
i

Kurdistan Region

University of Salahaddin-Erbil

College of Engineering

Electrical Engineering Department

Home Automation System Using Arduino

A project Submitted to the Electrical Engineering Department University of

Salahaddin –Erbil in the Partial Fulfillment of the Requirement for the Degree

of Bachelor of Science in Electrical Engineering

Prepared by:

Houshang Essmat Eziz

Supervisor:

Mr. Ahmad Khalid Ahmad

June-2020

ii

Supervisor’s Certification

 I certify that the Engineering project titled “Home Automation System

Using Arduino” was done under my supervision at the Electrical Engineering

Department, College of Engineering –Salahaddin University-Erbil. In the partial

fulfillment of the requirement of the degree of Bachelor of Science in Electrical

Engineering.

 Supervisor Signature: ---------------------------

 Name: Mr. Ahmad Khalid Ahmad

 Date: 10 / 06/2020

iii

DEDICATION

 I would like to thank everyone who has helped in completion of this thesis

work, for their advice, suggestion and help. I cordially thank my supervisor Mr.

Ahmad Khalid Ahmad. This thesis would not have been possible without their

continuous support. Finally, I thank my beloved parents for their never-ending

support, motivation and belief in me.

iv

ABSTRACT

This project proposes a new way to control home appliances using Arduino

board from internet. This makes it very simple allows everyone to be able to use

it because all you have to do is access the Arduino through a web browser on

any device attached to a network.

v

LIST OF CONTENT

Dedication iii

Abstract iv

List of content v

List of Figures vi

Chapter 1: Introduction 1

1.1 Background 1

1.2 Home Automation 2

1.3 Problem Statements 3

1.4 Aims and Objectives 3

1.5 Arduino 4

1.5.1 Why Arduino? 5

1.5.2 Advantages of Arduino 5

1.6 Organization of the Report 6

Chapter 2 7

2.1 Arduino Hardware Specification 7

2.2 Arduino Hardware 8

2.2.1 Arduino Board 8

2.2.2 Official boards 10

2.2.3Cuheadwifi shield 11

Chapter 3 Arduino Programing Language 13

3.1 Arduino Software (Introduction) 13

3.1.1 Sample program 15

3.1.2 Functions 17

Chapter 4 Related Work 20

Chapter 5 Conclusion 27

References 28

vi

LIST OF FIGURES

Figure 1-1 history of home automation 2

Figure 1-2 Arduino Board 4

Figure 2-1 Arduino UNO 10

Figure 2-2 Cuhead board 12

Figure 3-1 Programming tool 14

Figure4-1 WIFI server network security Mod 22

1

CHAPTER 1: INTRODUCTION

1.1 Background

As technology advances in our daily lives, it has become far more important to

everyone. This means that our reliance upon technology has increased at a

dramatic rate. One of the areas which is affected by this is home automation.

Each day we expect our appliances and devices to perform functions

automatically and without manual interaction. This ranges from small tasks like

the washing machine turning off when it has finished, all the way through safety

critical systems having a procedure in place should a catastrophic event happen.

However, many appliances simply cannot automate themselves at this current

time, whether this is due to cost, lack of demand or simply manufacturer

oversight.

By using off the shelf hardware such as an Arduino board, we can enable

existing devices (which are not capable of automation by themselves) to be

controlled remotely. However, this hardware is capable of powering more than

just basic appliances and digital devices. Lighting, curtains, and other everyday

items can be connected to automatically perform user specified operations,

allowing a huge array of everyday items to perform specific functions using the

home automation system.

2

1.2 Home Automation:

Home automation (also known as domotics) refers to the automatic and

electronic control of household features,activity, and appliances.Various control

systems are utilized in this residential extension of building automation .some

components of an automated home may include the centralized control of

security locks on doors and gates,appliances, windows and lighting.

Figure 1-1 home automation history

3

1.3 Problem Statement:

Nowadays people are very busy with work and are always in a hurry to get out

of the house. This causes many of us to either forget to turn off an appliance or

no longer have control of the appliances once we are out of the house. But as

you all know these days’ people have access to the internet everywhere they go,

therefore we can develop a way for people to control their home appliances

remotely even when they are on the go.

