We next show that
tut = u−1tu−1. (35)

Since tut ∈ PtP , we have
tut = vtw

for some v, w ∈ P . Since t2 = 1 this means also that

tvt = utw−1.

Now w 6= 1, lest tu = v ∈ PtP ∩ P = ∅. Since w ∈ P which has odd order, we cannot have w2 = 1
either. From (v) it then follows that tut 6= tvt. But both tut and tvt are in tP t ∩ PtP = {tu±1t}. It
follows that v = u−1. Now we have

utw−1 = tu−1t = (tut)−1 = w−1tu,

so again by (v) we have w = u−1 and (35) is proved.

The remaining formulas in (34) follow upon conjugating (35) by s and taking inverses.

�

We now show how the product of two elements g, g′ ∈ G is determined.

Case 1: g, g′ ∈ H . Here the product gg′ is determined by the known structure of H .
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Case 2: g ∈ H and g′ ∈ HtP . Here g′ = htp and gg′ = (gh)tp where gh is again computed in H .

Case 3: g ∈ HtP and g′ ∈ H . Here g = htp and gg′ = ht(pg′). Since pg′ ∈ H = QP , we
can write pg′ = qp′ for some q ∈ Q and p′ ∈ P . Then t, q ∈ K = S3, so tq = q−1t so we have
gg′ = ht(pg′) = ht(qp′) = hq−1p′, with hq−1 ∈ H . Hence gg′ can again be computed from the
structure of H .

Case 4: This final case is where g and g′ are both in HtP . Here g = htp and g′ = h′tp′. Write
h′ = p1q1, with p1 ∈ P , q1 ∈ Q. Then

gg′ = htp · h′tp′ = ht(pp1)q1tp
′ = h · t(pp1)t · q−1

1 p′. (36)

If pp1 = 1 this is a product in H . If pp1 6= 1 then pp1 ∈ P ∗ = {u, u−1, u2, u−2, u4, u−4}, so the
decomposition of t(pp1)t in PQtP is given by Lemma 34. Thus the product gg′ is determined.

We have shown that there is only one isomorphism class of groups of order 168 having no normal
Sylow subgroups. As PSL2(7) is one such group, the theorem is proved. �

The groupG = GL3(2) also has order 23(23−1)(22−1)(2−1) = 168. The upper and lower triangular
matrices in G are distinct Sylow 2-subgroups. The elements0 1 0

1 1 0
0 0 1

 ,
1 0 0

0 0 1
0 1 1

 (37)

generate distinct Sylow 3-subgroups. The elements

u =

0 0 1
1 0 1
0 1 0

 , v =

0 0 1
1 0 0
0 1 1

 (38)

generate distinct Sylow 7-subgroups. 5 From Prop. 10.21 it follows that we have another exceptional
isomorphism

PSL2(7) ' GL3(2). (39)

This makes clear, for example, that the Sylow 2-subgroups of PSL2(7) are D4, and that PSL2(7) acts
faithfully on two sets of seven elements: the seven lines and the seven planes in (Z/2Z)3.

These two actions imply that PSL2(7) has an outer automorphism σ given by σ(g) = tg−1, the inverse
transpose in GL3(2). Indeed, since the normalizer of a Sylow 7-subgroup is G21 (see step (ii) above),
it follows that G has exactly two conjugacy-classes of elements of order 7. The elements u, v in (38)
have tr(u) = 0 and tr(v) = 1, so they are not conjugate. Thus, the trace function distinguishes the two
classes of elements of order 7. Since

σ(u) =

1 0 1
1 0 0
0 1 0


5The matrices u, v were found by factoring the cyclotomic polynomial

Φ7(x) = 1 + x + x2 + x3 + x4 + x5 + x6 = (1 + x + x3)(1 + x2 + x3)

over Z/2Z and using rational canonical form.
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has tr(σ(u)) = 1, it follows that σ(u) is not conjugate to u, so σ is not inner. Hence there are in fact
two non-conjugate isomorphisms (39).

We can see them explicitly as follows. To give a homomorphism PSL2(7)→ GL3(2) is to give an ele-
mentary abelian 2-groupE of rank 3 and an action of PSL2(7) onE by automorphisms. Now, PSL2(7)
acts by fractional transformations of the projective line P1(F ) = F ∪{∞}, by which we view PSL2(7)
as a subgroup of the symmetric group S8, permuting the points in P1(F ) = {∞, 0, 1, 2, 3, 4, 5, 6}. We
will find E as a subgroup of S8 normalized by PSL2(7).

Since F×2 = 〈2〉, the Bruhat decomposition implies that PSL2(7) is generated by three transformations

a(x) = 2x, b(x) = x+ 1, w(x) = −1/x.

As permutations of {∞, 0, 1, 2, 3, 4, 5, 6}, these are elements of S8 given by

a = (1 2 4)(3 6 5), b = (0 1 2 3 4 5 6), w = (∞ 0)(1 6)(2 3)(4 5).

The subgroup 〈a, b〉 is the Borel subgroup of PSL2(7) fixing∞ and is the G21 from step (ii). To find E
in S8, we note that the matrices (37) and (38) permute the seven nonzero vectors in (Z/2Z)3 in cycle
types [331] and [7], respectively. So E − {1} must consist of seven commuting elements e1, . . . , e7

of order two permuted in the same way. Exactly one of them, say e1, is fixed by a and the remaining
ei+1 = bie1b

−i for 1 ≤ i ≤ 6. From our experience with PGL2(5) we guess e1 has the form

e1 = (∞ 0)(1 x)(2 2x)(4 4x),

for some x ∈ {3, 5, 6}. But the element

e2 = be1b
−1 = (∞ 1)(2 x+ 1)(3 2x+ 1)(5 4x+ 1)

must commute with e1. If x = 6 these two elements would be

(∞ 0)(1 6)(2 5)(4 3) and (∞ 1)(2 0)(3 6)(5 4),

which do not commute. Therefore x ∈ {3, 5}. In fact both of these choices work, and we get two
subgroups E = {ei}, E ′ = {e′i}, where e0 = e′0 is the identity of S8 and 6

e1 = (∞ 0)(1 3)(2 6)(4 5) e′1 = (∞ 0)(1 5)(2 3)(4 6)
e2 = (∞ 1)(2 4)(3 0)(5 6) e′2 = (∞ 1)(2 6)(3 4)(5 0)
e3 = (∞ 2)(3 5)(4 1)(6 0) e′3 = (∞ 2)(3 0)(4 5)(6 1)
e4 = (∞ 3)(4 6)(5 2)(0 1) e′4 = (∞ 3)(4 1)(5 6)(0 2)
e5 = (∞ 4)(5 0)(6 3)(1 2) e′5 = (∞ 4)(5 2)(6 0)(1 3)
e6 = (∞ 5)(6 1)(0 4)(2 3) e′6 = (∞ 5)(6 3)(0 1)(2 4)
e7 = (∞ 6)(0 2)(1 5)(3 4) e′7 = (∞ 6)(0 4)(1 2)(3 5)

Each set E,E ′ contains 7 commuting involutions normalized by 〈a, b〉. To see they are closed under
multiplication we need only check that e1e2 = e4, e′1e

′
2 = e′6 and conjugate these equations by a. Hence

E and E ′ are indeed elementary abelian 2-groups of rank 3 normalized by 〈a, b〉. The remarkable thing
is that both sets {ei} and {e′i} are also normalized by the permutation w = (∞ 0)(1 6)(2 3)(4 5), so
they are normalized by the entire subgroup 〈a, b, w〉 ≤ S8. Thus, we recover the two isomorphisms
PSL2(7) ' GL3(2) explicitly inside S8.

6As an aside, note that these [2222] cycles partition the 28 transpositions of S8 into seven sets of four.
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10.4.3 Simple groups of order ≤ 720

We begin with a few more lemmas to help narrow the cases.

Lemma 10.23 If H is a group of order prqs, where p and q are primes and r, s ≤ 2 then H is not
simple

Proof: We may assume p > q. If H is simple then it has p-factorization prqs = pr · ν · (1 + kp)
wth k ≥ 1. Since r ≤ 2, the Sylow p-subgroups are abelian, so ν > 1. Hence ν = q, s = 2 and
q = 1 + kp > p, a contradiction �

Remark: The restrictions on r and s are unnecessary. Using character theory, Burnside proved that
any finite group whose order is divisible by just two primes is not simple.

Lemma 10.24 If |G| = m · pr where p is a prime not dividing m, then m > 7.

Proof: Since G is simple, the action on Sylow p-subgroups embeds G ↪→ Am, so m ∈ {5, 6, 7} and
m · pr divides m · · · 3 · 2. If m ≤ 6 then mpr < 60 so G is not simple. If m = 7 then p = 5, 3, 2 and
r ≤ 1, 2, 3 respectively. and the 7-factorization is ν · (1 + 7k) with ν > 1 and k > 0. There are no
values of p and r satisfying these conditions. �

Lemma 10.25 If |G| ≤ N then p <
√
N/2.

Proof: From Lemma. 10.17, we have p · 2 ≤ pr · ν. Hence

p · 2 · (1 + p) ≤ |G| ≤ N,

so p2 < p(1 + p) ≤ N/2, and the estimate follows. �

Now let G be a simple group of order |G| ≤ 720. Let p be the largest prime dividing |G|, with
p-factorization

|G| = pr · ν · (1 + kp).

We will assume p ≥ 5 because groups of order 3a2b are not simple, by Burnside’s paqb theorem (which
uses character theory and is not yet in these notes). By Cor. 10.25, we have p <

√
360 < 19 so

p ≤ 17. By Prop. 10.19, we exclude the case (r, ν, k) = (1, 2, 1). This further excludes p = 17. Since
pr · (1 + p) ≤ |G| ≤ 720 we have r = 1 for p = 13, 11, r ≤ 2 for p = 7, 5, r ≤ 4 for p = 3.

We note also:

1. If r = 1 then (ν, p− 1) > 1.

2. If ν = 2 then k is odd and k ≥ 3 by Cors. 10.13 and 10.19.
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3. If k = 1 then r = 1 since p2 does not divide (p+ 1)!

4. If r ≤ 2 then ν ≥ 2 so 1 + pk ≤ 720/2pr.

5. No prime divisor of 1 + kp can be larger than p.

6. If k is even then either 4 | ν or ν is odd.

Since pr · (1 + p) ≤ |G| ≤ 720 we have r = 1 for p = 13, 11, r ≤ 2 for p = 7, 5, r ≤ 4 for p = 3.

For p = 13 the only surviving case is

|G| = 13 · 4 · (1 + 13) = 728,

which we showed cannot be the order of a simple group, see Example 3 of section 10.3.

For p = 11 it the only surviving case is

|G| = 11 · 5 · (1 + 11) = 660,

which is the order of the simple group PSL2(11).

For p = 7, we have r ≤ 2. If r = 2 then ν ≥ 2 so 1 + 7k ≤ (720/2 · 49) < 8, forcing k = 0. Hence
r = 1 and ν ≥ 2. And if k = 1 then ν | 6, and if k is even then 4 | ν.

The surviving 7-factorizations are

7 · 3 · (1 + 7) = 23 · 3 · 7 = 168

7 · 6 · (1 + 7) = 24 · 3 · 7 = 336

7 · 4 · (1 + 2 · 7) = 22 · 3 · 5 · 7 = 420

7 · 2 · (1 + 5 · 7) = 23 · 32 · 7 = 504

7 · 2 · (1 + 7 · 7) = 22 · 52 · 7 = 700

The case |G| = 168 is the order of a simple group PSL2(7), and this is the unique simple group of
order 168 (see Prop. 10.21).

The case |G| = 336 has NG(P ) ' P o C6, the ax+ b group over Z/7Z. An element n ∈ C6 of order
six fixes a point Q ∈ X − {P} and is free on X − {P,Q}, hence has cycle type [61] so is an odd
permutation. Hence G has a subgroup of index two. This occurs in nature: The group PGL2(7) has
order 336 and contains PSL2(7) with index two.

The case |G| = 420 has an involution s ∈ CG(P ). Suppose there exists Q ∈ X − {P} and x ∈ P
such that sQ = xQ. Then sx ∈ NG(Q) so x2 ∈ Q so P = Q. Hence s interchanges the two P -orbits
in X − {P} and has cycle type [271] on X , which is an odd permutation, so G has a normal subgroup
of index two.

The case |G| = 504 is the order of a simple group PSL2(8).

The case |G| = 700 is ruled out by Cor. 10.15.
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For p = 5 we have k = 1, 3, 7 since 5 is the largest prime dividing 1 + 5k. If k = 1 then r = 1 and
ν = 2, 4 by Lemma 10.18. If k = 3 then 5r ·ν ≤ 720/16 = 45 so r = 1 and ν ≤ 9 is even. Since groups
of order 5 · 2n are not simple, by Lemma 10.24 we have ν = 6. If k = 7 then 5r · ν ≤ 720/36 = 20 so
r = 1 and ν = 2, 4.

Thus the surviving 5-factorizations are

5 · 2 · (1 + 5) = 2 · 3 · 5 = 60

5 · 4 · (1 + 5) = 23 · 3 · 5 = 120

5 · 6 · (1 + 3 · 5) = 25 · 3 · 5 = 480

5 · 2 · (1 + 7 · 5) = 23 · 32 · 5 = 360

5 · 4 · (1 + 7 · 5) = 23 · 32 · 5 = 720

The case 5 · 2 · (1 + 5) = 60 arises from the simple group A5 = PSL2(5).

In the case 5 ·4 · (1 + 5) = 120 the normalizer of a Sylow 5-subgroup contains a 4-cycle in S6, which is
odd. Hence G contains a normal subgroup of index two. This actually occurs: The group S5 has order
120 and contains A5 of index two.

In the case 5 · 6 · (1 + 3 · 5) = 480, we have NG(P ) of order 30, so NG(P ) = 〈g, s〉 where g, s have
order 15 and 2 respectively, and 〈g3〉 = P . There are four groups of order 30 according to the possible
actions of s on 〈g〉 = C3 × C5 by inverting one or both or no factors. Note that all four groups occur
inside the normalizer of a 15-cycle in S15. By the Transfer Theorem, smust invert the C5-factor (which
is P ). Now look at the embedding of NG(P ) in S15 via its action on X−{P}. Since g3 acts with cycle
type [5 5 5], it follows that g has cycle type [15], so 〈g〉 acts freely and transitively on X −{P}. Hence
the action of s on X−{P} is equivalent to its action on C3×C5. If s inverts both factors then its cycle
type is [1 27] which is odd. Therefore s centralizes the C3 factor and NG(P ) ' C3 ×D5. 7 Hence the
centralizer CG(Q) of a Sylow 3-subgroup has order at least 30. In the 3-factorization 3 ·ν3 ·n2 we must
have ν3 = 5 · 2a with a ≥ 2, lest CG(Q) = NG(Q). This forces n3 = 4, so G is not simple

The case 5 · 2 · (1 + 7 · 5) = 360 arises from the simple group A6.

The case |G| = 720 is harder, but still elementary; in the next section we show there are no simple
groups of order 720.

