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Abstract.

This study is an attempt to describe Loss Distribution. In this project
firstly, we provide a definition for Loss Distribution. We seek to
find out the risk in insurance business. The differences between
both the insurer and the policyholder are highlighted aiming at a
deeper understanding of both insurer and the policyholder. The
second aim of this project is to show that we have positive skewness
and also discuss the distributions widely used for modelling loss in
insurance. In doing that, those distributions that are used to Loss
Distributions that are highlighted. Then, we come across to discuss
about the types of distribution such us gamma, exponential, Pareto,
normal, lognormal, Weibull and Burr.
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Introduction

Insurance is a way of managing risk by transferring the risk of
financial loss to another party called the insurer or insurance
company. The latter is a commercial enterprise, which makes
money out of risk, selling policies to its clients called the
policyholders. The policy is a contract between the insurer and the
policyholder. Under that contract, the policyholder pays a price for
a policy called premium to the insurer, in order to cover various
specified adverse situations (fire destruction, road accident etc), in
the even of which the company pays back to the policyholder a
certain amount of money called the benefit. The claims for benefits
cause a financial loss to the insurance company, so, to manage its
finance effectively, the latter needs to be able to estimate various
parameters of future loss, such as the frequency or the size of the
claims. One of the methods used in insurance is the statistical study
of similar events in the past to make a prognosis for the future,
based on appropriate mathematical models.

The quantities of interest are regarded as random variables, hence
the most important problem is to determine their probability
distribution. This can be done using the past observations and
approximating them by a suitable density function, as in Figure 1.
This function is further used in mathematical modelling, that allows
the insurer to estimate possible loss and derive the premiums for
various types of policyholders. A widespread method used in
practice is an approximation of the empirical histogram within a
given family of model distributions depending on a set of
parameters. The task is then to determine the value of parameters
using such techniques as the method of moments or the maximal
likelihood.

From experience, the loss samples exhibit fat-tail behaviour and
typically have positive skewness (asymmetric around the mean).
This project contains two chapters. In chapter one, we discuss the
distributions widely used for modelling loss in insurance. We also
calculate probabilities and moments of the loss distributions both
with and without limits and risk-sharing arrangements. In
particular, we derive moments and moment generating functions
(where defined) of the gamma, exponential, Pareto, generalized
Pareto, normal, lognormal, Weibull Burr loss distributions. We
have explanation and example for each one.



Figure 1: Approximation of empiric distribution histogram

You will be familiar with a few of these distributions already. We
apply the principles of statistical inference to select suitable loss
distributions for sets of claims.

In chapter two, we talk about applications to reinsurance. We
explain the concepts of excesses, and retention limits. We describe
the operation of simple forms of proportional and excess of loss
reinsurance. We derive the distribution and corresponding moments
of the claim amounts paid by the insurer and the reinsurer in the
presence of excesses and reinsurance.



Chapter One:

Basic distributions
In this chapter, we present a summary of the most important probability
distributions used in various areas of economics and finance, including
actuarial science. The properties of interest to us are the density and
distribution functions, the moments and the mgf.

Definition (Continuous random variable):

The distribution function Fy of a random variable X is called absolutely
continuous if there is a positive function fy, such that [ e fx(®)dt =1, and

F(x) = f_xoo fx(t)dt. We shall call such X continuous random variables, and

fx 1s said to be its probability density function.

1.1 Normal distribution:

Definition: The normal distribution N (p, o 2) is completely characterized
by two parameters u € R, and ¢ > 0.

The density function is

1 —(x—p)*
e 26> ,x€R

f&x) =

o’

The distribution N(u, 02) can be obtained from the distribution N(0, 1) via

the substitution x — ff;
20

The mean value of N(u,02) is p, and the density function is symmetric
around the mean. The cumulative distribution function Erf(x) is the integral
of the density and it cannot be written as an elementary function.