1.4 Aims and Objectives:

There are many home automations in Kurdistan, so my objective is to develop a

way that provide much better, efficient and easier to controlling appliances

wirelessly by using Arduino through web interface.

4

1.5 Arduino

Arduino is an open-source prototyping platform based on easy-to-use hardware

and software. Arduino, boards are able to read inputs -light on a sensor, a finger

on a button, or a Twitter message -and turn it into an output -activating a motor,

turning on an LED, publishing something online. You can tell your board what

to do by sending a set of instructions to the microcontroller on the board. To do

so you use the Arduino programming language (based on Wiring), and the

Arduino Software (IDE), based on Processing, the following figure is an image

of Arduino board.

Figure 1-2: Arduino Board

5

1.5.1 Why Arduino?

Arduino has been used in thousands of different projects and applications. The

Arduino software is easy-to-use for beginners, yet flexible enough for advanced

users. It runs on Mac, Windows, and Linux. Teachers and students use it to

build low cost scientific instruments, to prove chemistry and physics principles

and to get started with programming and robotics.

1.5.2 Advantages of Arduino:

Inexpensive: Arduino boards are relatively inexpensive compared to other

microcontroller platforms. The least expensive version of the Arduino module

can be assembled by hand, and even the pre-assembled Arduino modules cost

less than $50.

Cross-platform: The Arduino Software (IDE) runs on Windows, Macintosh

OSX, and Linux operating systems. Most microcontroller systems are limited to

Windows.

Simple, clear programming environment: The Arduino Software (IDE)

iseasy-to-use for beginners, yet flexible enough for advanced users to take

advantage of as well. For teachers, it's conveniently based on the Processing

programming environment, so students learning to program in that environment

will be familiar with how the Arduino IDE works.

Open source and extensible software: The Arduino software is published as

open source tools, available for extension by experienced programmers. The

language can be expanded through C++ libraries, and people wanting to

understand the technical details can make the leap from Arduino to the AVR C

programming language on which it's based. Similarly, you can add AVR-C code

directly into your Arduino programs if you want to.

6

Open source and extensible hardware: The plans of the Arduino boards

are published under a Creative Commons license, so experienced circuit

designers can make their own version of the module, extending it and

improving it. Even relatively inexperienced users can build the breadboard

version of the module in order to understand how it works and save money.

1.6 Organization of the Report:

Chapter 1: In this chapter I will give a brief introduction to my project and

clarify what Arduino board is and why I selected it for my project

Chapter 2: Here I will mention the Arduino hardware specifications that will be

needed for the completion of my project.

Chapter 3: This chapter will include details about the Arduino software

Programming language.

Chapter 4: This chapter will contain information about other developments that

are related to my project.

Chapter 5: This chapter will include the conclusion of my report.

7

CHAPTER 2:

2.1 Arduino Hardware Specifications

Arduino is a software company, project, and user community that designs and

manufactures computer open-source hardware, open-source software, and

microcontroller-based kits for building digital devices and interactive objects

that can sense and control physical devices. The project is based on

microcontroller board designs, produced by several vendors, using various

microcontrollers. These systems provide sets of digital and analog I/O pins that

can interface to various expansion boards (termed shields) and other circuits.

The boards feature serial communication interfaces, including Universal Serial

Bus (USB) on some models, for loading programs from personal computers.

For programming the microcontrollers, the Arduino project provides an

integrated development environment(IDE) based on a programming language

named Processing, which also supports the languages C and C++.The first

Arduino was introduced in 2005, aiming to provide a low cost, easy way for

novices and professionals to create devices that interact with their environment

using sensors and actuators. Common examples of such devices intended for

beginner hobbyists include simple robots, thermostats, and motion detectors.

Arduino boards are available commercially in preassembled form, or as do-it-

yourself kits. The hardware design specifications are openly available, allowing

the Arduino boards to be produced by anyone. Adafruit Industries estimated

inmid-2011 that over 300,000 official Arduino had been commercially produced

,and in 2013 that 700,000 official boards were in users' hands.