Assuming that result, we have shown that the only possible orders ≤ 720 of nonabelian simple groups
G are 60, 168, 360, 504 and 660. Moreover, there exists a simple group of each of these orders, namely

simple group G |G|
A5 ' PSL2(5) 60

PSL2(7) ' GL3(2) 168
A6 ' PSL2(9) 360
PSL2(8) 504
PSL2(11) 660

7Cole (Simple groups from Order 201 to Order 500, Am. J. Math, vol 14, no. 4 1892, 378-88), seems to have missed
this possibility.
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In fact, there is exactly one simple group having each of these orders, but we have only proved this for
|G| = 60 and |G| = 168.

10.4.4 Almost-simple groups of order 720

Suppose that G is a simple group of order 720 = 8 · 9 · 10. Writing the order this way makes it
plausible that G should act 3-transitively on a set with 10 elements, as PGL2(9) has this order and
acts 3-transitively on its set of 10 Sylow 3-subgroups. Since PGL2(9) is not simple, it may make
sense to look in that direction for a contradiction. So we begin by studying the 3-local structure of our
hypothetical simple groupG of order 720. However, since there does exist a simple group of order 360,
the 2-local structure must eventually be decisive. It is here that Burnside’s sketch (which begins with
the 5-local structure) 8 seems to have a serious gap. Our treatment of the 3-local part is based on that
of Derek Holt 9 which I have recast to better highlight his essential point, with different arguments in
places. Then we will have enough information for a correct 2-local argument in the spirit of Burnside.

From the Sylow and Burnside Transfer theorems, the possible 3-factorizations of |G| are

|G| = 32 · 2 · 40, or |G| = 32 · 8 · 10. (40)

In the former case, where n3(G) = 40, the normalizer of a Sylow 3-subgroup P acts by an involution
on P with trivial fixed points, and normalizes every subgroup of P .

Holt’s crucial observation about the 3-local structure is as follows.

Lemma 10.26 Every subgroup of order three in G is contained in just one Sylow 3-subgroup of G.

Proof: Let Q < G be a subgroup of order three, with normalizer N = NG(Q), and let P be a Sylow
3-subgroup of G containing Q. The 3-factorization of N is

|N | = 32 · ν · n3(N),

where ν = [N ∩ NG(P ) : P ] and n3(N) is the number of Sylow 3-subgroups in N . Since the Sylow
3-subgroups are abelian, any such subgroup containing Q must lie in N . So the lemma is equivalent to
the assertion that n3(N) = 1.

If n3(G) = 40 then NG(P ) contains an element inverting P , hence normalizing Q, so ν > 1. If
n3(G) = 10 then again ν > 1, lest we have at least [NG(P ) : N ∩ NG(P )] = [NG(P ) : P ] = 8
conjugates of Q in P , whereas the group P of order 32 can have at most four subgroups of order
three. Thus, in either case we have ν > 1. We also have n3(N) < 10, lest G ≤ S4. It follows that
n3(N) ∈ {1, 4}.

Assume that n3(N) = 4. Then ν = 2, lest [G : N ] ≤ 5, so N has 3-factorization

|N | = 32 · 2 · 4.
8Notes on the theory of groups of finite order, Bull. London Math. Soc. 1894
9 http://sci.tech-archive.net/Archive/sci.math/2006-12/msg07456.html
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Let P = P1, P2, P3, P4 be the Sylow 3-subgroups in N , and let X = {gQ : g ∈ G} be the set of
G-conjugates of Q. We have |X| = [G : N ] = 10. The group G acts on X by conjugation and we
consider the fixed points of Q:

XQ = {Q′ ∈ X : Q < NG(Q′)}.

Since a group of order three admits no automorphism of order three, we have

Q < NG(Q′) ⇔ Q < CG(Q′) ⇔ Q′ < CG(Q) ⇔ Q′ < N,

in which case Q′ < Pi for some i. Therefore

XQ =
4⋃
i=1

X(Pi), (41)

where, for any Sylow p-subgroup P ′ of G we define X(P ′) := {Q′ ∈ X : Q′ < P ′} to be the
set of conjugates of Q which are contained in P ′. Note that gX(P ′) = X(gP ′) for any g ∈ G. In
particular, the sets X(Pi) all have the same cardinality. Since P is abelian, NG(P ) acts transitively on
X(P ) (by the same argument used for Lemma 10.11) and the stabilizer of Q in NG(P ) has cardinality
|N ∩NG(P )| = 32 · 2, so m = [NG(P ) : NG(P ) ∩N ] ∈ {1, 4}, according to the two possibilities for
NG(P ) in (40). Finally, since Pi is generated by any two elements ofX(Pi), we haveX(Pi)∩X(Pj) =
{Q} for i 6= j. It now follows from (41) that |XQ| = 1 + 4(m− 1). Since |XQ| ≤ |X| = 10 we must
have m = 1, so XQ = {Q} and the Q-orbits in X have sizes 1, 3, 3, 3.

As Aut(Q) = C2, the centralizer CG(Q) has order 36 or 72, with Sylow 2-subgroup R of order 4 or
8. As R fixes Q and G is simple, R acts faithfully on X − {Q}, permuting the three Q-orbits therein,
giving a homomorphism R → S3. If r ∈ R preserves a Q-orbit {Q1, Q2, Q3} in X then r normalizes
each Qi, since r commutes with Q. Hence the image of R in S3 is nontrivial, so some r ∈ R maps to
a 2-cycle in S3. This means r has cycle type [1323] on X − {Q} and cycle type [1423] on X . Thus r is
an odd permutation on X , contradicting the simplicity of G. It follows that n3(N) = 1 and the lemma
is proved. �

Let Y be the set of Sylow 3-subgroups of G and let P ∈ Y . The lemma implies that P acts simply
transitively on Y −{P}, so |Y | ≡ 1 mod 9. This rules out n3(G) = 40, so we must have n3(G) = 10
and |NG(P )| = 32 · 8. Regarding G as a subgroup of A10 via its action on Y by conjugation shows that
P cannot be cyclic because the normalizer of a 9-cycle in S10 has order 32 · 6, hence cannot contain
NG(P ). Thus, we find that P ' C3 × C3.

Choose P ′ in Y distinct from P and let

H = NG(P ) ∩NG(P ′)

be the normalizer of P ′ in NG(P ). Since NG(P ) acts transitively on Y −{P}, it follows that |H| = 8,
so H is a Sylow 2-subgroup of NG(P ) and NG(P ) = P · H . I claim that H acts freely on P − {1}
by conjugation. For by the lemma again, any nonidentity element t ∈ P has cycle type [1333] in Y ,
whose centralizer in A10 has order 33 · 6/2 = 81 and intersects H trivially. 10

10Since |H| = 8 = |P − {1}|, it follows that H is also transitive on P − {1}, so G has a unique conjugacy class of
elements of order three, and this class has 80 elements. However we do not need this.
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Let s ∈ H be an involution (an element of order two). Since s acts freely on P − {1}, it must act
by inversion, hence s is the unique involution in H . The only groups of order 8 containing a unique
involution are Q8 and C8. In the latter case H would be generated by an [8]-cycle on Y which is odd,
contradicting the simplicity of G. Hence H ' Q8. 11 Since Q8 does not embed in Sn for n < 8, the
faithful action of H on Y − {P, P ′} must also be free and transitive. Hence the elements of order four
in H have cycle type [1244] on Y , and s has cycle type [1224].

If x ∈ P − {1} and H ∩ Hx 6= 1, then s ∈ H ∩ Hx, say s = hx for some h in H . But then h is an
involution, so h = s, meaning that x and s commute. This contradicts H acting freely on P − {1},
so H ∩ Hx = 1. It follows that there are exactly nine NG(P )-conjugates of s in H , and these are all
of the involutions in NG(P ). From the cycle type of s on Y , we see that NG(P ) and NG(P ′) are the
only conjugates of NG(P ) containing s. As there are ten conjugates of NG(P ), there are 9 · 10/2 = 45
conjugates of s in G. Hence the centralizer S = CG(s) is a Sylow 2-subgroup of G. By the same
argument there are 45 conjugates of H in G, so S = NG(H) is also the normalizer of H in G.

I claim that distinct involutions have distinct centralizers. For suppose t 6= s is an involution with
CG(t) = CG(s). Then t ∈ NG(H) − H so preserves the fixed point set Y H = {P, P ′}, but t cannot
normalize P or P ′, so t must switch P and P ′. But t is a product of 2-cycles and is even, while 10/2
is odd, so t must have at least two fixed-points on Y . This means t ∈ NG(P ′′) ∩ NG(P ′′′) for some
pair P ′′, P ′′′ ∈ Y − {P, P ′}. But t cannot act trivially on Y − {P, P ′} lest it be a 2-cycle on Y . As H ,
which centralizes t, must preserve the fixed points of t in Y − {P, P ′}, this contradicts the transitivity
of H on Y − {P, P ′}. 12

Now take h ∈ H of order 4 and consider the action of H on the set Z of Sylow 2-subgroups of G. We
have h2 = s. Since s is contained in just one Sylow 2-subgroup, namely CG(s), the cycle type of s on
Z is 1222. Hence the cycle type of h is [1411], which is an odd permutation, contradicting the simplicity
of G.

�

The argument is difficult for several reasons. First, 720 = 2 ·360, and there does exist a simple group of
order 360, namely the alternating groupA6. Secondly, A6 ' PSL2(9) (see section 13.5.2), so SL2(9) is
a group of order 720 surjecting ontoA6. Thirdly, there are three groups of order 720 containingA6 with
index two (see below). All these groups of order 720 flirt with the simple group A6, but themselves
just fail to be simple, for different reasons, which is why it is hard to rule them out.

The three groups containingA6 with index two can be seen as follows. We have seen that automorphism
group of S6 is Aut(S6) = S6 o C2. It follows that Out(A6) ' C2 × C2. By the Correspondence
Theorem, there are three subgroups of Aut(A6) of order 720, containing A6. One of these is S6. Via
the isomorphismA6 ' PSL2(9), another one is PGL2(9). The third group is the Mathieu GroupM10,
which is part of a family of highly transitive simple (or almost simple, in the case of n = 10) subgroups
Mn ≤ Sn.

To see M10 more explicitly, we start with PGL2(9), which we think of as the group of permutations of

11We do not actually need to know that H = Q8 and not C8.
12A similar argument shows that all involutions are conjugate in G, but we do not need this.

85



P1(F9) given by

PGL2(9) =

{
z 7→ az + b

cz + d
: ad− bc 6= 0.

}
.

The field F9 of 9 elements is built from F3 = Z/3Z just as C is built from R, namely,

F9 = {x+ iy : x, y ∈ F3}, i2 = −1,

and just like C, F9 has an automorphism x+ iy = x− iy. We define the group

PΓL2(9) =

{
z 7→ az + b

cz + d
: ad− bc 6= 0

}
∪
{
z 7→ az̄ + b

cz̄ + d
: ad− bc 6= 0

}
.

This group contains PGL2(9) with index two; a nontrivial coset representative is simply z 7→ z̄. It
turns out that

PΓL2(9) ' Aut(A6). In this viewpoint, M10 is the subgroup of PΓL2(9) given by

M10 =

{
z 7→ az + b

cz + d
: ad− bc is a square in F×9

}
∪
{
z 7→ az̄ + b

cz̄ + d
: ad− bc is a nonsquare in F×9

}
.

Thus, M10 contains PSL2(9) with index two; a nontrivial coset representative is z 7→ iz̄.

The subgroup S6 is generated by PSL2(9) and z 7→ z̄. In this guise an outer automorphism of S6 is
conjugation by z 7→ iz.

11 Solvable and nilpotent groups

A group G is solvable if it has a chain of subgroups

1 = G0 < G1 / G2 / G3 / · · · / Gn = G (42)

where each Gi is normal in Gi+1 with abelian quotient Gi+1/Gi.

If H / G then G is solvable if and only if both H and G/H are solvable (exercise). It follows that G
is not solvable precisely when there exist subgroups H /K ≤ G with K/H nonabelian simple. In this
sense solvable groups are diametrically opposed to nonabelian simple groups.

Examples of Solvable Groups:

i) Any finite group G with |G| < 60 is solvable, because there are no simple groups of order < 60.
In particular Sn is solvable for n ≤ 4. However, Sn is not solvable when n ≥ 5, because it contains the
simple group A5.

ii) The dihedral group Dn is solvable for every n ≥ 2 because it has a chain of subgroups 1 < Cn <
G and G/Cn = C2.
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iii) For any field F , the subgroupB of upper triangular matrices in GLn(F ) is solvable. For example
if n = 3 one can take the series

1 <

1 0 ∗
0 1 0
0 0 1

 /
1 ∗ ∗

0 1 ∗
0 0 1

 /
× ∗ ∗

0 × ∗
0 0 ×

 = G,

with the obvious generalization to arbitrary n.

iv) Any group G of order pq, where p and q are primes, is solvable. For if p ≤ q then G has a
normal subgroup Cq with quotient Cp. More generally, any group whose order is divisible by at most
two primes is solvable. This is Burnside’s paqb theorem, whose original proof uses character theory
and still appears to be the most accessible proof to non-experts.

v) A group G is solvable if and only if it has the factorization property: If |G| = m · n for relatively
prime integers m,n, then G = MN for subgroups M,N of G of orders m,n. This is P. Hall’s
generalization of Burnside’s theorem.

vi) Any finite group of odd order is solvable. This is the famous Feit-Thompson theorem from 1963,
whose proof is much more difficult than the previous two theorems.

vii) Let f(x) be a polynomial with rational coefficients having n distinct roots. The Galois group
Gf is the subgroup of Sn consisting of those permutations of the roots which preserve all polynomial
relations among them. The group Gf is solvable precisely when the roots of f can be expressed in
terms of rational and radical expressions in the coefficients of f , as in the quadratic, cubic or quartic
formulas. This was discovered by E. Galois, and is the origin of the term “solvable”. It explains why
there is no general formula for a quintic polynomial: S5 is not solvable.

viii) Same situation, where now the coefficients of f lie in the field Qp of p-adic numbers for some
prime p. Then Gf is always solvable. In fact, G has a canonical chain of subgroups G1 /G0 /G, where
G1 is a p-group and G0/G1, G/G0 are both cyclic.

Solvable groups occur naturally in many areas of mathematics. Being opposite to nonabelian simple
groups, they are a very natural class of groups to study. However, some of the most interesting theorems
about solvable groups are very difficult to prove. For example, the proof of the Feit-Thompson theorem
takes 255 pages.

Among the solvable groups are the nilpotent groups, for which the first few interesting theorems are
easy, including a version of Hall’s theorem above.

The definition is as follows. For any group G, the ascending central series 13 of G is the chain of
subgroups of G:

Z1 E Z2 E Z3 E · · · (43)

defined inductively as follows: Z1 = Z(G) is the center of G, and given Zi, define Zi+1 to be the
unique subgroup containing Zi such that Zi+1/Zi = Z(G/Zi) is the center of G/Zi. We say G is
nilpotent if Zc = G for some c ≥ 1. The minimal such c is the nilpotence class of G.