The normal distribution is very important for various applications; however,
it is seldom used for loss modelling as it is symmetric. Also, the density
function decays faster than any power of x, and this is another reason why the
normal distribution is not suitable as a loss distribution.



Example: Compute the moment generating function of N(u, 62)
1 —(x=p)?

e 202 dx
\V2ma?

1 © —(x—p)*
= j e e 207 dx

\V2mo?

1 ©  —[(x—p)*-207%tx]
= f e 202 dx

\V2mo?

MGF = M, (t) = E(e™) = f et

1 foo —[(x—p)%—2052%tx] L o?t2 ut Gztzd
= Wy e 20'2 e + 2 e 2 x
V2mg?2 J-o
o2t2
ettt 2 ©  —[(x=p)?-20%t(x=p)+c*t?]
ey = £ 7 Aesmiagpate
2mo? J_o»
2,2
P (e
- V2ma? f—oo € i dx

a2t?

Therefore, M,(x) = E(e®*) = e'** 2,

IS Normal distribution good model?

Normal distributions do not realistically model loss distributions because

e they are symmetric about the mean;
e the tails, ie P(X > x) decays faster than any power of x,

x"P(X >x) — 0, as x — oo for all n.

1.2 Log-normal distribution:
Definition.

The random variable Y is said to have the log-normal distribution with
parameters i € R and 02> 0, if log(Y) ~ N(u, 02).

The density function log-normal distribution log N(u, o) can be obtained
from N(u, 62 ) by the substitution x — log x

—(log (x)-1)?
202 , x>0.

f(x)=

1
e
V2mx



The density of the log-normal distribution

Suppose we have the density of X and we want to find the density of Y =
g(X). g must be monotonic. In that case we have

fr ) === fx (g7 ).

In our case Y = e¥, where X ~ N(u,02), and thus

9(g7*)

|1 1 (In(y) — w)?/2
fry) = 2In () Wexp - 252

1 (_(ln(y)—u)2/2>
\/27'[7}1 P 202

Log-normal distribution:

o Skewness positive—not symmetric;

« but tails still rapidly decaying, ie for all a > 0
the product f(x)x? tends to zero as x tends to
infinity.

o The moment generating function cannot be
explicitly integrated.

. 2
Mean is eHto/2

. . 2 2
variance is (€7 — 1)e?#*?

1.3 Exponential Distribution:

The cumulative probability function of the exponential
distribution E(A), with parameter A > 0, is

P[T<t]=1-e7* x>0.
This corresponds to the density function.

1
fx3) =A™, 0r  f(xd) = e, X20

|
e Meanis -.
A
: .1
* varianceis 7.
e Moment generating function

MGEF(t) = [7" Ae et dx = ﬁ for t< A,

9



1.4 Gamma Function:
Some facts about Gamma function
e For a>0 we have
e I'(a)= fooo ta letdt.
e For n a positive integer
e 'n)=(m-1)!
e Alsoforalla>0
o I'(a+1)=oal ().

035

= 2 b b
hozoo

B s e i
nmewunmn

D ZDD
nmwnnndg

W0 LA e e =

04 FY

01 p \{-\

[
a 2 4 6 8 [[1] 12 14 16 18 20

Figure 2: Pdf for different parameter choices. Souwrce: wikipedia
1.4.1 Gamma distribution:
1. The Gamma distribution I" (a, B) depends on two positive

parameters a, B and has the density function

f(x) = %e‘ﬁxx“_l .

i1. When a = 1, it degenerates to the exponential distribution &(J3).
The cumulative distribution can be expressed through elementary

functions provided a is integer.

ii1. The mean and variance of I" (a, ) are % and a %

1v. MGF of Gamma

MGF =(%)OC, fort <.

v. Remark that the gamma distribution has positive skewness but

light tails, as the density function is rapidly descending

10



1.5 Cauchy Distribution:

The Cauchy distribution is an example of a heavy tailed distribution and has
the density function

1t :n[92+(x—M)2] X ER,

where 0 > 0 and M € R are the parameters.