8

2.2 Arduino Hardware

2.2.1 Arduino Board

 Arduino board historically consists of an Atmel 8-, 16-or 32-bit AVR

microcontroller (although since 2015 other makers' microcontrollers have been

used) with complementary components that facilitate Programming and

incorporation into other circuits. An important aspect of the Arduino is its

standard connectors, which let users connect the CPU board to a variety of

interchangeable add-on modules termed shields. Some shields communicate

with the Arduino board directly over various pins, but many shields are

individually addressable via anI²Cserial bus—so many shields can be stacked

and used in parallel. Before 2015, Official Arduino’s had used the Atmelmega

AVR series of chips, specifically the ATmega8, ATmega168, ATmega328,

ATmega1280, andATmega2560. In 2015, units by other producers were added.

A handful of other processors have also been us by Arduino compatible devices.

Most boards include a 5 V linear regulator and a 16MHz crystal oscillator (or

ceramic resonator in some variants), although some designs such as the Lily Pad

run at 8MHz and dispense with the onboard voltage regulator due to specific

form-factor restrictions. An Arduino's microcontroller is also pre-programmed

with a bootloader that simplifies uploading of programs to the on-chip flash

memory, compared with other devices that typically need an external

programmer. This makes using an Arduino more straightforward by allowing

the use of an ordinary computer as the programmer. Currently, Opti bootloader

is the default boot loader installed on Arduino UNO.

An early Arduino board with an RS-232 serial communication interface (upper

left) and an Atmel ATmega8 microcontroller chip (black, lower right); the 14

digital I/O pins are located at the top and the six analog input pins at the lower

right.

9

At a conceptual level, when using the Arduino integrated development

environment, all boards are programmed over a serial connection. Its

Implementation varies with the hardware version. Some serial Arduino Boards

contain a level shifter circuit to convert betweenRS-232Logic levels and

transistor–transistor logic (TTL) level signals. Current Arduino boards are

programmed via Universal Serial Bus (USB), implemented using USB-to-serial

adapter chips such as the FTDI FT232. Some boards, such as later-model Uno

boards, substitute the FTDI chip with a separate AVR chip containing USB-to-

serial firmware, which is reprogrammable via its own ICSP header. Other

variants, such as the Arduino Mini and the unofficial Boarduino, use a

detachable USB-to-serial adapter board or cable, Bluetooth or other methods,

when used with traditional microcontroller tools instead of the Arduino IDE,

standard AVR in-system programming (ISP) programming is used. An official

Arduino Uno Revision 2 with descriptions of the I/O Locations m he Arduino

board exposes most of the microcontroller's I/O pins for use by other circuits.

The decimal, Duemilanove [b], and current Uno[c] provide 14 digital I/O pins,

six of which can produce pulse-width modulated signals, and six analog inputs,

which can also be used as six digital I/O pins.

These pins are on the top of the board, via female 0.1-inch (2.54 mm) headers.

Several plug-in application shields are also commercially available. The

Arduino Nano and Arduino-compatible Bare Bones.

Board and Boarduinoboards may provide male header pins on the underside of

the board that can plug into solder less breadboards.

Many Arduino-compatible and Arduino-derived boards exist. Some are

functionally equivalent to an Arduino and can be used interchangeably. Many

enhance the basic Arduino by adding output drivers, often for use in school-

level education, to simplify making buggies and small robots. Others are

electrically equivalent but change the form factor, sometimes retaining

10

compatibility with shields, sometimes not. Some variants use different

processors, of varying compatibility.

2.2.2 Official Boards

The original Arduino hardware was produced by the Italian company Smart

Projects .Some Arduino-branded boards have been designed by the American

companies Spark Fun Electronics and Adafruit Industries. as of 2016, 17

versions of the Arduino hardware had been commercially produced.

Figure 2-1: Arduino Uno

11

IO Pins of Arduino

Here is an explanation of what every pins of the board do:

14 Digital IO pins (pins 0–13): These can be inputs or outputs, which is

specified by the sketch you create in the IDE.

6 Analogue In pins (pins 0–5): These dedicated analogue input pins take

analogue values (i.e., voltage readings from a sensor) and convert them into a

number between 0 and1023.

6 Analogue Out pins (pins 3, 5, 6, 9, 10, and 11): These are actually six of the

digital pins that can be reprogrammed for analogue output using the sketch you

create in the IDE.