13Also called the “upper central series”.
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A nontrivial nilpotent group must have nontrivial center, lest all Zi = 1. If G is nilpotent of class c
then G/Z(G) has class c− 1.

If G is nilpotent and H / G then H and G/H are nilpotent, but not conversely: The symmetric group
S3 has trivial center, so its ascending central series has Zi = 1 for all i. Hence S3 is not nilpotent.
However, its subgroup A3 and quotient S3/A3 = C2 are both nilpotent.

Direct products of nilpotent groups are nilpotent. So any direct product of p-groups is nilpotent. We
will see that all nilpotent groups are of this form.

Examples of Nilpotent Groups:

i) The abelian groups are the nilpotent groups of class 1. The nilpotent groups G of class 2 are those
for which G/Z(G) is abelian.

ii) Any finite p-group is nilpotent, because any p-group has nontrivial center, hence Zi 6= Zi+1, so
eventually Zi has the same order as G. If |G| = pk then the nilpotence class of G is at most k−1, since
every group of order p2 is abelian.

iii) The dihedral group Dn is nilpotent if and only if n is a power of 2 (use 5. in Thm. 11.1 below).
If n = 2` and r = st is the product of two generating reflections s and t, then r has order 2` and Zi is
cyclic, generated by r2`−i . As D2`/〈r2〉 ' C2 × C2 is abelian, it follows that D2` has nilpotence class
equal to `, the maximum possible for a group of order 2`+1. There are exactly two other families of
groups of order 2`+1 having maximal nilpotence class: the generalized quaternion group Q2`+1 and the
quasidihedral group QD2`+1 .

iv) For any field F , the subgroup Un of strictly upper triangular matrices in GLn(F ) is nilpotent of
class n− 1. For example if n = 4 the ascending central series is

1 0 0 ∗
0 1 0 0
0 0 1 0
0 0 0 1

 <


1 0 ∗ ∗
0 1 0 ∗
0 0 1 0
0 0 0 1

 <


1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

 = G,

with the obvious generalization to arbitrary n. The matrices in Un are of the form I+A, whereAn = 0.
This may be the origin of the term “nilpotent”.

The main theorem on finite nilpotent groups is the following collection of characterizations.

Theorem 11.1 For a finite group G the following are equivalent.

1. G is nilpotent.

2. Any proper subgroup H of G is properly contained in its normalizer NG(H).

3. Every maximal subgroup of G is normal in G.

4. Every Sylow p-subgroup of G is normal in G.
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5. G is the direct product of its Sylow p-subgroups.

6. For every divisor m of |G| there is a normal subgroup M /G with |M | = m.

Proof: (1 ⇒ 2): By induction we assume the result for all groups of smaller order than G. Let H be
a proper subgroup of G. Since G is nilpotent its center Z is nontrivial and normalizes H . If Z is not
contained in H then H 6= HZ, done. Assume Z < H . Let G = G/Z, H = H/Z and let π : G → G
be the projection. Then H is a proper subgroup of G, so by induction H 6= NG(H). One checks that

H = π−1(H) and NG(H) = π−1(NG(H)),

hence H 6= NG(H), by the Correspondence Theorem.

(2⇒ 3): Apply 2 to a maximal proper subgroup of G.

(3 ⇒ 4): Suppose the Sylow p-subgroup P of G is not normal. Then NG(P ) is a proper subgroup of
G, contained in a maximal proper subgroup M of G which is normal in G, by 3, and P is a Sylow
p-subgroup of M . For any g ∈ G, the conjugate P g is another Sylow p-subgroup of M , so P g = Pm

for some m ∈ M . Then g ∈ NG(P )m ⊂ M . 14 Since g was arbitrary, we have shown that G = M ,
contradicting M being proper.

(4 ⇒ 5): Induct on the number of primes dividing |G|. Let |G| = pr11 · · · pr
n

n . By 4, the Sylow pi-
subgroup Pi is unique and any product of Sylow subgroups is a normal subgroup of G. In particular
H := P1 · · ·Pn1 is normal in G. By induction H = P1 × · · · × Pn−1, so the primes dividing the orders
of elements of H are in {p1, . . . , pn−1}. So H ∩ Pn = 1 and Pn is normal in G. Hence

G = H × Pn = (P1 × · · · × Pn−1)× Pn = P1 × · · · × Pn.

(5 ⇒ 6): Let |G| = pr11 · · · pr
n

n as above. Then m = ps11 · · · psnn , for si ≤ ri. The p-group Pi has a
subgroup Qi of order psi . By 5, the subgroup M = Q1 × · · · × Qn is a normal subgroup of G with
order m.

(6⇒ 4): Take m to be the full power of p dividing G.

(5⇒ 1): Each p-group is nilpotent and a direct product of nilpotent groups is nilpotent. �

Part 5 of Thm. 11.1 implies that in a nilpotent group two elements of relatively prime orders commute.
This explains whyDn is not nilpotent for n odd: there is a rotation of odd order inverted by a reflection.

An example of a nilpotent group which is not at first glance a direct product of p-groups is the cyclic
group Cn, when n has multiple prime divisors. If n = pr11 · · · p

rk
k for distinct primes p1, . . . , pk then

Cn = Cpr11 × · · · × Cprk .

For a nonabelian example, let R be any commutative ring and Define U3(R) to be the group

U3(R) =

1 ∗ ∗
0 1 ∗
0 0 1

 ,
14This kind of transitivity proof is called the Frattini Argument. It is very similar to the proof of Lemma 10.11.
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where the entries ∗ are arbitrary elements in R. Then U3(R) is nilpotent. If we take R = Z/nZ then
applying the Chinese Remainder theorem to each matrix entry gives an isomorphism

U3(Z/nZ) ' U3(Z/pr11 Z)× · · · × U3(Z/prkk Z).

Nevertheless, Thm. 11.1 shows that the study finite nilpotent groups essentially reduces to p-groups.

12 p-groups, a second look

In this section p is a prime.

Up to isomorphism, there is one group of order p, namely Cp. There are two groups of order p2, namely
Cp × Cp, in which xp = 1 for every element x, and G ' Cp2 , which contains an element of order p2.

12.1 Groups of order p3

Up to isomorphism there are three abelian groups of order p3:

Cp × Cp × Cp, Cp2 × Cp, Cp3 .

Assume from now on that G is nonabelian with |G| = p3 and let Z = Z(G) be the center of G. As
G/Z cannot be cyclic, we have

Z ' Cp, and G/Z ' Cp × Cp.

The latter is abelian, so the commutator subgroup [G,G] lies in Z. But [G,G] 6= 1 since G is non-
abelian, so in fact

[G,G] = Z.

Hence for any fixed x ∈ G the commutator with x gives a map f : G → Z, sending y 7→ [y, x] =
yxy−1x−1. As yxy−1 = [y, x]x, it follows that the conjugacy class of x ∈ G− Z is xZ. Hence G has
p conjugacy classes inside Z and p2 − 1 conjugacy classes outside Z.

Any maximal subgroup A ≤ G has order p2, is normal in G and contains Z = [G,G], since G/A ' Cp
is abelian. Hence the maximal subgroups of G correspond to the subgroups of G/Z ' Cp × Cp,
which has p+ 1 subgroups, corresponding to the points in the projective line over Z/pZ. The maximal
subgroups A0, A1, . . . Ap form the part of the subgroup lattice of G over Z.

{G}

A0 A1 . . . Ap

Z
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The maximal subgroups Ai may belong to different isomorphism classes, either Cp × Cp or Cp2 . If
p = 2 thenD4 contains both kinds, whileQ8 contains C4 but not C2×C2. We will see that the opposite
holds for odd primes p.

First we need a commutator lemma:

Lemma 12.1 Let G be a group, let x, y ∈ G, and let [y, x] = yxy−1x−1 be the commutator. Suppose
[y, x] commutes with x and y. Then for all n ∈ N we have

(xy)n = xnyn[y, x]n(n−1)/2.

Proof: We expand:
(xy)n = (xy)(xy) · · · (xy). (44)

We want to put all the y’s to the right of all the x’s. The commutator is the price to pay for replacing
yx by xy:

yx = [y, x]xy,

which we can write as
yx = xy[y, x],

since x, y commute with [y, x]. The left-most y in (44) moves past n − 1 x’s, so contributes [y, x]n−1.
The new left-most y then contributes n− 2 x’s, and so on. Thus, we get

(xy)n = xnyn[y, x](n−1)+(n−2)+···+1 = xnyn[y, x]n(n−1)/2,

as claimed. �

Next we need a lemma about GL2(p).

Lemma 12.2 Any element of order p in GL2(p) is conjugate to
[
1 1
0 1

]
.

Proof: Let g ∈ GL2(p) have order p. By Sylow’s theorem, g is conjugate to an element
[
1 b
0 1

]
of the

Sylow p-subgroup U =

[
1 ∗
0 1

]
of GL2(p), with b 6= 0. Conjugating by

[
1 0
0 b

]
, we arrive at

[
1 1
0 1

]
.

�

Now return to our group G of order p3, and assume p > 2. We have seen that all commutators lie in Z,
so the conditions of Lemma 12.1 hold for any x, y ∈ G. Since p is odd, it divides p(p− 1)/2 and since
|Z| = p we have [y, x]p(p−1)/2 = 1. Hence for all x, y ∈ G we have

(xy)p = xpyp.

This means that the map x 7→ xp is a group homomorphism; we it simply by p : G → G. Clearly
Z ≤ ker p. Since G is not cyclic we have xp2 = 1 for all x ∈ G, so im p ≤ ker p. Now Z cannot be the
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whole of ker p, lest | ker p| = p and | im p| = p2. Hence there is an element y0 ∈ ker p outside Z. The
subgroup A = 〈y0, z〉 generated by y0 and z is then a normal subgroup of G isomorphic to Cp × Cp.

Now there are two cases.

Case 1: ker p = G.

This means gp = 1 for all g ∈ G. Choose any element x ∈ G outside of A. Then x acts on A via an
element of order p in Aut(A) ' GL2(p). By Lemma 12.2 there are generators y, z of A such that

G = 〈x〉n A,

where x acts on A by
xzx−1 = z, xyx−1 = yz.

The structure of G is thus determined uniquely. We have

G = {zcybxa : a, b, c ∈ Z/pZ}, (45)

with multiplication
(zcybxa) · (zfyexd) = zc+f+aeyb+exa+d.

The Heisenberg group

H :=

1 ∗ ∗
0 1 ∗
0 0 1

 (46)

is a nonabelian group of order p3 and exponent p, is therefore isomorphic to the abstract group G in
(45). Indeed, one checks that sending

zcybxa 7→

1 a c
0 1 b
0 0 1


is an explicit isomorphism G

∼→ H .

Case 2: ker p 6= G.

Here G has an element y of order p2. Choose such a y and let Y = 〈y〉 ' Cp2 . Choose any x0 in A but
not in Y . Then G is again a semidirect product:

G = 〈x0〉n Y,

with some action of x0 on Y . Let R be the ring Z/p2Z. Then

R× ' Aut(Y ),

where r ∈ R corresponds to the automorphism y 7→ yr. The elements of order p in R lie in 1 + pR, so
x0yx

−1
0 = y1+rp for some r ∈ R. Let s be the inverse of r in R and let x = xs0. Then xyx−1 = y1+p,

which determines the group structure on G. We have

G = {ybxk : b ∈ R, k ∈ Z/p},
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and the map sending

ybxk 7→
[
(1 + p)k b

0 1

]
is an isomorphism from G to the group of matrices{[

a b
0 1

]
: a ∈ 1 + pR, b ∈ R

}
. (47)

12.1.1 Automorphisms of the Heisenberg group

Let p > 2 and let H be the Heisenberg group (46), with center

Z :=

1 0 ∗
0 1 0
0 0 1

 .
The automorphism group Aut(H) preserves Z and therefore acts on H/Z ' (Z/pZ)2. Thus we get a
map

Aut(H) −→ Aut(H/Z) ' GL2(p).

Proposition 12.3 This mapping fits into a split exact sequence

1 −→ H/Z −→ Aut(H) −→ Aut(H/Z) −→ 1

and Aut(H) ' (Z/pZ)2 o GL2(p) is the affine group of the plane over Z/pZ.

Proof: Let

x =

1 1 0
0 1 0
0 0 1

 , y =

1 0 0
0 1 1
0 0 1

 , z =

1 0 1
0 1 0
0 0 1

 .
Then

zcybxa =

1 a c
0 1 b
0 0 1

 ,
and H has the presentation

H = 〈x, y, z| xp = yp = 1, [x, y] = z, xz = zx, yz = zy〉.

From this (or matrix multiplication) we derive the formulas

(zcybxa)(zc
′
yb
′
xa
′
) = zab

′+c+c′yb+b
′
xa+a′ ,

(zcybza)−1 = zab−cy−bx−a,
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[zcybxa, zc
′
yb
′
xa
′
] = zab

′−ba′ .

The isomorphism H/Z ' (Z/pZ)2, sends (the coset mod Z of) zcybxa 7→ (a, b). We now prove
exactness of the sequence

1 −→ H/Z
ι−→ Aut(H) −→ Aut(H/Z) −→ 1, (48)

where ι : h 7→ ιh ∈ Aut(H), with ιh(h′) = hh′h−1, is the action of H on itself by inner automor-
phisms. Since H/Z is abelian, ιh induces the trivial automorphism on H/Z. Conversely, suppose
σ ∈ Aut(H) is trivial on H/Z. Then there are c, c′ ∈ Fp such that

σ(x) = zcx, σ(y) = zc
′
y.

Let h = y−cxc
′ . One checks that ιh(x) = zcx, ιh(y) = zc

′
y, so σ = ιh. Hence the sequence (48) is

exact in the middle.

We next prove that Aut(H) → Aut(H/Z) = GL2(p) is surjective. Let A =

[
a b
c d

]
∈ GL2(p). The

above commutation formula shows that

[ybxa, ydxc] = zdet(A).

Since every non-identity element has order p (here we are using p > 2), the elements ybxa, ydxc, zdetA

satisfy the relations of x, y, z. Hence there is a homomorphism α : H → H such that

xα = ybxa, yα = ydxc, zα = zdetA.

We must show that α is injective (hence is bijective). Since detA is invertible in Fp, kerα ∩ Z = 1.
Hence kerα injects into the kernel of A in G/Z, which is trivial. This finishes the proof of exactness
in (48).

However, the function A → α just described is only a set-theoretic splitting; it is not a group homo-
morphism. In fact we could modify the definitions of xα and yα by multiplying by arbitrary elements
of Z and the relations of H would still be satisfied. It turns out we can make such a modification to get
a group-theoretic splitting, namely if we redefine α to be

xα = zab/2ybxa, yα = zcd/2ydxc, zα = zad−bc (49)

(note that ab/2, cd/2 are taken in Z/pZ, where 2 invertible) then if A,B ∈ GL2(p) correspond to α, β
via (49), one can check that

(xα)β = xαβ, (yα)β = yαβ,

so that the new map A→ α is a group homomorphism, where Aut(H) acts via the right on H .