For large x > 0, P(X > x) ~ C/x—FAT TAILS.

In fact, tails are so fat that no moments( of order < 1 are defined).
However it is symmetric around its median, which is equal to M.

Remember: mean does NOT exist, variance does NOT exist, MGF

does NOT exist.

0.7

0s

o4

(A

ol £ & A\

Figure 3: Pdf for different parameter choices. Source: wikipedia
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1.6 Pareto distribution:

A random variable X follows Pareto distribution PA(a,b) if its
probability density function is

baP

fxla,b)= . x=a>0,b>0.

where the parameters o and b are positive real numbers.

The cumulative distribution function is
ab
F(x) =P X <x] =1 —x—b,xZa.

the n-th moment is finite only if o > n.
b
= mean —,b> 1.
b-1

ba?

(b-1%(b-2)° b>2

= Variance

= Since it cannot possibly have all moments, MGF defined only

on negative half-axis.

1.7 Weibull distribution.

The Weibull cumulative probability distribution is

Fx)=P[X<x]=1—-e,

Density function is

f(x) = 2 e () x>0,

where A and Y are positive real numbers.
When y = 1 exponential; lighter tail than E(A) if y < 1 and thicker
ify>1.

= Mean: AT+ 1/Y)

* Variance: AT +2/Y)-[T(1 + 1/Y)]?

12



For the moments we change variables
1 1

y=AxY, dy=Ayx?ldx ,x=\"v yr

Mn =M/fooo x"xV"le™XVdx = )y f0+oox”+”_1e_7‘xydx

-1 1

o -1 1 y-1
Ay [Ty le Y () (W) 7 dy

=27 [T yreVdy = A7 |C+ D),

Figure 4: Pdf of Weibull for different parameters

1.8 Burr distribution:

The Burr distribution can be viewed as a one parameter extension
of the Pareto distribution and has the cumulative probability
function

A X
A+xy) ’
The Pareto case is obtained by the specialization

y=1.

F(x)=P[X < x]=1—(

The density function is
A\
= y-1
f(X) x (A+xy) (A+xy)?2 rx
_XY A Nx+1,y-1
A A+xy) x )

13



oy A®
xXY+1 2

Its asymptotic behaviour at large x is ~

So it decays more rapidly than the Pareto density function if y > 1
and vice versa.

The moment generating function does not exist as in the case of
Pareto distribution. The n-th moment exists if and only if ay > n.

Some Examples

For log-normal distribution

The random variable Y=log X N(10,4) distribution , Find
(a) The pdf of X

(b)Mean & Variance of X
(c)P(X< 1000)
Part (a)
1 (_(lnx—10)2>
— e 8 x=0
fG) =1 2xvon
0 otherwise
Part(b)
o 2
E(X) ()
:e10+(§)
—p12
~ 162.754
Var(X) = [e”Y2 —1] e Cuy+oy?)
:(e4 _ 1) e(20+4)
—(e* — 1) e®¥
~ 53.598
Part (¢)

P[X< 1000] = P[logX < log1000]
= P[Y < log 1000]

_p [Z < 10g10200—1o]

= P(Z < —1.55)
= ®(—1.55)

14



For Pareto Distribution

To compute probabilities: Enter the values of the parameters a, b,
and x; [P(X <=x)].

Example When a =2, b =3, and the value of x = 3.4,Find
(a) Pdf of x
(b)Mean & variance

(c)P(X<34) and P(X>3.4)

Part (a)
24 >2>03>0
f={@* =7
0 otherwise
Part (b)
B = 5
=3
v _ 3x2?2
ar(x) = (3-1)2(3-2)
=12
4
=3
Part (c)

P(X < 3.4) = 0.796458 and

P(X > 3.4) = 0.203542.

15



For Weibull distribution.

To compute probabilities: Enter the values of m, c, b, and the
cumulative probability; click [P(X <= x)].

