Question Bank:

Exercise:

1. Show that the random variables X_1 and X_2 with joint pdf

$$f(x_1, x_2) = \begin{cases} 12x_1x_2(1 - x_2) & 0 < x_1 < 1, \ 0 < x_2 < 1 \\ 0 & \text{elsewhere} \end{cases}$$

are independent.

- **2.** If the random variables X_1 and X_2 have the joint pdf $f(x_1, x_2) = 2e^{-x_1-x_2}$, $0 < x_1 < x_2$, $0 < x_2 < \infty$, zero elsewhere, show that X_1 and X_2 are dependent.
- **3.** Let $p(x_1, x_2) = \frac{1}{16}$, $x_1 = 1, 2, 3, 4$, and $x_2 = 1, 2, 3, 4$, zero elsewhere, be the joint pmf of X_1 and X_2 . Show that X_1 and X_2 are independent.
- **4.** Find $P(0 < X_1 < \frac{1}{3}, 0 < X_2 < \frac{1}{3})$ if the random variables X_1 and X_2 have the joint pdf $f(x_1, x_2) = 4x_1(1 x_2)$, $0 < x_1 < 1$, $0 < x_2 < 1$, zero elsewhere.
- **5.** Find the probability of the union of the events $a < X_1 < b, -\infty < X_2 < \infty$, and $-\infty < X_1 < \infty, \ c < X_2 < d$ if X_1 and X_2 are two independent variables with $P(a < X_1 < b) = \frac{2}{3}$ and $P(c < X_2 < d) = \frac{5}{8}$.

Exercise:

- Q1/Ten percent of the tools produced in a certain manufacturing process turn out to be defective. Find the probability that in a sample of 10 tools chosen at random exactly 2 will be defective by using (a) the binomial distribution and (b) the Poisson approximation to the binomial distribution.
- Q2/Between the hours of 2 and 4 pm. the average number of phone calls per minute coming into the switchboard of a company is 2.5. Find the probability that during one particular minute there will be (a) 0, (b) 1, (c) 2, (\underline{d}) 3, (e) 4 or fewer, and (f) more than 6 phone calls.
- Q3/ Suppose that X is a random variable with moment-generating function $m_X(t) = e^{3.2(et-1)}$. What is the distribution of X?

EXERCISES

1. If

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-w^{2}/2} dw,$$

show that $\Phi(-z) = 1 - \Phi(z)$.

- **2.** If X is N(75, 100), find P(X < 60) and P(70 < X < 100) by using either Table II or the R command pnorm.
- **3.** If X is $N(\mu, \sigma^2)$, find b so that $P[-b < (X \mu)/\sigma < b] = 0.90$, by using either Table II of Appendix D or the R command qnorm.
- **4.** Let X be $N(\mu, \sigma^2)$ so that P(X < 89) = 0.90 and P(X < 94) = 0.95. Find μ and σ^2 .
- 5. Show that the constant c can be selected so that $f(x) = c2^{-x^2}$, $-\infty < x < \infty$, satisfies the conditions of a normal pdf.

Hint: Write $2 = e^{\log 2}$.

- **6.** If X is $N(\mu, \sigma^2)$, show that $E(|X \mu|) = \sigma \sqrt{2/\pi}$.
- 7. Show that the graph of a pdf $N(\mu, \sigma^2)$ has points of inflection at $x = \mu \sigma$ and $x = \mu + \sigma$.
- **8.** Evaluate $\int_{2}^{3} \exp[-2(x-3)^{2}] dx$.
- **9.** Determine the 90th percentile of the distribution, which is N(65, 25).
- 10. If e^{3t+8t^2} is the mgf of the random variable X, find P(-1 < X < 9).
- 11. Let the random variable X have the pdf

$$f(x) = \frac{2}{\sqrt{2\pi}}e^{-x^2/2}, \quad 0 < x < \infty,$$
 zero elsewhere.

- (a) Find the mean and the variance of X.
- (b) Find the cdf and hazard function of X.

Hint for (a): Compute E(X) directly and $E(X^2)$ by comparing the integral with the integral representing the variance of a random variable that is N(0,1).

Exercise: Let X have a gamma distribution with $\alpha = \frac{r}{2}$, where r is a positive integer, and $\beta > 0$. Define the random variable $Y = \frac{2X}{\beta}$.

2

Exercise: A) show that the mean and the variance of Γ - distribution are:

$$\mu = E(x) = \alpha \beta$$
 and $\sigma^2 = \alpha \beta^2$

A) Show that the mean and the variance of β - distribution are:

$$\mu = E(x) = \frac{\alpha}{\alpha + \beta}$$
 and $\sigma^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$

Exercise: A) if $\alpha = \beta = \frac{1}{2}$, then what is the value of $\beta\left(\frac{1}{2}, \frac{1}{2}\right) = ?$?

A) prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

Exercise:

Let X be a random variable such that $E(X^m) = (m+1)!2^m$, $m = 1, 2, 3, \ldots$. Determine the mgf and the distribution of X.

Hint: Write out the Taylor series⁶ of the mgf.

Show that

$$\int_{\mu}^{\infty} \frac{1}{\Gamma(k)} z^{k-1} e^{-z} dz = \sum_{x=0}^{k-1} \frac{\mu^x e^{-\mu}}{x!}, \quad k = 1, 2, 3, \dots$$

This demonstrates the relationship between the cdfs of the gamma and Poisson distributions.

Hint: Either integrate by parts k-1 times or obtain the "antiderivative" by showing that

$$\frac{d}{dz} \left[-e^{-z} \sum_{j=0}^{k-1} \frac{\Gamma(k)}{(k-j-1)!} z^{k-j-1} \right] = z^{k-1} e^{-z}.$$

Let X_1 , X_2 , and X_3 be iid random variables, each with pdf $f(x) = e^{-x}$, $0 < x < \infty$, zero elsewhere.

3

- (a) Find the distribution of $Y = \min(X_1, X_2, X_3)$. Hint: $P(Y \le y) = 1 - P(Y > y) = 1 - P(X_i > y, i = 1, 2, 3)$.
- (b) Find the distribution of $Y = \text{maximum}(X_1, X_2, X_3)$.