There is one more detail to check, that the action of Aut(H/Z) on H/Z in the semidirect product
arising from the splitting just described coincides with the action (by right multiplication) of GL2(p)
on (Z/pZ)2. We leave this as an exercise. �
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12.2 Higher powers of p

Let N(pr) be the number of isomorphism classes of groups of order pr. We have found

r N(pr) groups
1 1 Cp
2 2 Cp × Cp, Cp2
3 5 C3

p , Cp2 × Cp, Cp3 , U3(p), (47)

The case of p3 relied in a straightforward way on the classification for p2. One might imagine that
all p-groups could be classified inductively in a similar way. The case of p4 is much harder, but still
accessible to non-experts, at least for p = 2.

We give here the classification of groups of order 16 15. There are 14 groups of order 16:

• five abelian groups: C4
2 , C4 × C2

2 , C4 × C4, C8 × C2, C16;

• two direct products: D4 × C2, Q8 × C2.

• the dihedral group D8 = C8

−1
o C2

16

• the quasidihedral group QD16 = C8

3
o C2;

• another semidirect product C8

5
o C2;

• the unique nonabelian semidirect product C4oC4;

• the unique nonabelian semidirect product (C2 × C2) o C4;

• the unique nontrivial semidirect product Q8 o C2;

• the generalized quaternion group Q16;

Of these groups only D8, QD16 and Q16 have maximal class 3; these groups have centers of order two,
and their quotients by their centers are D4. We will return to this.

It was also known in the 19th century that for p > 2 there are 15 groups of order p4.

So far, it seems the number of p-groups of a given order does not depend much on p. However, in the
last decade it has been found 17 that

N(p5) =


2p+ 61 + 2(3, p− 1) + (4, p− 1) if p > 3

67 if p = 3

51 if p = 2,

15For a proof, see The groups of order sixteen made easy, Marcel Wild, Bulletin of the A.M.S. 2005.
16The notation Cn

k
o Cm means the generator of Cm acts by the kth power on Cn.

17See the talk by B. Eick ”The classification of p-groups by coclass”, http://homeweb1.unifr.ch/ciobanul/pub/beamer.pdf.
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and

N(p6) =


3p2 + 39p+ 344 + 24(3, p− 1) + 11(4, p− 1) + 2(5, p− 1) if p > 3

504 if p = 3

267 if p = 2.

We also have mentioned that
N(210) = 49 487 365 422.

It seems hopeless to classify p-groups whose order is a given power of p, but the fact that these re-
markable values of N(pr) have recently been found indicates great progress in the classification of
p-groups.

A big breakthrough came when people looked at groups of maximal nilpotence class, and found trees
of infinite families of groups.

12.3 Projective limits and pro-p groups

Suppose we have a sequence of groups (or rings) Xn, indexed by positive integers n, along with
homomorphisms fn : Xn → Xn−1 for each n ≥ 2. Thus we have an infinite sequence of groups
(or rings) and maps:

· · · −→ Xn
fn−→ Xn−1 −→ · · · −→ X3

f3−→ X2
f2−→ X1.

The projective limit of the system (Xn, fn) 18 is the set of sequences

lim←−
n

Xn := {(x1, x2, . . . ) : xn ∈ Xn, f(xn) = xn−1 ∀n ≥ 2},

under componentwise group (or ring) operations.

The projective limit X = lim←−nXn comes with a system of canonical projection maps

πn : X −→ Xn, πn(x) = xn.

The quotients Xn may be regarded as successive approximations to, or shadows of the single group X .

If all the Xn are finite groups, the projective limit X is called pro-finite. If p is a prime and all the Xn

are p-groups, then X is called a pro-p group. The single group X describes an infinite family {Xn} of
finite p-groups.

The simplest example is when Xn = Z/pnZ and fn is the natural projection

fn : Z/pnZ −→ Z/pn−1Z.

With these maps, the inverse limit
Zp := lim←−

n

Z/pnZ

18This is also called the inverse limit.
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is the ring of p-adic integers, whose additive group is a pro-p group.

For a non-abelian example, let Xn = D2n be the dihedral group of order 2n+1. Since the quotient
of D2n by its center is D2n−1 , we have quotient maps fn : Xn → Xn−1. The successive shadows
D2, D4, D8 of the 2-adic dihedral group

D := lim←−
n

D2n

can be seen in the sequence of subgroup lattices

•

• • •

•

•

• • •

∗ ∗ • ∗ ∗

∗

•

• • •

∗ ∗ • ∗ ∗

◦ ◦ ◦ ◦ ∗ ◦ ◦ ◦ ◦

◦

If (Xn, fn) and (Yn, gn) are two projective systems, and we have for each n a homomorphism

hn : Xn −→ Yn

such that hn−1 ◦ fn = gn ◦ hn then we get a homomorphism

h : lim←−
n

Xn −→ lim←−
n

Yn, (xn) 7→ (h(xn)).

Let Yn = {z ∈ C× : z2n = 1} with maps gn(z) = z2. Let hn : Z/2nZ→ Yn be the isomorphism

hn([x]) = exp(2πi/2n).

Then we have an isomorphism
h : Z2

∼−→ Y := lim←−
n

Yn

such that multiplication by −1 on Z2 corresponds to inversion on Y . It follows that the 2-adic dihedral
group is a semidirect product

D = Z2 o C2,

where the nontrivial element of C2 acts on Z2 by negation.
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12.4 Toward the classification of p-groups

Let G have order pn+1 and maximal nilpotence class n. The ascending central series for G must have
the form

Z1 < Z2 < · · · < Zn−1 < Zn = G,

where |Zi| = pi for i < n. In particular the center Z1 = Z(G) has order p. The group H = G/Z(G)
has order pn and nilpotence class n− 1, which is again maximal. We indicate this relation between G
and H by an arrow G→ H .

Let G(p, 1) be the directed graph whose vertices are the isomorphism classes of finite p-groups of
maximal nilpotence class, having edges G→ H when G/Z(G) ' H , as above.

We will draw this graph for p = 2. Let

Xn = D2n , Yn = Q2n+1 , Zn = QD2n+1

be the dihedral, generalized quaternion and quasidihedral groups of order 2n+1. For small n we have
X1 = C2

2 , Y1 = C4 and Z2 = Y2 = Q8. Since the quotient of each of Xn, Yn, Zn by its center is Xn−1,
the graph G(2, 1) is

· · · X4
// X3

// X2
// X1

· · · Y4

==

Y3

==

Y2

==

Y1

· · · Z4

FF

Z3

FF

This graph is a tree with exactly one infinite path, over which the projective limit is the 2-adic dihedral
group D. The other groups are contained in branches Bn,k consisting of all groups to the left of and
distance at most k from Xn. The groups in G(2, 1) have different orders and nilpotence class, but they
all have the same coclass: IfG has order pr and nilpotence class c then its coclass is defined to be r−c.

For any prime p and integer c ≥ 1 one can define a coclass graph G(p, c) whose vertices are all the
p-groups of coclass c with an edge between G and H if there exists N E G with G/N ' H . The
p-groups of a given coclass c are then classified, at least qualitatively, via the structure of the graph
G(p, c), about which the following is known.

1. There are only finitely many infinite paths in G(p, c).

2. The projective limit over each infinite path in G(p, c) is an infinite pro-p group whose finite
quotients all have coclass c.

3. Every infinite pro-p group with all quotients of coclass c arises from an infinite path in G(p, c).

4. The groups in G(p, c) lie on branches, and these eventually become periodic.

98



For more details, see the talks online by Bettina Eick and her collaborators, along with the book The
structure of groups of prime-power order by Leedham-Green and McKay, two of the pioneers in this
new era of group theory.

13 Presentations of Groups

It is often convenient to represent group elements as “words” in a few symbols, having certain relations.
For example, the cyclic group Cn can be expressed as

Cn = 〈a | an = 1〉,

which is called a presentation of Cn. Here there is only one generator a, and one relation an = 1.

Now suppose G is a group generated by two elements a, b of order two. Let C = 〈ab〉 be the subgroup
of G generated by ab. Since a and b have order two, we have a(ab)a = ba = (ab)−1, and one checks
that every element of G can be written either as (ab)i or a(ab)i for some i ∈ Z. Thus, C has index two
in G and we have

G = C ∪ aC.
The multiplication in G is then completely determined by the order of C. If C is infinite, then we can
describe G via the presentations

G = 〈a, b | a2 = b2 = 1〉. (50)

If |C| = n <∞, we have an additional relation (ab)n = 1, so we write

G = 〈a, b | a2 = b2 = (ab)n = 1〉. (51)

These groupsG are isomorphic to the dihedral groupsD∞ andDn, respectively, where a and bmanifest
as reflections about adjacent lines. However, the presentations (50) and (51) express G independently
of any manifestation. This allows us to identifyG in other settings, wherever we find a group generated
by two elements of order two.

So we would like to view groups as generated by abstract symbols like a, b, c, . . . with certain relations
among the symbols such that every possible relation in the group is completely determined by the given
relations. To explain this precisely, we start with free groups, which are groups with no relations at all.

13.1 Free Groups

Let S be a set. The Free Group on S is the set F (S) consisting of an element e, and all formal
expressions sn1

1 s
n2
2 · · · s

n`
` where ` ≥ 1, the ni are nonzero integers, and s1, . . . , s` are elements of S

such that si 6= sj if |i− j| = 1. We multiply two such expressions according to the following rules.

• e is the identity element of F (S).

• For all s ∈ S we have sn · sm = sn+m if n+m 6= 0 and sn · s−n = e.
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• For distinct s, t ∈ S we have sn · tm = sntm.

• Inductively, we have

(sn1
1 s

n2
2 · · · s

n`
` )·(tm1

1 tm2
2 · · · t

mk
k ) =


sn1

1 s
n2
2 · · · s

n`
` t

m1
1 tm2

2 · · · t
mk
k if s` 6= t1

sn1
1 s

n2
2 · · · s

n`+m1

` tm2
2 · · · t

mk
k if s` = t1 and n` +m1 6= 0

(sn1
1 s

n2
2 · · · s

n`−1

`−1 ) · (tm2
2 · · · t

mk
k ) if s` = t1 and n` +m1 = 0

Proposition 13.1 Let f : S → G be a map from a set S to a group G. Then there is a unique extension
of f to a group homomorphism f̃ : F (S)→ G.

Proof: We define f̃(e) = 1 and

f̃(sn1
1 s

n2
2 · · · s

n`
` ) = f(s1)n1f(s2)n2 · · · f(s`)

n` .

This is a group homomorphism because the multiplication in G obeys the same rules as those above
for F (S), with si and ti replaced by f(si) and f(ti).

If f ′ is another extension of f then for all s ∈ S and integers n > 0 we have

f ′(sn) = f ′(s · · · s︸ ︷︷ ︸
n terms

) = f ′(s) · · · f ′(s)︸ ︷︷ ︸
n terms

= f ′(s)n = f(s)n = f̃(s)n,

while if n < 0 we have sn = (s−n)−1, so by what we just proved, we have

f ′(sn) = f ′((s−n)−1) = f ′(s−n)−1 = f̃(s−n)−1 = f̃((s−n)−1) = f̃(sn).

Finally, let s1, . . . s` ∈ S and take nonzero integers n1, . . . n`. Multiplying in F (S) we have

sn1
1 s

n2
2 · · · s

n`
` = (sn1

1 ) · (sn2
2 ) · · · (sn`` ),

so

f ′(sn1
1 s

n2
2 · · · s

n`
` ) = f ′(sn1

1 ) · f ′(sn2
2 ) · · · f ′(sn`` ) = f̃(sn1

1 ) · f̃(sn2
2 ) · · · f̃(sn`` ) = f̃(sn1

1 s
n2
2 · · · s

n`
` ),

and therefore f ′ = f̃ . Hence f̃ is the unique extension of f to a homomorphism from F (S) to G. �

Corollary 13.2 If S and T are sets and f : S → T is a function, then f extends uniquely to a group
homomorphism f̃ : F (S)→ F (T ).

Proof: By Prop. 13.1 the composite map ι : S → T → F (T ) extends uniquely to a homomorphism
ι̃ : F (S)→ F (T ). �

Corollary 13.3 If S and T are sets of the same cardinality and f : S
∼→ T is a bijection then f extends

uniquely to a group isomorphism f̃ : F (S)
∼→ F (T ).
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Consequently, for each positive integer n there is a unique (up to isomorphism) free group on n gener-
ators. We often denote this group by Fn.

Free groups abound in topology. Here are several related examples.

Example 1: If n = 1 then F1 ' Z. This is the fundamental group π1(C) of a circle C.

Example 2: Suppose |S| = 2, say S = {s1, s2}. We can visualize F (S) = F2 as the fundamental
group of the space X consisting of two circles C1 and C2 touching at a point p . Here si is the
counterclockwise (say) loop once around Ci starting at p, while s−1

i loops around Ci in the opposite
direction. A word like s3

1s
−2
2 s1 is a loop going three counterclockwise times around C1 then two

clockwise times around C2, then once counterclockwise time around C1. The generalization to a
bouquet of n circles all touching at a single point is the obvious one.

Example 3: Let X be a two-sphere punctured at n + 1 points. Then X retracts onto a bouquet of n
circles, so π1(X) ' Fn. More generally, let X be a closed orientable surface of genus g, punctured at
n+ 1 points. Then π1(X) ' F2g+n.

Example 4: Let G be a subgroup of SL2(Z) of finite index such G has no elements of finite order,
other than 1. Then G acts on the upper-half plane H = {z ∈ Z : =z > 0} by linear fractional
transformations: [

a b
c d

]
· z =

az + b

cz + d
.

The quotient X = H/G is a finitely punctured Riemann Surface with π1(X) ' G. Therefore Γ is free.

Example 5: A tree is a contractible one dimensional simplicial complex (informally, a graph without
loops). Any group acting freely on a tree is free.

Example 6: Any subgroup of a free group is free. The proof may be sketched thus: Given a free group
F , one constructs a tree TF on which F acts freely. Then any subgroup F ′ < F also acts freely on TF ,
hence F ′ is free as well.

13.2 Generators and Relations

Let S be a set, and let R be a subset of F (S). Let N(R) be the smallest normal subgroup of F (S)
containing R. More precisely, N(R) is the intersection of all normal subgroups of F (S) containing R.
We define a group

〈S | R〉 := F (S)/N(R).

This is the largest group with generators S and relations R, in the following sense.

Let G be any group and let S be a subset of G. By Prop. 13.1, the inclusion map ι : S → G extends
uniquely to a group homomorphism

ι̃ : F (S) −→ G.
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Proposition 13.4 (Mapping Property) Let R ⊂ F (S) be a subset contained in ker ι̃ and let π :
F (S) → 〈S | R〉 be the quotient map. Then there is a unique homomorphism φS,R : 〈S | R〉 → G
such that φS,R ◦ π = ι̃.