The board can be powered from your computer’s USB port, most USB chargers,

or an AC adapter (9 volts recommended, 2.1mm barrel tip,center positive). If

there is no power supply plugged into the power socket, the power will come

from the USB board, but as soon as you plug a power supply, the board will

automatically use.

2.2.3 Cuhead WIFI Shield V2.0:

 This document is to introduce CuheadWiFi Shield V2.0（hereafter we

callCuheadV2.0). Cuhead V2.0 use low consumption MRF24WB0MA

embedded Wi-Fi transceiver Module match 2.4 GHz IEEE 802.11b™ RF

Standard.Cuhead V2.0 adopt standard Arduino laminated design. It is designed

to plug on ArduinoDiecimila/Duemilanove/Uno etc.

12

Figure 2.2 Cuhead Wi-Fi Shield

CuheadWiFi Shield connects your Arduino to the internet wirelessly.

Wifishield is stacked on the Arduino board. This Wi-Fi shield can connect to

wireless networks which operate according to the 802.11b and 802.11g

specification. Also, this Wi-Fi shield can be used store the web that are

connected to the Arduino board. Cuhead V2.0 has charging and discharging

function, the charging circuit is used to tell voltage of the battery. We can

connect the positive and negative of the battery to BAT, if the battery is full,

then Cuhead V2.0 wont charge battery; if it is not, the external battery will be

charged. So, you know it is Arduino giving power to Cuhead V2.0 or the

opposite way, and change the charging circuit to connect/disconnect based on

that. When Cuhead V2.0 connected to Arduino, there are two working status:

1. Connect Arduino with USB/Adaptor, Arduino gives power to Cuhead V2.0,

the charging circuit on Cuhead V2.0 will disconnect；

2. No external power for Arduino, then the charging circuit of Cuhead V2.0 is

working, and the battery will power the boards. Normally we give power to

Arduino directly, thus the charging circuit is inactive.

13

CHAPTER 3: ARDUINO PROGRAMMING LANGUAGE

3.1 Arduino Software (Introduction)

Arduino programs may be written in any programming language with

a compiler that produces binary machine code. Atmel provides a development

environment for their microcontrollers, AVR Studio and the newer Atmel

Studio.

The Arduino project provides the Arduino integrated development Environment

(IDE), which is a cross-platform application written in the programming

language Java. It originated from the IDE for the languages Processing and

Wiring. It is designed to introduce programming to artists and other newcomers

unfamiliar with software development. It includes a code editor with features

such as syntax highlighting, brace matching, and automatic indentation, and

provides simple one-click mechanism to compile and load programs to an

Arduino board. A program written with the IDE for Arduino is called a "sketch.

The Arduino IDE supports the languages C and C++ using special rules to

organize code. The Arduino IDE supplies a software library called Wiring from

the Wiring project, which provides many common input and output procedures.

A typical Arduino C/C++ sketch consist of two functions that are compiled and

linked with a program stub main () into an executable cyclic executive program:

setup (): a function that runs once at the start of a program and that can initialize

settings.

loop (): a function called repeatedly until the board powers off.

After compiling and linking with the GNU tool chain, also included

14

with the IDE distribution, the Arduino IDE employs the programavrdude to

convert the executable code into a text file in hexadecimal coding that is loaded

into the Arduino board by a loader program in the board's firmware

Figure 3-1 programming tool

15

3.1.1 Sample program

A typical program for a beginning Arduino programmer blinks a light-emitting

diode (LED) on and off. This program is usually loaded in the Arduino board by

the manufacturer. In the Arduino environment, a user might write such a

program as shown:

The basic structure of the Arduino programming language is fairly simple

andruns in at least two parts. These two required parts, or functions, enclose

blocksof statements.

void setup ()

{

statements;

}

void loop ()

{

Statement;

}

Where setup () is the preparation, loop () is the execution. Both functions are

required for the program to work.

16

The setup function should follow the declaration of any variables at the very

beginning of the program. It is the first function to run in the program, is run

only once, and is used to set pin Mode or initialize serial communication.

The loop function follows next and includes the code to be executed

continuously -reading inputs, triggering outputs, etc. This function is the core of

all Arduino programs and does the bulk of the work.

