Dronamics: Navigating the Skies of Innovation

Presented by : Ahmad Khalid Ahmed

Outline

- ➤Introduction
- ≻Types of Drones
- ► Applications of Drones
- Engineering Components
- ►Navigation and Control Systems
- ➤Communication Systems
- ► Software and Algorithms
- ≻Q&A Session

1.Unmanned Aerial Vehicles (UAVs)

- 1. Devices designed for flight without a human pilot on board.
- 2. Varied shapes and sizes, designed for specific purposes.

2. Remote-controlled or Autonomous Flight

1. Remote-controlled Flight:

- 1. Operated by a human pilot using a ground control system.
- 2. Common in hobbyist and recreational drones.

2. Autonomous Flight:

- 1. Capable of operating without direct human input.
- 2. Utilizes onboard sensors, GPS, and pre-programmed algorithms.

Introduction B. Significance in Modern Applications

- 1. Pervasiveness in Various Industries
 - 1. Entertainment, Agriculture, Military, Surveillance
- 2. Versatility and Adaptability
 - 1. Changing the Landscape of Work and Innovation
- 3. Impact on Efficiency and Accessibility
 - 1. Redefining Traditional Practices
 - 2. Opening New Possibilities for Exploration

Dronamics: Navigating the Skies of Innovation

Types of Drones A. Fixed-Wing Drones

1.Description:

- 1. Resemble traditional airplanes with fixed wings.
- 2. Designed for forward motion and lift generated by the wings.

2. Characteristics:

- 1. Longer flight range compared to multirotor drones.
- 2. Efficient for covering large areas in a single flight.

3. Applications:

- 1. Aerial mapping and surveying.
- 2. Surveillance over large territories.

Types of Drones B. Multirotor Drones

1.Description:

- 1. Equipped with multiple rotors for vertical takeoff and landing.
- 2. Achieve stability through rotor variations (quadcopters, hexacopters, etc.).

2. Characteristics:

- 1. High maneuverability and hovering capabilities.
- 2. Shorter flight durations compared to fixed-wing drones.

3. Applications:

- 1. Photography and videography.
- 2. Precision agriculture and crop monitoring.

Dronamics: Navigating the Skies of Innovatior

Types of Drones C. Hybrid Drones

1.Description:

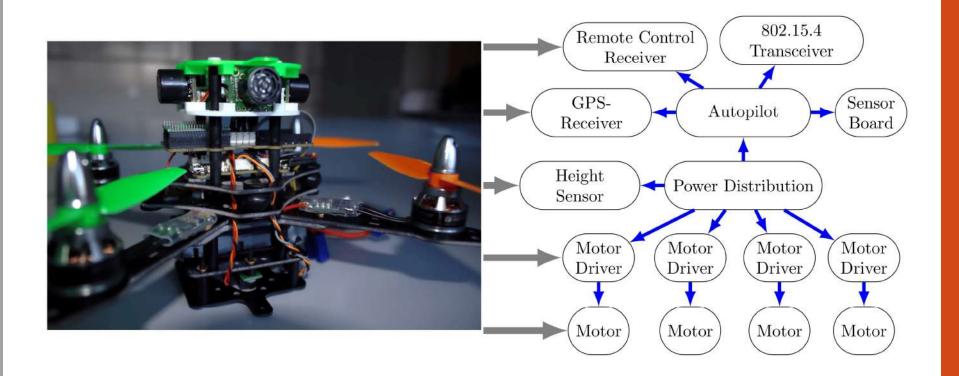
- 1. Combine features of fixed-wing and multirotor designs.
- 2. Enable both vertical takeoff/landing and efficient forward flight.


2. Characteristics:

- 1. Versatile for various operational scenarios.
- 2. Extended flight range compared to traditional multirotors.

3. Applications:

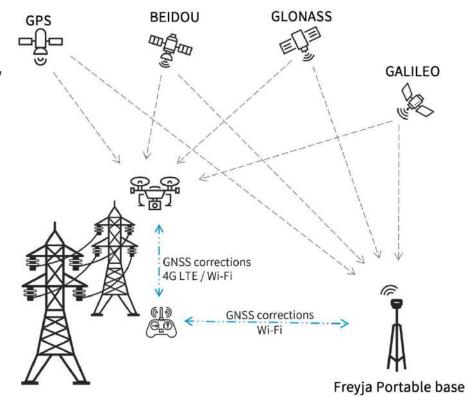
- 1. Surveillance missions requiring both hovering and long-range flight.
- 2. Search and rescue operations.