Proof: By assumption, the elements of R in F (S) belong to the kernel of ι̃. Hence N(R) ≤ ker ι̃, so
ι̃ induces a homomorphism 〈S | R〉 → G, which is the desired map φS,R. �

Usually we take S to be a generating set for G, in which case the map φS,R in Prop. 13.4 is surjective.
If φS,R is an isomorphism, we say that 〈S | R〉 is a presentation of G, or more informally, that G is
“generated by S with the relations R”. Given a group G with generators S, there is always some subset
R ⊂ F (S) such that φS,R is an isomorphism. For example, we could take R to be the full kernel of ι̃.
In practice, we would like S and R to be small and simple. However, it has been proved that there is
no algorithm that decides, for a given group G with generating set S and relations R, whether or not
φS,R is an isomorphism. Indeed this is so even for G = {1}! It takes a combination of work, skill and
luck to find a presentation for a given group G, but once found, a presentation can be very useful.

Example 1: For 1 ≤ n < ∞, the dihedral group Dn has presentation with generating set S = {a, b}
and relations R = {a2, bn, abab}. We usually write R in terms of equations that hold in the group, as
follows:

Dn = 〈a, b | a2 = bn = 1, aba = b−1〉. (52)

To prove that (52) is correct, let Γ = 〈a, b | a2 = bn = 1, aba = b−1〉. Let r ∈ Dn be a reflection
and let t ∈ Dn be a rotation of order n. Then rtr = t−1. Hence by the mapping property, we have a
surjective homomorphism φ : Γ � Dn such that φ(a) = r and φ(b) = t. This is always the easy step
towards verifying a presentation. The tricky part is to prove that φ is injective. In this case, we note
that the relations in Γ allow us to write every element in the form bi or abi, 19 with 1 ≤ i ≤ n. This
shows that |Γ| ≤ 2n = |Dn|, so φ is injective and (52) is proved.

The same presentation works for D∞; we just drop the relation bn = 1:

D∞ = 〈a, b | a2 = 1, aba = b−1〉. (53)

To prove this we again let Γ = 〈a, b | a2 = 1, aba = b−1〉. Let r, r′ be reflections about adjacent
parallel lines `, `′ in the plane, so that t := rr′ is the translation by twice the distance from ` to `′. Then
rtr = t−1, so we have a surjection φ : Γ � D∞ such that φ(a) = r and φ(b) = t. Now Γ and D∞
are infinite groups, so we cannot count orders as we did previously. But every element of Γ can still
be expressed in the form bi or abi for some i ∈ Z, and since ti 6= 1 6= rti in D∞, it follows that φ is
injective.

13.3 A presentation of the symmetric group

A presentation for a given finite group G can often be found as follows. We first find a set S of
generators of G, and some relations R among the generators that appear to determine all the relations
in G. Let Γ = 〈S | R〉. We then have a surjection φ : Γ � G. To prove that φ is an isomorphism

19Strictly speaking, we should write something like b̄i and āb̄i, where ā and b̄ are the images of a and b in Γ.
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we try to show that |Γ| ≤ |G|. Suppose we find a subgroup H ≤ Γ whose order is known, say by
induction. It then suffices to show that |Γ/H| ≤ |G|/|H|. This will succeed if we can find a set
X = {aH, bH, . . . } ⊂ Γ/H , such that |X| ≤ |G|/|H| and such that sX = X for every s ∈ S.

We illustrate with the group G = Sn+1.

Lemma 13.5 The group Sn+1 is generated by {s1, . . . , sn}, where si = (i i+ 1).

Proof: We use induction on n. For n = 1 we have S2 = {e, (1 2)} = 〈s1〉, so the result holds in
this case. Assume that Sn is generated by {s1, . . . , sn−1}, and let G = 〈s1, . . . , sn〉 = 〈Sn, sn〉. Let
τ ∈ Sn+1 be arbitrary, and set k = τ(n+ 1). The 2-cycle

sksk+1 · · · sn−1snsn−1 · · · sk+1sk = (k n+ 1)

belongs to G, and (k n + 1)τ fixes n + 1. Since Sn is the stabilizer of n + 1 in Sn+1, and Sn ≤ G, it
follows that (k n+ 1)τ ∈ G, so τ ∈ G. Hence G = Sn+1. �

For 1 ≤ i, j ≤ n define

mij =


1 if i = j

2 if |i− j| > 1

3 if |i− j| = 1.

(54)

Let Γn = 〈S | R〉 be the group with generating set S = {s1, . . . , sn} and relations

R = {(sisj)mij : 1 ≤ i, j ≤ n}.

More explicitly, these relations are

s2
i = 1 and sisi+1si = si+1sisi+1 for all 1 ≤ i ≤ n

and
sisj = sjsi if |i− j| ≥ 2.

Proposition 13.6 The map si 7→ σi extends to an isomorphism Γn
∼−→ Sn+1 so we have the presenta-

tion
Sn+1 ' 〈s1, . . . , sn | (sisj)mij = 1 ∀ 1 ≤ i, j ≤ n〉.

Proof: The 2-cycles σi ∈ Sn+1 satisfy the same relations as the generators si ∈ Γn, so there is a
surjective homomorphism

φ : Γn � Sn+1,

such that φ(si) = σi for all 1 ≤ i ≤ n. It suffices to show that |Γn| ≤ (n+ 1)!.

For n = 1, we have Γ1 = 〈s1 | s2
1 = 1〉 ' S2, so the result is true. Assume that |Γn−1| ≤ n!. Let

t1, . . . , tn−1 be the generators of Γn−1. Sending ti 7→ si+1 sends Γn−1 onto the subgroup H ⊂ Γn
generated by s2, . . . , sn. Note that |H| ≤ n!.
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Consider the n+ 1 cosets

H0 = H, H1 = s1H, H2 = s2s1H, , . . . , Hn = snsn−1 · · · s1H.

I claim that for 1 ≤ i ≤ n we have

siHi = Hi−1, siHi−1 = Hi, siHj = Hj if j 6= i, i− 1. (55)

The first two are clear from the definitions of Hi and the relation s2
i = 1. For the last equation, suppose

first that j ≤ i− 2. Then

siHj = sisjsj−1 · · · s1H = sjsj−1 · · · s1siH = sjsj−1 · · · s1H = Hj.

Suppose next that j ≥ i+ 1. Then (writing ṡi for the generator which moves)

siHj = ṡisjsj−1 · · · si+1sisi−1 · · · s1H

= sjsj−1 · · · ṡisi+1si si−1 · · · s1H

= sjsj−1 · · · si+1siṡi+1 si−1 · · · s1H

= sjsj−1 · · · si+1sisi−1 · · · s1ṡi+1H

= sjsj−1 · · · si+1sisi−1 · · · s1H

= Hj,

as claimed. Since s1, . . . , sn generate Γn, it follows that Γn preserves the set {H0, H1, . . . , Hn} ⊂
Γn/H . By transitivity, this containment must be equality. Hence |Γn/H| ≤ n + 1 and |Γn| ≤ (n +
1)|H| ≤ (n+ 1)n! = (n+ 1)!. �

13.4 Coxeter groups and reflection groups

A Coxeter system is a pair (G,S) where G is a group with generating set S ⊂ G and presentation
G ' 〈S|R〉 where the relation set R contains s2 for all s ∈ S and the remaining words in R have the
form (ss′)m(s,s′) for distinct elements s, s′ ∈ S and integers m(s, s′) ≥ 2. In particular, the elements of
S all have order two.

We also write m(s, s′) = ∞ if ss′ has infinite order, but this does not appear in R. A group G is a
Coxeter group if G is generated by a set S ⊂ G of elements of order two such that (G,S) is a Coxeter
system. The rank of the Coxeter system (G,S) is the cardinality of the set S.

The Coxeter diagram of (G,S) is the graph with vertex set S, and edge set {{s, s′} : m(s, s′) ≥ 3},
with each edge {s, s′} labelled by the integer m(s, s′). Thus, two vertices s, s′ have no edge between
them exactly when s, s′ commute, and

◦
s

m—-◦
s′

means that ss′ has order m = m(s, s′) ≥ 3. The most common Coxeter systems have small values of
m(s, s′), where the following alternate notation is used

◦
s
—◦

s′
if m(s, s′) = 3

◦
s
==◦

s′
if m(s, s′) = 4

◦
s
≡≡◦

s′
if m(s, s′) = 6
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A Coxeter system (G,S) is irreducible if S is not a disjoint union S = S ′ ∪ S ′′ with m(s′, s′′) = 2 for
all s′ ∈ S ′ and s′′ ∈ S ′′. In other words (G,S) is irreducible if its graph is connected.

The classification of finite irreducible Coxeter groups is given below. Each has a label of the form Xn
where the rank n is the number of vertices in the Coxeter graph. Beware that An is Sn+1 and not the
alternating group. And Dn is not the dihedral group Dn, but is the semidirect product of Sn with the
group +C

n
2 = {(ε1, . . . , εn) ∈ {±1}n :

∏
εi = 1}.

Coxeter label Coxeter diagram Group structure
An ◦—-◦—-◦ · · · ◦—-◦ Sn+1

Bn ◦—-◦—-◦ · · · ◦—- ◦==◦ Cn
2 o Sn

Dn ◦ ◦ · · · ◦ ◦ ◦

◦

+C
n
2 o Sn

G2 ◦≡≡◦ D6

F4 ◦—-◦==◦—-◦ D4 o S3

E6 ◦ ◦ ◦ ◦ ◦

◦

order = 51840

E7 ◦ ◦ ◦ ◦ ◦ ◦

◦

order = 2903040

E8 ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

order = 696729600

I2(m),m 6= 2, 3, 4, 6 ◦ m—-◦ Dm

H3 ◦ 5—◦—◦ A5 × C2

H4 ◦ 5—◦—◦—◦ (SL2(5) · SL2(5)) o C2

Coxeter groups are a generalization of Euclidean geometry to higher dimensions, in the following
sense.

Let V = Rn with the usual dot product u · v. A reflection on V is an element r ∈ GLn(R) fixing a
hyperplane H pointwise and negating the line perpendicular to H . If u is a unit vector perpendicular
to H then r is given by

r(v) = v − 2(u · v)u.

A real reflection group of rank n is a subgroup G of GLn(R) generated by reflections. We say G is
irreducible if no proper subspace of V is preserved by G.

It turns out that finite Coxeter groups are finite reflection groups. More precisely we have the following.
20

20For proofs, and much more information about Coxeter groups and reflection groups, see Bourbaki, Lie groups and Lie
algebras chapters 4,5,6.
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Theorem 13.7 Let (G,S) be an irreducible Coxeter system of rank n such that G is finite. Then there
is an injective homomorphism ρ : G→ GLn(R) such that the following hold.

1. ρ(s) is a reflection for each s ∈ S.

2. The image ρ(G) ⊂ GLn(R) is an irreducible reflection group of rank n.

3. Every finite, irreducible and reflection-generated subgroup of GLn(R) is ρ(G) for a unique irre-
ducible Coxeter system (G,S) of rank n.

13.5 Presentations of alternating groups

We can use the presentation of Sn+1 to get a presentation of An+1, as follows. Let

αi = (1 2)(i i+ 1) = σ1σi, for 2 ≤ i ≤ n.

Now let Γn be the group with generators a2, . . . , an having relations

a3
2 = a2

i = 1 for 3 ≤ i ≤ n

and
(aia

−1
j )mij = 1 for all i 6= j,

where mij are as in (54).

Proposition 13.8 The map ai 7→ αi extends to an isomorphism Γn
∼−→ An+1, so we have the presen-

tation

An+1 ' 〈a2, . . . , an : a3
2 = a2

3 = · · · = a2
n = 1, (aia

−1
j )mij = 1 ∀ i 6= j ∈ [2, n]〉.

Proof: We outline the proof, leaving some calculations to the reader. The elements bi = a−1
i ∈ Γn

satisfy the same relations as the elements ai. Hence there is an automorphism ϑ : Γn → Γn such that
ϑ(ai) = a−1

i .

Let Γ̃n be the set 〈ϑ〉 × Γn with multiplication

(γ, ϑi)(γ′, ϑj) = (γ · ϑi(γ), ϑi+j)21

In Γ̃ let s1 = (ϑ, 1) and si = (ϑ, ai) for 2 ≤ i ≤ n. Then the {si} generate Γn and satisfy the
same relations as {σi} in Sn+1. Hence we have a surjection φ : Sn+1 → Γ̃n such that φ(σi) = si.
Reciprocally, the elements s1, α2, . . . , αn ∈ Sn+1 satisfy the same relations as {ϑ, a2, . . . , an} in Γ̃n.
Hence there is map ψ : Γ̃n → Sn+1 which is the inverse of φ. One checks that ψ(Γn) = An+1 and this
completes the proof. �

21That is, Γ̃n = Γ o 〈ϑ〉, see section 14.2.
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13.5.1 A presentation of A5

The presentation of An in Prop. 13.8 has many relations, which can be inefficient. The following
well-known presentation of A5 has fewer relations.

Proposition 13.9 We have A5 ' 〈a, b | a5 = b3 = (ab)2 = 1}.

Proof: Let Γ = 〈a, b | a5 = b3 = (ab)2 = 1〉. We first find elements α, β ∈ A5 obeying the same
relations as a, b. We may assume α = (1 2 3 4 5), and β = (i j k) is a 3-cycle such that αβ has
order two. In A5, this means αβ is a 221 cycle, so has a unique fixed-point. Making this fixed-point
1, we have β = (1 5 k). To have this be the only fixed-point of αβ we must have k = 3. Indeed,
(1 2 3 4 5)(1 5 3) = (2 3)(4 5). Hence β = (1 5 3) works, and we have a homomorphism φ : Γ→ A5

sending a 7→ α, b 7→ β. The image of φ contains elements of orders 2, 3, 5, hence is divisible by 30,
but A5 is simple, hence has no subgroups of order 30, so φ is surjective.

It remains to show that |Γ| ≤ 60. Consider the subgroups A = 〈a〉 and B = 〈b〉 of Γ. Since a5 = 1
and φ(a) = α 6= 1, it follows that |A| = 5, and likewise |B| = 3. It suffices to show that |Γ/A| ≤ 12.
This will be achieved if we can exhibit a set of 12 cosets gA which is closed under multiplication by a
and b.

The orbits of A on Γ/A have size 1 or 5, since 5 is prime. Since 3 and 5 are relatively prime it
follows that no conjugate of b lies in A, which means that B acts freely on Γ/A. We number the cosets
according to a-orbits as follows.

1 = A

2 = bA, 3 = abA, 4 = a2bA, 5 = a3bA, 6 = a4bA,

7 = a4ba4bA, 8 = ba4bA = b · 6, 9 = aba4bA, 10 = a2ba4bA, 11 = a3ba4bA,

12 = ba3ba4bA = b · 11,

We do not need to know if these cosets are distinct, since we only seek an upper bound on |Γ/A|. That
1, . . . ,12 are indeed distinct will result from the proof that they are closed under multiplication by a
and b.