Setup ()

The setup () function is called once when your program starts. Use it to

initialize pin modes, or begin serial. It must be included in a program even if

there are nostatements to run.

void setup()

{

pinMode(pin, OUTPUT); // sets the 'pin' as output

}

Loop ()

After calling the setup () function, the loop() function does precisely what its

name suggests, and loops consecutively, allowing the program to

change,respond, and control the Arduino board.

Void loop ()

{

digitalWrite(pin, HIGH); // turns 'pin' on

delay(lOOO); // pauses for one second

digitalWrite(pin, LOW); // turns 'pin' off

delay(lOOO); // pauses for one second

}

17

After calling the setup() function, the loop() function does precisely

what itsname suggests, and loops consecutively, allowing the program to

change,respond, and control the Arduino board.

void loop()

{

digitalWrite(pin, HIGH); // turns 'pin' on

delay(lOOO); // pauses for one second

digitalWrite(pin, LOW); // turns 'pin' off

delay(lOOO); // pauses for one second

}

3.1.2 Functions

A function is a block of code that has a name and a block of Statements that are

executed when the function is called. The functions void setup () and void

loop()have already been discussed and other built-in functions will be discussed

later. Custom functions can be written to perform repetitive tasks and reduce

clutter in

a program. Functions are declared by first declaring the function type. This is

the type of value to be returned by the function such as 'int' for an integer type

function. If no value is to be returned the function type would be void. After

type,declare the name given to the function and in parenthesis any parameters

being passed to the function.

typefunctionName(parameters)

{

statements;

}

The following integer type function delayVal() is used to set a delay value in a

program by reading the value of a potentiometer. It first declares a local variable

, sets v to the value of the potentiometer which gives a number between 0-1023,

18

then divides that value by 4 for a final value between 0-255, and finally returns

that value back to the main program.

intdelayVal()

{

int v;//create temporary variable

v = analogRead(pot)//read potentiometer value

v/= 4;//converts 0-1023 to 0-255

return v;//return final value

}

Pins configured as OUTPUT are said to be in a low-impedance state and can

provide 40 mA (milliamps) of current to other devices/circuits. This is enough

current to brightly light up an LED (don't forget the series resistor), but not

enough current to run most relays, solenoids, or motors. Short circuits on

Arduino pins and excessive current can damage or destroy the output pin, or

damage the entire Atmega chip. It is often a good idea to connect an OUTPUT

pin to an external device in series with a 470Q or 1KQ resistor.

digitalRead(pin)

Reads the value from a specified digital pin with the result either HIGH or

LOW.

The pin can be specified as either a variable or constant (0-13).value =

digitalRead(Pin); // sets 'value' equal to

// the input pin

digitalWrite(pin, value)

Outputs either logic level HIGH or LOW at (turns on or off) a specified digital

pin.The pin can be specified as either a variable or constant (0-13).

19

digitalWrite(pin, HIGH); // sets 'pin' to high analogRead(pin)Reads the value

from a specified analog pin with a10-bit resolution. This function only works on

the analog in pins (0-5). The resulting integer values range from 0 to 1023.

value = analog Read(pin); // sets 'value' equal to 'pin'

Note: Analog pins unlike digital ones, do not need to be first declared

as INPUT or OUTPUT.

analogWrite(pin, value)

Writes a pseudo-analog value using hardware enabled pulse width

modulation(PWM) to an output pin marked PWM. On newer Arduino with the

ATmega168chip, this function works on pins 3, 5, 6, 9, 10, and 11.

Older Arduinos with anATmega8 only support pins 9, 10, and 11. The value can

be specified as avariable or constant with a value from 0

-255.analog Write(pin, value); // writes 'value' to analog 'pin'

A value of 0 generates a steady 0 volts output at the specified pin; a value of255

generates a steady 5 volts output at the specified pin. For values in between 0

and 255, the pin rapidly alternates between 0 and 5 volts -the higher the value,

the more often the pin is HIGH (5 volts). For example, a value of 64will be 0

volts three-quarters of the time, and 5 volts one quarter of the time; a value of

128 will be at 0 half the time and 255 half the time; and a value of 192will be 0

volts one quarter of the time and 5 volts three-quarters of the time. Because this

is a hardware function, the pin will generate a steady wave after a call to analog

Write in the background until the next call to analogWrite (or a call to digital

Read or digitalWrite on the same pin)

Note:Analog pins unlike digital ones, do not need to be first declared as

INPUTnor OUTPUT

20

CHAPTER 4: RELATED WORK

In this chapter I will explain how I implemented my web interface starting with

the hardware components then description of the code used.