Engineering Components

5/27/202

Engineering Components


Navigation and Control Systems

1.GPS (Global Positioning System):

- 1. Determines the drone's precise location, altitude, and speed.
- 2. Enables accurate navigation and waypoint-based flight.


2.GLONASS, Galileo, and BeiDou:

- 1. Supplemental global navigation satellite systems for increased accuracy.
- 2. Redundancy for improved reliability in various geographic locations.

1()

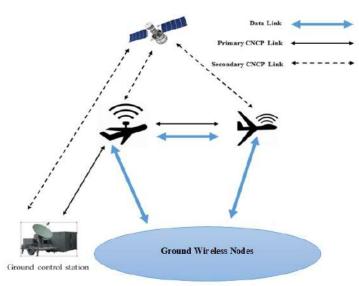
Communication Systems

Communication Systems

1.Wi-Fi and Bluetooth:

- 1. Wi-Fi for data transmission and control in consumer drones.
- 2. Bluetooth for short-range communication with peripherals.

2.Cellular Networks:


- 1. Integration of 4G/5G networks for extended communication range.
- 2. Enables long-distance control and real-time data streaming.

3.Satellite Communication:

- 1. Utilizes satellite links for communication in remote or inaccessible areas.
- 2. Ensures global connectivity for mission-critical operations.

4.Mesh Networking:

- 1. Network of interconnected drones for collaborative missions.
- 2. Redundant communication paths for enhanced reliability.

Dronamics: Navigating the Skies of Innovation

Software and Algorithms

• A. Flight Planning Software

1.Definition:

- 1. Applications and tools for designing and simulating flight paths.
- 2. Allows users to pre-program waypoints, altitude, and actions.

2. Features:

- 1. Waypoint Setting: Defines specific locations for the drone to visit.
- 2. Altitude Control: Plans the drone's height at different points.
- **3**. Mission Simulation: Simulates the planned flight for analysis.

Software and Algorithms

Mission Planner Home Screen

1.PID Controllers (Proportional, Integral, Derivative):
1. Maintain stability by adjusting motor speeds based on sensor data.

2. Proportional control for immediate response, integral control for long-term stability, derivative control for dampening oscillations.

2. Pathfinding Algorithms:

B. Navigation Algorithms

- 1. Determines the optimal path between waypoints.
- 2. A* (A-star), Dijkstra's, and other algorithms for efficient route planning.

3. Collision Avoidance:

1. Algorithms that use sensor data to avoid obstacles during flight.

Software and Algorithms

2. Dynamic replanning for real-time adjustments to the flight path.

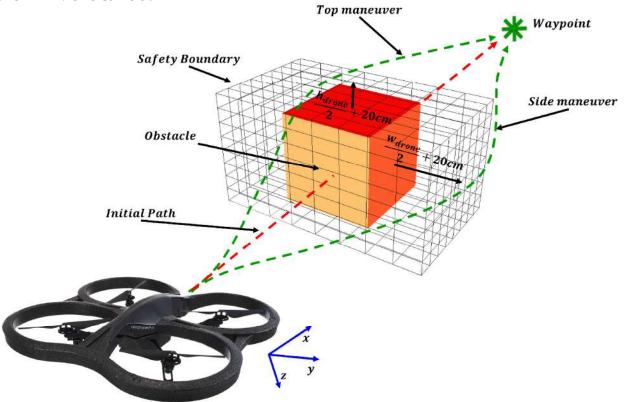
Software and Algorithms

C. Intelligent Behaviors and Decision-Making

1.Autonomous Decision-Making:

- 1. Drone's ability to make real-time decisions based on sensor input.
- 2. Responds to changing environmental conditions or unexpected obstacles.

2. Swarming Algorithms:


- 1. Coordination of multiple drones for collaborative missions.
- 2. Communication and behavior algorithms for synchronized actions.

3. Machine Learning and AI:

- 1. Integration of artificial intelligence for adaptive learning.
- 2. Enhances capabilities like object recognition, pattern detection, and anomaly identification.

Software and Algorithms

Collision Avoidance:

Q&A Session

18

Thanks for your attention