In the following diagram, a solid arrow i → j means that a · i = j, and 	 i means a · i = i. We will
show that the b-action is given by the dashed arrows, where i⇒ j means a · i = j = b · i.
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Since (ab)2 = 1 and b−1 = b2, we have the relation aba = b2, hence

b · 2 = b2A = abaA = abA = 3.

Since b · 1 = 2 and b has order three, we have

b · 3 = b3 · 1 = 1,

so {1,2,3} is a b-orbit. Inverting the relation aba = b2, we get b = a−1b−1a−1. Using the known b−
orbit {1,2,3} we compute

b · 4 = a−1b−1a−1 · 4 = a−1b−1 · 3 = a−1 · 2 = 6.

Since b · 6 = 8, it follows that {4,6,8} is a second b-orbit. Then we have

b · 5 = a−1b−1a−1 · 5 = a−1 · 8 = 7,

b · 9 = a−1b−1a−1 · 9 = a−1 · 6 = 5,

so {5,7,9} is a third b-orbit. Finally,

b · 10 = a−1b−1a−1 · 10 = a−1 · 7 = 11,

and since b · 11 = 12, it follows that {10,11,12} is the fourth and final b-orbit.

It remains only to check that a fixes 12:

a · 12 = aba3b · a4b1 = aba3b · a5 = aba · a · aba5 = b−1ab−15 = b−1a9 = b−110 = 12.

This completes the proof that the cosets 1, . . . ,12 exhaust |Γ/A|. It follows that |Γ/A| = 12 and
Γ ' A5 as claimed. �

Corollary 13.10 Let G be a group containing nontrivial elements x, y satisfying the relations

x5 = y3 = (xy)2 = 1.

Then the subgroup of G generated by {x, y} is isomorphic to A5.
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Proof: By Prop. 13.9 and the Mapping Property Prop. 13.4, there is a homomorphism φ : A5 → G
sending a 7→ x, b 7→ y. And φ is nontrivial since x, y are nontrivial. Since A5 is simple, φ is injective.
Hence A5 is isomorphic to the image of φ, which is the subgroup generated by x, y. �

13.5.2 The exceptional isomorphism PSL2(9) ' A6

Here is an illustration of the use of Cor. 13.10. The field F9 of nine elements can be constructed
from the field F3 = Z/3Z just as C is constructed from R, namely F9 = {a + bi : a, b ∈ F3} with
multiplication determined by the rule i2 = −1. In SL2(9) the matrices

X =

[
1 + i i

1 1

]
, and Y =

[
1 1− i
0 1

]
satisfy X5 = −I , Y 3 = I , (XY )2 = −I . Hence the images x, y of X, Y in PSL2(9) satisfy

x5 = y3 = (xy)2 = 1

and therefore x, y generate a subgroupH ≤ PSL2(9) withH ' A5. Since |PSL2(9)| = 9(92−1)/2 =
360 and |H| = 3 · 4 · 5 = 60, we have [PSL2(9) : H] = 6. The action of PSL2(9) on the six cosets of
H gives a homomorphism

ψ : PSL2(9) −→ S6,

which is injective with image in A6, since PSL2(9) is simple. Since |A6| = 3 · 4 · 5 · 6 = 360, it follows
that ψ gives an isomorphism

ψ : PSL2(9)
∼−→ A6,

which is one of the exceptional isomorphisms between linear and permutation groups.

13.6 The Platonic Groups

The groups A4, S4 and A5 have presentations

A4 ' 〈a, b | a3 = b3 = (ab)2 = 1〉
S4 ' 〈a, b | a4 = b3 = (ab)2 = 1〉
A5 ' 〈a, b | a5 = b3 = (ab)2 = 1〉.

(56)

We verified this presentation of A5 above and the others can be done in the same way. The triples
(2, 3, 3), (2, 3, 4), (2, 3, 5) also arise from the Platonic solids, as follows.

Let G be a finite group acting on a set X , with the following two properties:

1. For all x ∈ X the stabilizer Gx is nontrivial.

2. Any nonidentity element of G has exactly two fixed-points in X .
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What can we say about G? Let |G| = n, let O1, . . . ,Or be the distinct orbits of G in X , and let mi be
the order of the stabilizer of a point in Oi. By the Burnside Counting Formula we have

r∑
i=1

1 =
1

n

∑
g∈G

|Xg| = 1

n
(|X|+ 2(n− 1)) =

1

n

[
r∑
i=1

n

mi

+ 2(n− 1)

]
,

so
r∑
i=1

(
1− 1

mi

)
= 2− 2

n
. (57)

We have r > 1, lest

1 >
1

mi

= 2− 2

n
≥ 1.

And since 1− 1/mi ≥ 1/2, we have
r

2
≤ 2

(
1− 1

n

)
,

implying r ≤ 3. Hence r = 2 or r = 3.

If r = 2 we have
1

m1

+
1

m2

=
1

n
+

1

n
,

which means that m1 = m2 = n, so X has just two elements and G acts trivially on X .

We arrive at r = 3, and
1

m1

+
1

m2

+
1

m3

= 1 +
2

n
.

Index so that m1 ≤ m2 ≤ m3. We cannot have m1 ≥ 3, lest the left side be ≤ 1. So m1 = 2 and

1

m2

+
1

m3

=
1

2
+

2

n
.

We cannot have m2 ≥ 4, lest the left side be ≤ 1/2. If m2 = 2 then n = 2m3. If m2 = 3 we have

1

m3

=
1

6
+

2

n
,

so that m3 = 3, 4, 5 with n = 12, 24, 60, respectively. To summarize, we have the following possibili-
ties:

r m1 m2 m3 n

2 n n − n
3 2 2 m 2m
3 2 3 3 12
3 2 3 4 24
3 2 3 5 60
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Now assume that G is a finite group acting by by rotations on the two-dimensional sphere S2. Let
X = {x ∈ S2 : Gx 6= 1}. Then X consists of antipodal pairs {x,−x} on the axes of rotation of
the non-trivial elements of G. For the first two rows of the table above we have G cyclic or dihedral,
respectively.

For (m1,m2,m3) = (2, 3, 3), G has 3 elements of order 2 and 8 elements of order three. Since a
2-Sylow subgroup of G has order four and G has no elements of order four, the 2-Sylow must be
K4, and is unique, hence normal in G. But the 3-Sylows are not unique, hence are not normal. It
follows that G ' A4. A 3-Sylow is the stabilizer Gx of a G-orbit {x, y, z, w} in S2 and permutes
{y, z, w} transitively. Hence each of y, z, w have the same distance from x. Likewise Gy permutes
x, z, w transitively, so these points all have the same distance from y. It follows that x, y, z, w are the
vertices of a tetrahedron, whose symmetry group is G.

For (m1,m2,m3) = (2, 3, 4), G has 6 + 3 elements of order two, 8 elements of order three and 6
elements of order four. Hence G has four 3-Sylow subgroups and we have a homomorphism π : G→
S4. If P and Q are distinct 3-Sylows then |N(P ) ∩ N(Q)| ≤ 2, so | kerπ| ≤ 2. If | kerπ| = 2 then
kerπ is central in G and imπ = A4. Since there are eight involutions outside kerπ we would have
at least 4 involutions in A4, which is not the case. So kerπ = 1 and π : G → S4 is an isomorphism.
As above, one can show that the six points in S2 with stablizer C4 form the vertices of an octahedron
whose symmetry group is G.

For (m1,m2,m3) = (2, 3, 5), we have |G| = 60. We show that G is simple. There are 24 elements of
order five, hence G has six Sylow 5-subgroups. Let N be a non-trivial normal subgroup of G. If |N |
is divisible by 5 then all six 5-Sylows are in N , so |N | ≥ 1 + 24, so |N | ≥ 30. Therefore N contains
an element of order two. But G has fifteen conjugate elements of order two, so |N | ≥ 25 + 15 > 30,
hence N = G, and we have proved that G is simple. By Cor. 10.20 it follows that G ' A5. There is a
G-orbit of 12 points in S2 whose stabilizers have order 5. One can show that these are the vertices of
an icosahedron.

14 Building new groups from old

14.1 Automorphisms

Recall that an automorphism of a group G is an isomorphism f : G → G from G to itself. The set
Aut(G) of automorphisms of G forms a group under composition, with identity element IG, given by
IG(g) = g for all g ∈ G.

There are various kinds of automorphisms; some automorphisms come from G itself: For each g ∈ G,
let cg : G→ G be the function given by cg(x) = gxg−1. It is easy to check that cg ∈ Aut(G) and that

c : G→ Aut(G)

is a group homomorphism. In general, the homomorphism c is neither injective nor surjective (see
examples below). The image Inn(G) = {cg : g ∈ G} of c is the group inner automorphisms of G.
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In general, the kernel of c is the center Z(G) of G, and c induces an isomorphism

G/Z(G) ' Inn(G) ⊂ Aut(G).

You can check that if α ∈ Aut(G), then

α ◦ cg ◦ α−1 = cα(g) ∀ g ∈ G.

Therefore Inn(G) is a normal subgroup of Aut(G); the quotient

Out(G) := Aut(G)/ Inn(G)

is the outer automorphism group of G. All of these groups fit into the exact sequence

1 −→ Z(G) −→ G
c−→ Aut(G) −→ Out(G) −→ 1.

Typically, outer automorphisms of G arise from conjugation in a larger group G̃, in which G / G̃. This
is why

Aut(An) = Sn,

for n 6= 6 (see table below). Often one needs to know which subgroups of G are normalized by G̃.
This leads to the notion of characteristic subgroup: We say that a subgroup H ≤ G is characteristic
in G if α(H) = H for every α ∈ Aut(G). The center Z(G) and commutator [G,G] are examples of
characteristic subgroups in any group G.

If H is characteristic in G then H is normal in G, but not conversely. For example, if G = C2 × C2

then every subgroup is normal, but Aut(G) = GL2(2) moves the subgroups of order two G, so these
are not characteristic. In G = Q8 the subgroups 〈i〉, 〈j〉, 〈k〉 have index two, hence are normal in G,
but there is an automorphism α ∈ Aut(Q8) of order three, sending i 7→ j 7→ k 7→ i. Hence none of
these subgroups are characteristic.
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Examples of Automorphism groups

G Z(G) Aut(G) Inn(G) Out(G)

Z Z C2 1 C2

Zn Zn GLn(Z) 1 GLn(Z)

Cn Cn (Z/nZ)× 1 (Z/nZ)×

Cn
p Cn

p GLn(p) 1 GLn(p)

Sn, n 6= 2, 6 1 Sn Sn 1

S6 1 S6 · 2 S6 C2

An, n 6= 2, 3, 6 1 Sn An C2

A6 1 S6 · 2 A6 C2 × C2

D4 C2 D4 D2 C2

Q8 C2 S4 D2 S3

The notation Aut(S6) ' S6 · 2 means that Aut(S6) fits into an exact sequence

1 −→ S6
c−→ Aut(S6) −→ C2 −→ 1,

and similarly for A6. We will examine this exceptional case in the next section.

14.1.1 Automorphisms of Sn

An automorphism of a group G permutes the conjugacy classes in G, and the inner automorphisms
preserve each conjugacy class. If α ∈ Aut(G) and X, Y are conjugacy classes in G such that α(X) =
Y , then |X| = |Y | and the elements in Y have the same order as the elements in X .

Suppose α is an automorphism of the symmetric group Sn, for n ≥ 2. Then α sends the class X of
2-cycles in Sn to another class Y of elements of order two such that |Y | = |X| = n(n − 1)/2. There
is 1 ≤ k ≤ n/2 such that the elements in Y have cycle type [2k1n−2k]. One possibility is k = 1, which
means Y = X , as occurs for the inner automorphisms.

Suppose that k ≥ 2. There are n!/(k!2k(n − 2k)!) elements in Sn with cycle type [2k1n−2k], so we
must have

n(n− 1)

2
= |X| = |Y | = n!

k!2k(n− 2k)!
.
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We rewrite this equation as

k(2k − 2)(2k − 3) · · · 2 · 1 = (n− 2)(n− 3) · (n− 4)(n− 5) · · · (n− 2k + 2)(n− 2k + 1).

As 2k − 2 ≤ n− 2 and 2k − 4 ≤ n− 4 etc, we must have n = 2k and find that

n = 2(n− 3)(n− 5) · · · 3 · 1 ≥ 2(n− 3),

which implies that n = 6 and k = 3. We note that the classes [21111] and [222] in S6 both have 15
elements. We have proved the following.

Lemma 14.1 If Sn has an automorphism α which does not preserve the class of 2-cycles, then n = 6
and α sends the class of 2-cycles to the class of 222-cycles.

We next investigate the case k = 1.

Lemma 14.2 Suppose α ∈ Sn preserves the class of 2-cycles. Then α is inner.

Proof: 22 For each 2 ≤ r ≤ n there are ar, br ∈ {1, . . . , n} such that α(1 r) = (ar br). The order of
ar and br is not determined, and we will exploit this ambiguity.

We single out r = 2, and set a = a2, b = b2, so that α(1 2) = (a b). Let r ≥ 3. Since (1 r)(2 r) =
(1 2 r) has order three, we must have

α(1 r) · α(1 2) = (ar br)(a b)

also of order three. This means the intersection {ar, br} ∩ {a, b} consists of a single element. Hence
either ar ∈ {a, b} and br /∈ {a, b} or vice-versa. Let us switch ar and br if necessary so that
ar ∈ {a, b} and br /∈ {a, b} for all r ≥ 3.

It appears that whether ar = a or ar = b could depend on r. Suppose that for some r, s ≥ 3 we have
ar = a and as = b. Then

α(1 2 r) = α(1 r) · α(1 2) = (a br) · (a b) = (a b br),

and
α(1 2 s) = α(1 s) · α(1 2) = (b bs) · (a b) = (a bs b).

Now (1 2 r)(1 2 s) = (1 r)(2 s) has order two, so (a b br)(a bs b) must also have order two. But this is
impossible, for if br = bs then (a b br)(a bs b) = e, while if br 6= bs then (a b br)(a bs b) = (a bs br)
has order three.

This contradiction shows that either ar = a for all r ≥ 3 or ar = b for all r ≥ 3. We now switch a
and b, if necessary, so that ar = a for all r ≥ 3. Now α is conjugation by the permutation σ sending
1 7→ a, 2 7→ b, and r 7→ br for all r ≥ 3. �

22This is a rewrite of the proof by I. Segal, Bull. AMS 1940, vol 46, p. 565.
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14.2 Semidirect Products (external view)

Let G and H be groups, and suppose we are given a homomorphism ϕ : G→ Aut(H), sending g ∈ G
to the automorphism ϕg ∈ Aut(H). This is called an action of G on H via ϕ. We can then form a new
group H oϕ G, as follows. As a set, H oϕ G = H ×G is the direct product of the two sets G and H .
The multiplication is given by

(h, g) · (h′, g′) = (h · ϕg(h′), gg′), ∀h ∈ H, g ∈ G.

Note that H oϕ G = H ×G as groups exactly when ϕ is the trivial homomorphism.