The project consists of the following hardware components:

(Arduino UNO Board, CuHeadWiFi Shield, Relay, Bread Board, Resistors,

Bulb, LED, Potentiometer)

 The Arduino board is used to download the main code which is called Sketch

software. This can be done through USB cable connected to a computer running

IDE. The communication is a serial communication through the USB cable. Wi-

Fi Shield is stacked on the Arduino board. This Wi-Fi Shield can connect to

wireless networks which operate according to the 802.11b and 802.11g

specifications. Also, this Wi-Fi shield can be used to store the web page that

will get requested whenever there is a request to control the LEDs that are

connected to the Arduino Board. The LEDs green, yellow, and red are connect

to pin numbers 7, 6, and 5, respectively. The green light simulates the water

pump that we assumed to fill the tank with water. The two other LEDs, yellow

and red, are used to represent the two switch that can be used to control any

home appliances, such as TV, Funs, Home Light, or garage door opener. The

voltage that we take from the Arduino board is very low and it is a DC voltage,

therefore we can use relays instead of LEDs to interface the low DC voltage

with normal AC voltage that can operate our home appliances that we need to

control. The following picture show the relay that can be connected to Arduino

to control a table lamp. To simulate the level of the tank that we need to

measure we used the Potentiometer by changing this potentiometer we are

simulating the level of the water in the tank. We aimed in this project to turn the

water pump automatically whenever the water level is reached the 10% and we

wanted to turn the water pump off whenever the water reach 90%. You can also

turn the water pump on and off whenever we wanted manually through the web

21

interface. The sketch of the project is written in the Arduino IDE. And it is

based on the Simple Server example code with a simple addition to read an

analog input and include the value in the web page sent back to the browser.

The sketch starts by including the WiShield library. Because we’re using it in

APP_WISERVER mode we include the WiServer.h The sketch then defines a

couple of constant to make the code further down a bit more readable.

#include <WiServer.h>

#define WIRELESS_MODE_INFRA 1

#define WIRELESS_MODE_ADHOC 2

The sketch needs to know certain configuration values to connect to your WiFi

network. These are set using a series of arrays and need to be changed to suit the

requirements. The basic network settings are the IP address of your Arduino

(which must be unique on your network), the IP address of the router, and the

subnet mask for your network. Note that most of the time we have an IP address

that is represented in “dotted-quad” format, but in this case each quad is stored

as a different element in an array so they have to be separated by commas

instead of periods

unsigned char local_ip[] = {10,0,1,200};

unsigned char gateway_ip[] = {10,0,1,1};

unsigned char subnet_mask[] = {255,255,255,0};

The wireless-specific settings start with the SSID (service set identifier) of our

access point. This is the Wi-Fi network name that we see on

our computer when selecting a network. Maximum length for the SSID is 32

characters.

constprog_charssid[] PROGMEM = {"YourSSID"};

We then need to specify the security type. The supported settings are shown in

the following Table.

22

Figure 4-1 Wi-Fi Server Network Security Mode

On our project we connected to a WPA2-encrypted network, so we set

it to 3.
unsigned char security_type = 3; // 0 - open; 1 - WEP; 2 - WPA; 3 - WPA2

// WPA/WPA2 passphrase

Ifyou use WPA or WPA2 you also need to supply the passphrase to join the

network. The value can be up to 64 characters long.

constprog_charsecurity_passphrase[] PROGMEM = {"smart123"}; // max 64

characters

If you are using WEP you need to define the 128-bit WEP key for your
network. WEP supports multiple keys and so does the WiShield, so youcan
configure them by entering the appropriate hex values into the program.
prog_ucharwep_keys[] PROGMEM = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, // Key 0

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, // Key 1

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, // Key 2

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00 // Key 3
 };

WiFi supports two basic modes: infrastructure and ad-hoc. The most common is infrastructure

with each mobile device connecting to a central access point, but it’s also

possible to run in ad-hoc mode where devices connect directly to their peers.

