
Q1/ Define joint mgf.

If the random variables X and Y have the joint pdf

$$f(x,y) = \begin{cases} e^{-y} & ; \ 0 < x < y < \infty \\ 0 & elsewhere \end{cases}, \text{ then}$$
1) Show that $mgf = \frac{1}{[(1-t_1-t_2)(1-t_2)]}$ provided that $t_1 + t_2 < 1$ and $t_2 < 1$.
2) Are X any Y independent? 3) Find $Cov(x,y)$. (12 marks)

Q2/ A number *X* is picked uniformly at random from 1 to 100. Find a formula for the probability mas

function of X. What is the expected value of X^2 ? (8 marks)

Q3) Consider two random variables X and Y with joint pmf given in the table.

	Y=0	Y=1	Y=2
X=0	1/6	1/4	1/8
X=1	1/8	1/6	1/6

a. Find $P(X = 0, Y \le 1)$.

b. Find the marginal pdfs of X and Y.

c. Find P(Y = 1 | X = 0).

College of Educa	tion Mathemati	cs Department	Probability and sta	ntistics I
Midterm exam	2 nd class-First semes	ter Date: 10 /	11 / 2021 Time: 70 m	inutes

Q1// A) Complete the following frequency distribution table: - (12 Marks)

Classes	Class mark (x_i)	frequency (f_i)
10	13	2
		4
		1
		5
		6
		2

Then find:	1) Mean Deviation	2) Median	3) Relative frequency
	4) The coefficient of skewness		5) Draw the histogram for the data.

B) If numbers of $x_1, x_2, ..., x_n$ have deviations from any number k given respectively $y_1 = x_1 - k, y_2 = x_2 - k, ..., y_n = x_n - k$, then prove that $\overline{Y} = \overline{X} - k$. (3 marks)

Q2//A) There are 3 arrangements of the word DAD, namely DAD, ADD, and DDA.

How many arrangements are there of the word PROBABILITY?(4 marks)**B)** What is conditional probability? Let two dice are rolled. Then

A = 'sum of two dice equals 3' and B = 'at least one of the dice shows a 1'

(a) What is P(A|B)? (b) Are A and B independent? (6 marks)

C) Define probability function. Let C and D be two events with P(C) = 0.25, P(D) = 0.45,

and P (C \cap D) = 0.1. What is P (C^c \cap D)?

Probability and statisticsSecond Stage\MathematicsTime: 90 minutes28/3/2021

(5 marks)

Q1/ If the random variables X and Y have the joint pdf $f(x,y) = \begin{cases} 2e^{-x-y} & \text{; } 0 < x < y < \infty \\ 0 & elsewhere \end{cases}$

then answer the following questions:

1) Are X any Y independent? (10 marks) 2) Find E(Y|X = x) 3) Find $P(1 < Y < 2 \mid X = \frac{1}{2})$.

Q2/A) Suppose the joint mgf $M(t_1, t_2)$ exist for random variables X and Y. Prove that if $M(t_1, t_2) = M(t_1)M(t_2)$, then X and Y are independent variables. (8 marks)

B) Let X and Y have joint pdf, defined by

$$f(x,y) = \begin{cases} 4xy & ; \ 0 \le x \le 1, \quad 0 \le y \le 1\\ 0 & elsewhere \end{cases}$$

Then find: 1) F(x, y) 2) $P(X \le \frac{1}{2}, Y \le \frac{3}{4})$ 3) Cov(X, Y) 4) Correlation coefficient. (12 marks)

Q3//**A**) How many 5-digit number can be formed from 3, 4, 6, 8, 5, 1, 7, 9? (3 marks)

B) What is conditional probability? Let two dice are rolled. Then

A = 'sum of two dice equals 7' and B = 'at least one of the dice shows a 2'

(a) Find $P(A \cap B)$ (b) What is P(A|B)? (6 marks)

C) Define probability function. If that A and B be two non-mutually events in S. Suppose P(A) = 0.4, P(B) = 0.3 and $P((A \cup B)^{C}) = 0.42$. Are A and B independent? (6 marks)