We have injective homomorphisms

λ : H → H oϕ G, ρ : G→ H oϕ G,

given by λ(h) = (h, 1) and ρ(g) = (1, g). It is common to identify H = λ(H), and G = ρ(G), but for
clarity and brevity at this stage, we write H ′ = λ(H) and G′ = ρ(G). Please check that the following
hold:

1. H oϕ G = H ′G′;

2. H ′ ∩G′ = {1};

3. H ′ E (H oϕ G) and (H oϕ G)/H ′ ' G.

4. For g ∈ G and h ∈ H , we have ρ(g) · λ(h) · ρ(g)−1 = λ(ϕg(h)).

These formulas spell everything out completely, but they are cumbersome to use in practice, so one
resorts to a more compact notation, such as the following. We identify H = λ(H) and G = ρ(G), we
suppress ϕ, and we write HG instead of H oϕ G, with multiplication rule

hg · h′g′ = hϕg(h
′) · gg′.

Thus, the semidirect product construction makes it so that “conjugation by g” on H is the given auto-
morphism ϕg. This makes the multiplication rule easy to remember, and is shows how to recognize a
semidirect product.

Theorem 14.3 Let G be a group with subgroups H,K ≤ G having the following properties:

1. H E G;

2. G = HK;

3. H ∩K = {1}.

Then G ' H oϕ K, where ϕ : K → Aut(H) is given by ϕk(h) = khk−1 for all k ∈ K and h ∈ H .
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Proof: The product map H ×K → G, given by (h, k) 7→ hk, is a homomorphism from H ×ϕ K to
G, which is surjective by part 2 and injective by part 1. �

Example 1: The groups D4, A4 and S4

The group D2 = C2 × C2 has automorphism group

Aut(D2) = GL2(2) = S3.

The subgroups of S3 are isomorphic to C1, C2, C3 and S3 itself. Hence we have semidirect products of
D2 with each of these subgroups of S3, where ϕ is the inclusion map. In fact, we have

D2 o C1 ' D2

D2 o C2 ' D4

D2 o C3 ' A4

D2 o S3 ' S4.

As the right side is a chain of subgroups of S4, it suffices to verify the last line. Let K < S4 be the
subgroup fixing 4. Then K ' S3 and K does not contain any 22 − cycle, so K ∩ D2 = {1}. Hence
S4 = D2 oK.

Example 2: Dihedral groups

In the dihedral group Dn of order 2n, let r be a rotation of order n, and let s be a reflection. Then

Dn = 〈r〉oϕ 〈s〉 ' Cn oϕ C2,

where ϕs(r) = r−1. In particular, we have D4 ' C4 o C2. We have also seen in example 1 that
D4 ' D2 o C2. This shows that a semidirect product decomposition need not be unique.

Example 3: Nonabelian groups of order p3

Let p be a prime. The group Cp × Cp has automorphism group

Aut(Cp × Cp) = GL2(p).

In GL2(p) we have the subgroup

U2(p) =

{[
1 y
0 1

]
: y ∈ Z/pZ

}
' Cp

so we can form the semidirect product (Cp × Cp) o U2(p), which is nonabelian of order p3. On the
other hand the group

U3(p) =


1 x z

0 1 y
0 0 1

 : x, y, z ∈ Z/pZ


has the subgroup with y = 0 isomorphic to Cp × Cp, the subgroup with x = z = 0 isomorphic to
U2(p), and we have

U3(p) ' (Cp × Cp) o U2(p).
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This group is called the Heisenberg group over Z/pZ, because its commutator relations mimic the
Uncertainty Principle.

If p = 2, then U3(2) ' D4. The quaternion group Q8 also has order 23, but it cannot be expressed as
a nontrivial semidirect product, because every nontrivial subgroup of Q8 contains the center Z(Q8) =
{±1}, so condition 3 above is never satisfied.

Example 4: Affine transformations

Let V be a vector space over a field k. An affine space over V is a set X on which V acts freely and
transitively. We write the action as (v, x) 7→ x + v, where v ∈ V and x ∈ X . If we choose any point
x0 ∈ X , we get a bijection V → X sending v 7→ x0 + v. However, there is no canonical point, or
“origin” in X , so we cannot identify X with V in any canonical way. This means we cannot add points
in X , because that requires an origin. We can subtract points in X , but the result is a vector in V .
Namely, for x, y in X , we define x− y to be the unique vector v ∈ V such that x = y + v.

An affine transformation of X is a mapping f : X → X for which there exists ḟ ∈ GL(V ) such that

f(x)− f(y) = ḟ(x− y), ∀ x, y ∈ X.

Under composition, the set of affine transformations of X forms a group Aff(X).

Each v ∈ V corresponds to the translation tv(x) = x + v, which is an affine transformation with
ṫv = IV . One can check that f ◦ tv ◦ f−1 = tf(v) for all f ∈ Aff(X). Hence V is a normal subgroup of
Aff(X). Now choose an arbitrary point x0 ∈ X , and let Gx0 = {f ∈ Aff(X) : f(x0) = x0}. I claim
that

Aff(X) = V oϕ Gx0 , (58)

where ϕ(g) = ġ for g ∈ Gx0 . We have already observed that part 1 of Thm. 14.3 holds. Part 3
holds because V acts freely on X . For part 2, let f ∈ Aff(X) be any affine transformation. Then
f(x0) is some point in X , so we can write it as f(x0) = x0 + v for a unique v ∈ V . Then the affine
transformation g = t−1

v f fixes x0, and we have f = tv ◦ g with g ∈ Gx0 , as required by part 2. This
proves the claim (58). Finally, I claim that we have an isomorphism

Gx0 ' GL(V ), g 7→ ġ ∈ GL(V ).

For if g ∈ Gx0 then g(x0 + v) = x0 + ġ(v), which implies that g 7→ ġ is an injective homomorphism.
Finally, if g0 ∈ GL(V ), then the mapping x0 + v 7→ x0 + g0(v) is an affine transformation, proving the
claim. We have thus shown that

Aff(X) ' V oGL(V ).

Note, however, that the subgroup of Aff(X) which is isomorphic to GL(V ) is non-canonical: it de-
pends on the choice of x0. If V is finite dimensional and we choose a basis of V and use it to identify

V = F n '
{[

1 0
v In

]
: v ∈ F n

}
and GL(V ) = GLn(F ), we can write more explicitly:

Aff(X) '
{[

1 0
v g

]
: v ∈ F n, g ∈ GLn(F )

}
.
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Example 5: Parabolic subgroups

Let V be a finite dimensional vector space over a field F . Fix a subspace U ⊂ V . In the group GL(V )
the subgroup

GU = {g ∈ GL(V ) : gU = U}

stabilizing U is called a parabolic subgroup. We will show that the parabolic subgroup GU is a semidi-
rect product.

Each g ∈ GU induces a linear transformation on the quotient vector space V/U , namely ḡ · (v + U) =
(gv̇) + U . Let RU = {g ∈ GU : ḡ = IV/U} be the subgroup of GU acting trivially on V/U . Note
that g ∈ RU if and only if gv − v ∈ U for all v ∈ V . One checks that RU is normal in GU . To
find the complement, choose a subspace W ⊂ V complementary to U , so that V = U ⊕W , and let
LU = {g ∈ GU : gW = W} be the subgroup of GL(V ) stabilizing both U and W . Then LU acts on
RU by conjugation, and we have

GU = RU o LU .

Example 6: Frobenius groups

The essence of the proof of above is the following fact:

If a group G acts transitively on a set X and G has a normal subgroup K acting freely and transitively
on X , then G = K oϕ Gx, where x is any point in X and ϕg(k) = gkg−1 for all g ∈ Gx, and k ∈ K.

This is a weak result, because the existence of the marvellous subgroupK is a strong hypothesis, which
we would like to avoid. It is easy to check that the nontrivial elements of K are exactly those elements
of G which have no fixed-points in X . So the essential question is: when do these elements form a
subgroup of G?

A finite group G is called a Frobenius group if G acts transitively on a finite set X and the following
two properties hold:

• Every nontrivial element of G fixes at most one point in X .

• Some nontrivial element of G fixes at least one point in X .

Equivalently, every stabilizer Gx is nontrivial and any two stabilizers Gx, Gy intersect trivially.

Theorem 14.4 (Frobenius) If G is a Frobenius group then the set

K = {k ∈ G : k · x 6= x ∀x ∈ X} ∪ {1}

is a subgroup of G and for any x ∈ X we have G ' K oGx.

This only known proof of this theorem uses character theory, which you will learn next semester.
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14.2.1 Groups of order p2q

Let p and q be distinct primes. In this section our aim is to classify groups G of order p2q, where p and
q are distinct primes. We begin with a more general situation.

A pq-group is a group G whose order is of the form paqb for some positive integers a, b. Such a group
factors as G = PQ, where P and Q are Sylow p- and q-subgroups of G. Indeed, the sets P × Q and
G have the same cardinality, and the product map P ×Q→ G, sending (x, y) 7→ xy is injective since
P ∩Q = {1}.

We now make the additional assumption that some Sylow subgroup is normal in G. If P / G then G is
a semidirect product G ' P oQ, with respect to some action of Q on P . It may happen that different
actions of Q on P give isomorphic groups P oQ.

Lemma 14.5 If ϕ, ψ : Q→ Aut(P ) are two homomorphisms, then we have

P oϕ Q ' P oψ Q

if and only if there is g ∈ Aut(Q) such that ϕ is conjugate to ψ ◦ g in Aut(P ).

Proof: Let F0 : PoϕQ ' PoψQ be an isomorphism. Since P is the unique Sylow p-subgroup of both
sides, we have F0(P ) = P . Since F0(Q) is another Sylow q-subgroup of P oψ Q, we may compose
F0 with an inner automorphism of P oψ Q to obtain another isomorphism F : P oϕ Q ' P oψ Q
with the property that F (P ) = P and F (Q) = Q. Thus we have restrictions f = F |P ∈ Aut(P ) and
g = F |Q ∈ Aut(Q).

Let x ∈ P and y ∈ Q and consider the conjugation yxy−1 in P oϕQ. On one hand, yxy−1 = ϕy(x) ∈
P , so

F (yxy−1) = f(ϕy(x)).

On the other hand, we have

F (yxy−1) = F (y)F (x)F (y)−1 = g(y)f(x)g(y)−1 = ψg(y)(f(x))

in P oψ Q. Hence f ◦ ϕy = ψg(y) ◦ f , or

f ◦ ϕy ◦ f−1 = ψ ◦ g(y) (59)

so that ϕ and ψ ◦ g are conjugate in Aut(P ), as claimed.

Conversely, if f ∈ Aut(P ) and g ∈ Aut(Q) satisfy (59) then one checks that The map F : P oϕ Q '
P oψ Q given by F (xy) = f(x)g(y), for x ∈ P and y ∈ Q, is a group isomorphism. �

Let Hom(Q,Aut(P )) be the set of all homomorphisms ϕ : Q → Aut(P ). The group Aut(P ) ×
Aut(Q) acts on Hom(Q,Aut(P )) as follows. Given α ∈ Aut(P ), β ∈ Aut(Q), the transform (α, β)·ϕ
of a homomorphism ϕ ∈ Hom(Q,Aut(P )) is the new homomorphism Q→ Aut(P ) given by

[(α, β) · ϕ]y = α ◦ ϕβ−1(y) ◦ α−1, for all y ∈ Q.

Here we take β−1 to make this a left group action. The Lemma may now be rephrased as follows.
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Corollary 14.6 The isomorphism classes of groups of the form G = P o Q are in bijection with the
orbits of Aut(P )× Aut(Q) on Hom(Q,Aut(P )) under the action just described.

Assume now that Q is cyclic. If we choose a generator y of Q, a nontrivial homomorphism ϕ : Q →
Aut(P ) is determined by the automorphism ϕy ∈ Aut(P ) generating a subgroup Qy := 〈ϕy〉 ≤
Aut(P ) of order dividing |Q|. An automorphism of Q changes y to some power yj where q - j and
Qyj = Qj

y = Qy. Hence we have

Corollary 14.7 If Q is cyclic , the isomorphism classes of groups of the form G = P o Q are in
bijection with the conjugacy-classes in Aut(P ) of subgroups of order dividing |Q|.

Now suppose |G| = p2q and as above let P,Q be Sylow p− and q− subgroups ofG respectively. Recall
the p-factorization is the expression |G| = p2 · ν ·np, where ν = [NG(P ) : P ] and np = [G : NG(P )] is
the number of Sylow p-subgroups of G. If ν = 1 then Q E G, by the Burnside Transfer Theorem. In
this case the q-factorization is q · p2 · 1. The possible p and q-factorizations are tabulated below, where
“none” means no such combination is possible.

q · p2 · 1 q · p · p q · 1 · p2 conditions
p2 · q · 1 P ×Q P oQ P oQ –
p2 · 1 · q Qo P none none p | q − 1

conditions – q | p− 1 q | p2 − 1

We see that some Sylow subgroup of G is normal. Hence we may apply Cor. 14.6, after possibly
interchanging P and Q. The case G = P ×Q is equivalent to G being abelian, for which there are two
possible groups: G ' Cp2 ×Cq or G ' C2

p ×Cq according as P ' Cp2 or C2
p = Cp×Cp, respectively.

The group G must be abelian unless p | q − 1 or q | p2 − 1. From now on we assume one of these
conditions holds.

Case 1: p | q−1. ThenG ' QoP , so we calculate the orbits of Aut(Q)×Aut(P ) on Hom(P,Aut(Q)).
Since Aut(Q) ' Cq−1 is abelian, these are just the orbits of Aut(P ) on Hom(P,Cq−1).

If P = Cp2 we may apply Cor. 14.7. The groups G in this case correspond to subgroups of Cq−1 of
order 1, p or p2, the latter occuring only if p2 | q − 1.

If P = C2
p then Aut(P ) = GL2(p) and Cq−1 has a unique subgroup of order p, so the groups G in this

case correspond to GL2(p)-orbits in Hom(C2
p , Cp), of which there are two: zero and nonzero.

Combining the two possibilities for P , we see that when p | q− 1 the number of groups of order p2q is
five if q2 | p− 1 and four otherwise.

Case 2: q | p2 − 1. Here we have G = P o Q. Since Q is cyclic, we may apply Cor. 14.7 to see that
the groups of order p2q correspond to conjugacy-classes of subgroups of Aut(P ) of order 1 or q.

If P = Cp2 then Aut(P ) = Z/p2Z× ' Cp × Cp−1. If q | p− 1 then Aut(P ) has exactly one subgroup
of order q, giving two groups in this case, one abelian, one nonabelian. If q - p − 1 then there is only
the abelian group Cp2 × Cq.
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P = Cp2 P = C2
p condition

1 1 p - q − 1 and q - p2 − 1
2 2 p | q − 1 and p2 - q − 1
3 2 p2 | q − 1
2 3 q = 2
1 2 2 < q | p+ 1
2 q+5

2
2 < q | p− 1.

Figure 1: The number of groups of order p2q

If P = C2
p then Aut(P ) = GL2(p). This breaks into three subcases.

i) q = 2. In this case p is odd and GL2(p) has three conjugacy classes of subgroups of order dividing
two, generated by [

1 0
0 1

]
,

[
−1 0
0 1

]
,

[
−1 0
0 −1

]
.