We connected our Arduino to an access point so we set it to

WIRELESS_MODE_INFRA, but you could alternatively set it to

WIRELESS_MODE_ADHOC. Technically, all this is doing is setting the value

of the variable to either 1 or 2, but that’s not very self-explanatory so the defines

that we set at the start of the sketchprovide easily memorable tokens.

23

Unsigned charwireless_mode=WIRELESS_MODE_INFRA;

The sketch then defines a couple of other variables for use by the WiShield.

unsigned char ssid_len;

unsigned char security_passphrase_len;

We also need to define some variables for processing the reading from the tank-
level sensor. The sensorValue variable will hold the raw analog reading from the sensor and could

have any value from 0 to 1023. The tankLevel variable will hold the tank level converted to a

percentage. We have also defined some Boolean variable to keep track of the states of switches for

whether to be on or off. Finally, we have defined the pin numbers that we used to control the digital

output and the pin for analog input to measure the sensor as shown below.

intsensorValue = 0; // value read from the pot

inttankLevel = 0;

boolean switch1State = false;

boolean switch2State = false;

booleanpumpSwitchState = false;

constint switch1Pin = 5;

constint switch2Pin = 6;

constintpumpSwitchPin = 7;

constintanalogInPin = 0; // Analog input pin that the potentiometer is attached

to

The setup function is simple, but the WiServer.init() function is worth taking a

look at. It accepts an argument that specifies the callback function to be

executed inresponse to a connection request, and in this case we’ve told it to use

the function sendWebPage(). This is a bit like setting up an interrupt because

passing it to WiServer.init() it will be invoked automatically at the appropriate

time.

void setup() {

WiServer.init(sendWebPage);

24

Next, the sketch opens a serial connection to the host so it can send status

messages back to you, and enables “verbose” mode so the server will send log

messages via that connection. We also setting our digital output pins.

Serial.begin(57600);

WiServer.enableVerboseMode(true);

pinMode(switch1Pin, OUTPUT);

pinMode(switch2Pin, OUTPUT);

pinMode(pumpSwitchPin, OUTPUT);

The main program loop is trivial. All it does is repeatedly call the WiServer

.server_task() method so that incoming data queued by the WiShield will be

processed. Without this, a connection request from your browser will arrive at

the WiShield and sit in the buffer without ever being acted on. We have also

implemented the some line of code to keep checking the water tank level.As

you may notice that this code will read the sensor raw value and converted to a

percentage value to represent the percentage of water in the tank. Whenever this

percentage value decreased below the 10% it will turn the LED that represent

the pump switch. If the level of the water reached 90%, the LED will turn off.

Which mean the water pump is off.

void loop(){

// read the analog in value:

sensorValue = analogRead(analogInPin);

// map it to the range of the analog out:

tankLevel = map(sensorValue, 0, 1023, 0, 100);

if (tankLevel< 10){

pumpSwitchState = true;

digitalWrite(pumpSwitchPin, HIGH);

}

25

if (tankLevel> 90){

pumpSwitchState = false;

digitalWrite(pumpSwitchPin, LOW);

}

// Run WiServer

WiServer.server_task();

de

lay(10);

}

The sendWebPage() function generates the web page to send back to the

browser. The function first check the URL to find out to control which switch.

The state of the switch will toggle based on the URL that is send from the

browser

booleansendMyPage(char* URL) {

if (strcmp(URL, "/switch1") == 0) switch1State = !switch1State;

if (strcmp(URL, "/switch2") == 0) switch2State = !switch2State;

if (strcmp(URL, "/pumpSwitch") == 0) pumpSwitchState =

!pumpSwitchState;

digitalWrite

(switch1Pin, switch1State);

digitalWrite(switch2Pin, switch2State);

digitalWrite(pumpSwitchPin, pumpSwitchState);

After that, the function will respond to the browser with the appropriate HTML

code that the browser will understand to represent the page that will be the

interface for our project.