Example : Whenm=0,Y =2.3, A=2, and x = 3.4,
(a) Pdf of x

(b)Mean & variance

(¢)P(X <3.4) and P(X > 3.4)

Part(a)
fx) = 25 e xz0
Part(b)
E(x)=23T()
V(x)= 529 T(2) — (r(g))z'3
Part(c)

P(X <3.4) = 0.966247 .

P(X > 3.4) = 0.033753.

16



Statistical Inference:

Methods of Estimation

We shall describe here two classical methods of estimation,
namely, the moment estimation and the method of maximum
likelihood estimation. Let X5, ..., X,, be a sample of observations
from a population with the distribution function F(x|64, ..., 0 ),
where 0, ..., 8, are unknown parameters to be estimated based on
the sample.

Moment Estimation

Let f(x]|64,...,0)) denote the pdf or pmf of a random variable X
with cdf F(x|04, ..., 0%) . The moments about the origin are usually
functions of 04, ..., O
Notice that E(X}) = E(XF), i=2, ..., n, because the X; ’s are
identically distributed. The moment estimators can be obtained by
solving the following

system of equations for 6y, ..., 0y

n
1
- X =
2D K= ECa)
=1

n
1
=) XF=E(D)
=

1

- Xk = E(xY),

F'M 3
=

Where

E(le)=f x/f(x|0y,...,0)dx, j=1.2,...,k.

17



Maximum Likelihood Estimation:

For a given sample x = (x4, ..., X,,), the function defined by

n
L(Qll ) eklxll ...,Xn) = nf(xilell ) Hk)
i=1

is called the likelihood function. The maximum likelihood
estimators are the values of 84, ..., ), that maximize the
likelihood function.

18



Chapter Two

2.1 Applications to reinsurance:

Like any participant within the financial market and like any of its

customers, an insurance company is subject to a risk, specifically,
the risk of large claims. Unexpectedly large claims may destroy the
finance of the company, so it might also want to protect itself by
sharing this risk with another insurance company. Then it becomes
itself a policyholder. Such a strategy is called reinsurance. Thus, the
original gross premium and gross claim amount for the direct
insurer are reduced as a result of reinsurance. The actual premium
gained and claim paid off by the direct insurer are called
respectively net premium and net claim amount.

There are two major types of reinsurance, proportional and non-
proportional. The proportional reinsurance implies that the
reinsurer covers a percentage of each claim. As a consequence, the
insurer pays to the reinsurer a proportion of each premium from
each policy, typically, the same percentage as that of the claim
covered by the reinsurer. If the proportion of the premium is the
same for all risks, it is called quota share reinsurance. If the
proportion varies from risk to risk, it is called surplus reinsurance.
In the non-proportional insurance, the claim amount is divided into
intervals (layers), and the reinsurer is liable to cover a certain
amount of claim, once it falls into a particular layer. Typically, the
reinsurer covers the claim above certain level called retention limit,
and maybe below upper level. There are two possible strategies to
impose the retention limit: either on each individual claim or on the
total claim amount of a specified group of policies. The first case is
called individual excess of loss while the second is stop loss
reinsurance.

We consider the two types of reinsurance in some detail. Let X be
the amount of claim to be paid off; let Y denote the claim amount
paid by the direct insurer. It is convenient to introduce the variable
Y = X =Y, which has the meaning of the claim amount paid by the
reinsurer.

19



2.2 Excess of loss:

In this type of reinsurance there is a level U settled for each
individual claim, above which the excess is covered by the
reinsurer. By definition,

Y =min{X, U}, ¥Y=max{X,U}-U. ........ (1)
Let f(x) be the probability density function for X. Then

)

E[Y] = f min{X, U} f (x)dx =jxf(x)dx+ Uf f(x)dx,
0 U

0

E[Y] = f(max{x, U} -U)f(x)dx = f(x — U)f (x)dx.
0 U

The means are calculated with respect to the distribution f(x). Since
Y + Y= X, we have E[Y ] + E[V] = E[X]. One consequence of
reinsurance is that E[Y ] < E[X] As E[X] is the mean claim amount
without reinsurance, the latter allows the direct insurer to reduce

risk by E[Y]. The moment generating function of the insurer is
U 0o

MGF = E[e'] = j e f(x)dx + etV j f(x)dx.
0 U
As usual, the discrete case is obtained by replacing integrals by
summations.