The three groups are respectively

Cp × Cp × C2, Dp × Cp, S[Dp ×Dp],

where the latter group is the subgroup of Dp × Dp generated by Cp × Cp and an involution inverting
both factors under conjugation.

ii) 2 < q | p + 1. In this case q - p− 1 and GL2(p) has a unique subgroup of order q, up to conjugacy
(see 5.1.1), whence two groups in this case.

iii) 2 < q | p − 1. In this case we have a subgroup V = Cq × Cq of the diagonal matrices and all
subgroups of GL2(p) of order q can be conjugated into V . Moreover, two such subgroups of V are
conjugate if and only if one is transformed into the other by switching the factors in V . Regarding
V additively, the groups G in this case correspond to lines [x, y] in the projectivization of V , modulo
the involution [x, y] ↔ [y, x]. This involution fixes the lines [1, 1] and [1,−1] and acts freely on the
remaining lines. Counting the abelian case, we get 1 + 2 + 1

2
(q − 1) = 1

5
(q + 5) isomorphism classes

of groups in this case.

All cases are summarized in Figure 1. For each condition on p, q we write the number of groups of
order p2q in the form N ′ + N ′′, where N ′ (resp. N ′′) is the number of groups with the given p, q
condition having P = Cp2 (resp. P = Cp × Cp).

14.3 Extensions

The essential problem of extension theory is:

Given two groups A,B, to find all groups G having A as a normal subgroup with quotient G/A ' B.

Informally, we are asking how many groups we can build with A at the bottom and B at the top.
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For example, if A = C4 and B = C2, then C2 × C4, C8, D4 and Q8 are all the groups G containing a
normal subgroup isomorphic to C4 with cyclic quotient isomorphic to C2.

This is a very difficult problem. It becomes easier if we specify the maps involved.

Definition 14.8 Let A and B be groups. An extension of B by A is a triple (G, ι, π) where G is a
group, ι : A → G is an injective homomorphism and π : G → B is a surjective homomorphism with
im ι = kerπ. Two extensions (G, ι, π) and (G′, ι′, π′) are equivalent if there exists an isomorphism
f : G′ → G such that f ◦ ι′ = ι and π ◦ f = π′.

Thus, an extension of B by A is given by an exact sequence

1 −→ A
ι−→ G

π−→ B −→ 1, (60)

and two extensions (G, ι, π), (G′, ι′, π′) ofB byA are equivalent if there is an isomorphism f : G′
∼→ G

making the following diagram commutative:

G′

π′

  
f'

��

1 // A

ι′
>>

ι
  

B // 1

G

π

>>

It is possible for G and G′ to be isomorphic for inequivalent extensions (G, ι, π), (G′, ι′, π′) (see exer-
cise...).

We say the extension (G, ι, π) of B by A is split if there exists a homomorphism s : B → G such that
π ◦ s = idB is the identity map on B. The map s, if it exists, is called a section, or a splitting of the
extension.

If (G′, ι′, π′) is an extension of B by A equivalent to (G, ι, π) via an isomorphism f : G′ → G and
s : B → A is a splitting of (G′, ι′, π′), then f ◦ s is a splitting of (G, ι, π). Hence the quality of being
split depends only on the equivalence class of the extension.

Proposition 14.9 For an extension (G, ι, π) of B by A, the following are equivalent.

1. The extension (G, ι, π) is split.

2. There is a subgroup B′ ≤ G which is mapped isomorphically onto B via π.

3. 23 There is a homomorphism ϕ : B → Aut(A) such that the extension (G, ι, π) is equivalent to
(Aoϕ B, ι

′, π′), where ι′(a) = (a, 1) and π′(b) = (1, b).
23I thank Andew Yarmola for suggesting this formulation.
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Proof:

(1⇒ 2:) Assume (G, ι, π) is split, and let s : B → G be a section. Then s is injective, since π◦s = IB,
so s is an isomorphism from B onto the subgroup B′ = s(B) ≤ G, and it is easy to check that π maps
B′ isomorphically onto B.

(2 ⇒ 1:) Assume there is a subgroup B′ ≤ G which is mapped isomorphically onto B via π. Let
s : B → B′ be the inverse of the isomorphism π|B′ : B′ → B. It is easy to check that s is a section, so
the extension (G, π) is split.

(3⇒ 1:) Suppose (G, ι, π) is equivalent to (AoϕB, ι
′, π′) as in 3, via an isomorphism f : AoϕB

∼→ G.
Then s(b) = f(1, b) defines a section of (G, ι, π).

(1, 2 ⇒ 3:) Assume (G, ι, π) is split, and let s : B → G be a section. Since both ι and s are injective,
there is a unique homomorphism ϕ : B → Aut(A) such that by ι(ϕb(a)) = s(b)·ι(a)·s(b)−1. The map
f : Aoϕ B

∼−→ G given by f(a, b) = ι(a) · s(b) is an isomorphism giving the equivalence asserted in
3. �

There is one situation where an extension is guaranteed to split.

Theorem 14.10 Suppose A and B are finite groups with relatively prime orders. Then any extension
of B by A is split.

Proof: See [Isaacs Finite Group Theory p.79 Theorem 3.8]. �

The simplest example of a non-split extension is given by

1 −→ C2 −→ C4
π−→ C2 −→ 1,

where π is the squaring map and C2 is viewed as the subgroup of squares in C4. Note that π is the
unique surjection C4 � C2. To see that this extension is nonsplit, note that C2 is the unique subgroup
of order two in C4. Thus, both groups of order four are extensions of C2 by C2. One of them, C2×C2,
is a split extension, while the other C4, is nonsplit.

Something similar happens with non-abelian groups of order eight: both D4 and Q8 are extensions of
C2 by C4. The former is split and the latter is nonsplit.

14.4 Metacyclic groups and extensions

A metacyclic group is a group G having a cyclic normal subgroup A with cyclic quotient B = G/A.
Any cyclic group C is metacyclic. Indeed, we can take A to be any subgroup of C. Then A is cyclic
and so is B = C/A.

If p is a prime then the Borel subgroups of SL2(p) and PGL2(p) are metacyclic: They have normal
subgroups of order p with cyclic quotients of order p− 1.
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If p and q are primes then any group G of order pq is metacyclic. Indeed we have seen in section 14.6
that if p ≤ q and P,Q are the corresponding Sylow subgroups then Q/G and G/Q ' P . In fact (more
advanced), if G is a finite group in which every Sylow subgroup is cyclic then G is metacyclic.

The classification of metacyclic groups is simpler if we specify the groups A and B in advance. For
this we use the language of extensions: A metacyclic extension is an extension

1 −→ A
ι−→ G

π−→ B −→ 1. (61)

where A and B are cyclic. In this section we classify metacyclic extensions with G finite. So we fix
cyclic groups A ' Cm and B ' Cn, as well as generators α, β of A and B, respectively.

Proposition 14.11 Let (G, ι, π) be a metacyclic extension of B by A. Let a = ι(α) and choose an
element b ∈ G such that π(b) = β. Then

1. Every element of G can be written uniquely as as aibj , for i ∈ Z/mZ and some integer 0 ≤ j <
n. 24

2. The group G has the presentation

G ' 〈a, b | am = e, bab−1 = aq, bn = ar〉 (62)

for some elements q, r in Z/mZ such that

qn = 1, and qr = r. (63)

3. Let (G1, ι1, π1) be another extension of B by A, let a1 = ι1(α) and choose b1 ∈ G1 such that
π1(b1) = β. Let q1, r1 be as in part 2, for a1, b1. Then the extensions (G1, ι1, π1) and (G, ι, π)
are equivalent if and only if q1 = q and r1 = r + (1 + q + · · ·+ qn−1)k, for some k ∈ Z/mZ.

Proof: For part 1, let x ∈ G is an arbitrary element, we have π(x) = βj for some j ∈ Z, and also
π(bj) = βj , so xb−j ∈ kerπ = 〈a〉, which means that x = aibj for some i ∈ Z/mZ and integer j.
Since π(bn) = π(b)n = βn = 1, we have bn ∈ kerπ = 〈a〉, so bn = ar, for some r ∈ Z/mZ. Hence in
the expression x = aibj we may replace j by its remainder when divided by n.

We are given that α has order m and β has order n. Since ι is injective this means a has order m.
And since 〈a〉 E G we have bab−1 = aq for some q ∈ (Z/mZ)×. We have proved that G satisfies the
relations (62). These calculations also show that the group 〈a, b | am = e, bab−1 = aq, bn = ar〉
has order at most nm, hence is isomorphic to G.

To see that q, r satisfy (63), note that bn = ar commutes with a. Hence a = bnab−n = a(qn), which
implies qn = 1. Also b commutes with bn = ar, so we have ar = barb−1 = (bab−1)r = aqr, so that
r = qr, proving (63).

24Note that b need not have order n, so we cannot write j ∈ Z/nZ.
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For part 3, let (G1, ι1, π1) be another extension of B by A, set ι1(α) = a1 and choose b1 ∈ G1 such that
π1(b1) = β. Applying part 2 to this extension, we get relations analogous to (62) and (63), namely

am1 = e, b1a1b
−1
1 = aq11 , bn1 = ar11 , (64)

along with
qn1 = 1, and q1r1 = r1. (65)

Suppose the extensions (G, ι, π) and (G1, ι1, π1) are equivalent. This means there is an isomorphism
f : G1 → G such that fι1 = ι and πf = π1. The former relation means that f(a1) = a while the
second implies that f(b1) is another lift of β in G. Hence we have

f(b1) = akb,

for some k ∈ Z/mZ. And since f(a1) = a, we have

ar1 = f(ar11 ) = f(b1)n = (akb)n = a(1+q+···+qn−1)k+r,

where the last equality follows by induction from the relations bab−1 = aq and bn = ar. Hence we
have r1 = (1 + q + · · ·+ qn−1)k in Z/mZ, as claimed.

Finally, we have

aq1 = f(aq11 ) = f(b1a1b
−1
1 ) = f(b1) · a · f(b1)−1 = akb · a · b−1a−k = ak · aq · a−k = aq,

so q1 = q in Z/mZ.

Conversely, if r1 = (1 + q + · · · + qn−1)k in Z/mZ then the above calculations show that a and
akb satisfy the relations of a1 and b1, so there is a surjective homomorphism f : G1 → G such that
f(a1) = a and f(b1) = akb. These equations imply that fι1 = ι and πf = π1. Finally, f is an
isomorphism since |G| = mn = |G1|.

�

We next prove that such extensions exist, whenever the conditions (63) are satisfied.

Proposition 14.12 Suppose q, r are elements of Z/mZ satisfying qn = 1 and qr = r. Then there exists
an extension

1 −→ A
ι−→ G

π−→ B −→ 1

and an element b ∈ G with π(b) = β, such that

bab−1 = aq, and bn = ar.

Proof: We will construct G as a quotient of a split extension. Let C be a cyclic group of order mn,
choose a surjective homomorphism ψ : C → B, and let γ be a generator of C such that f(γ) = β.

Since qn = 1, we have qmn = 1, so there is a homomorphism

ϕ : C → (Z/mZ)× = Aut(A), such that ϕ(γ) = q.
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Form the semidirect product G̃ = A oϕ C, where we have the relation γαγ−1 = αq. We observe that
γnαγ−n = α(qn) = α and γαrγ−1 = αqr = αr. Thus, α commutes with γn and γ commutes with αr.
Since G̃ is generated by α and γ, this implies that the cyclic subgroup Hr = 〈α−rγn〉 is contained in
the center of G̃. In particular, Hr E G̃, so we can form the quotient group

Gr := G̃/Hr.

Let ιr : A → Gr be the projection of A ⊂ G̃ to Gr. This is injective since A ∩ Hr = {1}. Set
a = ιr(α) = αHr and b = γHr, both elements of Gr. Then a and b satisfy the relations

am = 1, bab−1 = aq, bn = ar.

Let π̃ : G̃→ B be the composition
π̃ : G̃

p−→ C
ψ−→ B,

where p is the natural projection G = AoC → C. We have π̃(αiγj) = βj . In particular, π(α−rγn) =
βn = 1. Thus, π̃ induces a surjective map πr : Gr → B such that πr(aibj) = βj . We see that
πr(b) = β and that ιr(A) ≤ kerπr. On the other hand, if πr(aibj) = 1 then n | j, say j = nk, and we
have aibj = aiark ∈ ιr(A). This shows that kerπr = ιr(A) and completes the proof that (Gr, ιr, πr) is
the desired extension. �

The conditions on r and q can be understood more simply if we regard “q” as the endomorphism
of Z/mZ given by multiplication by q. Likewise we view q − 1 and qn := 1 + q + · · · + qn−1

as endomorphisms of Z/mZ. The condition rq = r means that r ∈ ker(q − 1). The condition
qn = 1 means that im qn ⊂ ker(q − 1). Part 3 of the proposition means that the equivalence class of
the extension (G, π) depends only on the class of r in ker(q − 1)/ imNq. In this language, the two
propositions may be then summarized as follows.

Theorem 14.13 Fix generators α of A ' Cm and β of B ' Cn and let q ∈ (Z/mZ)× satisfy qn = 1.
Then there is a bijection from the subquotient ker(q − 1)/ im qn of Z/mZ to the set of equivalence
classes of extensions (G, ι, π) of B by A such that any lift of β in G acts on ι(A) by the power q. To the
class of r ∈ ker(q − 1)/ im qn corresponds the equivalence class of the extension (Gr, ιr, πr) where

Gr = 〈a, b | am = e, bab−1 = aq, bn = ar〉,

ιr(α) = a and πr(b) = β. This extension splits iff the class of r in ker(q − 1)/ im qn is zero.

We have now classified all metacyclic extensions, and have shown that every metacyclic group is
isomorphic to one of the groups

G(m,n, q, r) = 〈a, b | an = e, bab−1 = aq, bn = ar〉,

where q, r ∈ Z/m satisfy qn = 1 and (q − 1)r = 0. However, the same group can appear in different
extensions. For example, if gcd(j, n) = 1 then ker(qj − 1) = ker(q − 1) on Z/mZ

G(m,n, qj, r) ' G(m,n, q, r)
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via a 7→ a, b 7→ bj . Hence the group G(m,n, q, r) depends only on the subgroup of (Z/mZ)× gener-
ated by q.

Application: Metacyclic groups arise naturally in the Galois Theory of p-adic fields. A simple case
is as follows: Let p be a prime and let L is a finite Galois extension of the field Qp of p-adic numbers.
There is a canonical intermediate field Qp ⊂ K ⊂ L, obtained by adjoining to Qp all roots of unity in
L of order prime to p. In the above discussion take q = p and let n = [K : Qp] and m = [L : K].
Assume that p - m. Then G = Gal(L/Qp) is a metacyclic group with quotient B = Gal(K/Qp) and
kernel A = Gal(L/K). The generator b corresponds to a Frobenius automorphism, and a corresponds
to an automorphism fixing K, of order m. See Serre’s Local Fields for more details.
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