WiServer.print("<html><center>");

WiServer.print("<h1>Switch Control</h1>
");

26

printSwitchStatus("switch1", switch1State);

printSwitchStatus("switch2", switch2State);

printSwitchS

tatus("pumpSwitch", pumpSwitchState);

WiServer.print("<h2>Your water tank is ");

WiServer.print(tankLevel);

WiServer.print("%");

WiServer.print(" full</h2>");

WiServer.print("Refresh Page");

WiServer.prin

t("</center></html>");

Note we have also used another function called printSwitchStatus().

This function is used to simplify the code. And it is also used to print the state

of all switch in the browser.

voidprintSwitchStatus(String switchName, booleanswitchState) {

WiServer.print(switchName);

WiServer.print(" is ");

if(switchState == false) {

WiServer.print(" off<a href=/");

WiServer.print(switchName);

WiServer.print(">Turn On
");

} else {

WiServer.print(" on<a href=/");

WiServer.print(switchName);

WiServer.print(">Turn off
");

}

}

27

CHAPTER 5: CONCLUSION

In conclusion, I feel that my product will be completed with the interfacing of

the home appliances.

I explained the tools required to implement this project and the codes necessary

for the Arduino board to create an interface with the home appliances it wants to

control. The advantage of our product is that it is all based on Arduino which is

an easy platform to implement a project of this type on. With this software, we

can develop it for more complicated applications in the future. It could be

implemented for appliances such as TV control, VCR setup and usage, stereo

control, and even control of applications on the computer. In particular, we will

provide installation instructions on setting up Home Surveillance.

28

REFERENCES

[1]Alfei, J. (2013). AutoHome: Using Arduino and `Smart' Android Apps to

Remotely Control Appliances. 1st ed. whales.

[2] Engineersgarage.com. (2016). What is Home Automation | Introduction to

Home Automation –EngineersGarage. [online] Available at:

http://www.engineersgarage.com/articles/home-automation

[Accessed 12 May 2016]

[3] Gerhart, J. (1999). Home automation and wiring. New York: McGraw-Hill.

[4] Dave Rye Hometoys.com.(2016). Dave Rye @ X10 | HomeToys. [online]

Available at:

http://www.hometoys.com/content.php?url=/htinews/oct99/articles/rye/rye.htm[

Accessed 13 May 2016].

[5] Arduino.cc. (2016). Arduino -Introduction. [online] Available at:

https://www.arduino.cc/en/Guide/Introduction

[Accessed 14 May 2016].

[6] Adafruit Industries -Makers, hackers, artists, designers and

engineers!.(2011). How many Arduinos are “in the wild?”About 300,000.

[online]

Available at: https://blog.adafruit.com/2011/05/15/how-many-arduinos-are-in-

the-wild-about-300000/[Accessed 12 May 2016].

[7] Medea. (2013). Arduino FAQ. [online] Available at:

http://medea.mah.se/2013/04/arduino-faq/[Accessed 13 May 2016].

[8] GitHub. (2016). Optiboot/optiboot. [online] Available at:

https://github.com/Optiboot/optiboot[Accessed 16 May 2016].

29

[9] Industries, A. (2016). DC Boarduino (Arduino compatible)

Kit(w/ATmega328) [v1.0] ID: 72 -$17.50 : Adafruit Industries, Unique &

funDIY electronics and kits. [online] Adafruit.com. Available at:

https://www.adafruit.com/products/72[Accessed 19 May 2016].

[10] others, T. (2016). arduinosrl.it, Electronics. [online] Smartprj.com.

Available at: http://smartprj.com/catalog/index.php

[Accessed 13 May 2016].

[11] Schmidt, M. (n.d.). Arduino.

[12] Programming Arduino getting started with sketches Mc@raw

Hill.Aprl8,2016. Retrivied 28-3-2016

[13]” BlinkTutorial”Arduino.cc.

[14]” UsingAtmel studio for Arduino Development “Mequnolink.com

[15]” UsingAVR studio for Arduino development”

Engbleze.com.Retrieved2016

[16] Arduino-noteBook_Ul-1.

[17] ParticleArduino cool projects for open Source Hardware

[18]By Jonathan oxer Hugh Blaming’s