The reinsurance company comes into play only if the claim amount
exceeds U. Hence its probability of claim events is conditional
given X>U. Using standard rules of computing conditional
probability distributions, we find the density function of the
reinsurer:

. f(x)

fx) = ml[u,+m],

where P[X > U] = [ ; % f(x)dx (in discrete case the density

function is replaced by probabilities). The portion of claim borne
by the reinsurer is ¥ . Its expected value is then equal to

20



EI7] = f;oo(x —U)f(x)dx _ f0+ooxf(x + U)dx.
f;wf(x)dx f0+°°f(x + U)dx
The moment generating function reads
f;oo et U f(x)dx
J, 7 fodx
T e f e+ U)dx
- f0+°°f(x +U)dx

MGF = E[e'"] =

2.3 Proportional reinsurance

In the proportional case the direct insurer pays a fixed proportion
a of every claim:

Y =aX,
Y=(1- o)X,

The coefficient a is called retention factor.

The probability density functions of the direct insurer and
reinsurer are found by simple rescaling:

s =-r(),
) = ——f (7).

As usual, the discrete case is obtained by replacing integrals by
summations.

Example: We illustrate the present section on the example of

exponential distribution, that is, f(x) = le™**.

In this case, the moment generating functions of the direct insurer
and reinsurer are

U co 1 — e—U(ﬂ—t)
E[etY] = Af etXe=*Adx +/1€th e ¥t = —

0 U 1- 7

+ UG-t

21



+o0 _ +oo
j;] et(x)e (x+U)Adx B j;] e xl+txdx 1

[T e Ciax [T e A-t
0 0

It is interesting to note that the generating function of the reinsurer
is independent of U.

E[e] =2

2.4 Excesses

Sometimes the insurer establishes a lower limit L for the claim X to be
covered. In that case only the part

max{X, L} —L
is paid to the policyholder. Comparing this with (1), we conclude that the
insurer acts like a reinsurer with replacement of U by L. Hence all the methods
developed above are applicable. The insurance with excesses is often applied
in the situation when there is a significant probability of minor risk, like in car
insurance, and the numerous financially insignificant claims are difficult to
operate. It is obvious, that excesses should reduce the premium paid by

policyholders.

Question:

A risk has a Pareto distribution P a(a, c¢). Assuming deductible L,
derive the expected claim amount.

Answer:

A lower limit L Y=max{X,L} -L

a
f(x|a,c)=#, x=c>0,a>0.

ac®

E[Y] = J-(max{X, L}— L)W dx

a

ac
= L’.(X— L)W dx

‘ ac®
= f(X— L)W dx
L

22



(x- L)

(c + x)a+1 dx
L

= ac?

Let c+x =t ,dx = dt.
a t—c—1L
=ac | e

:aca! ((t)a“ (t)ca+1 <t>L““>dt

=aca!ldt— f(t)aﬂ j(t)a+1

n+l

dt

Use x—dx— —(n Dan1
(0]

L

A
at®1 —¢ta-1 = ta = gta
Subs c+x=t,
= ac? (— ! + - + - )
a(c+x)*t—(c+x)*1  alc+x)* a(c+x)?

(0]

of €TL 1 «©

=ac <a(C+X)a _(a—l)(C+X)a_1) L
Jf CtL 1

= —ac (a(C+L)a - (a— 1)(c+L)a—1)

— a 1 !

- Tac (a(c +L0)a T (a—1)(c+ L)a_l)
. —ac® 1 1
“Ereila @)

Ca
- (c+L)*1(a—-1)

23
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gamma, exponential, Pareto, normal, lognormal,
.Weibull and Burr
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