Chapter Two #### EXERCISES - 1) Let the observed value of the mean X of a random sample of size 20 from a distribution that is $n(\mu, 80)$ be 81.2. Find a 95 per cent confidence interval for μ . - 2) Let \overline{X} be the mean of a random sample of size n from a distribution that is $n(\mu, 9)$. Find n such that $\Pr(\overline{X} 1 < \mu < \overline{X} + 1) = 0.90$, approximately. - 3) Let a random sample of size 17 from the normal distribution $n(\mu, \sigma^2)$ yield $\bar{x} = 4.7$ and $s^2 = 5.76$. Determine a 90 per cent confidence interval for μ . - 4) Let X denote the mean of a random sample of size n from a distribution that has mean μ , variance $\sigma^2 = 10$, and a moment-generating function. Find n so that the probability is approximately 0.954 that the random interval $(X \frac{1}{2}, X + \frac{1}{2})$ includes μ . - 5) Let X_1, X_2, \ldots, X_9 be a random sample of size 9 from a distribution that is $n(\mu, \sigma^2)$. - (a) If σ is known, find the length of a 95 per cent confidence interval for μ if this interval is based on the random variable $\sqrt{9}(\overline{X} \mu)/\sigma$. - (b) If σ is unknown, find the expected value of the length of a 95 per cent confidence interval for μ if this interval is based on the random variable $\sqrt{8}(\bar{X}-\mu)/S$. - (c) Compare these two answers. Hint. Write $E(S) = (\sigma/\sqrt{n})E[(nS^2/\sigma^2)^{1/2}]$. - 6) Let $X_1, X_2, \ldots, X_n, X_{n+1}$ be a random sample of size n+1, n>1, from a distribution that is $n(\mu, \sigma^2)$. Let $\overline{X} = \sum_{1}^{n} X_i/n$ and $S^2 = \sum_{1}^{n} (X_i \overline{X})^2/n$. Find the constant c so that the statistic $c(\overline{X} X_{n+1})/S$ has a t distribution. If n=8, determine k such that $\Pr(\overline{X} kS < X_9 < \overline{X} + kS) = 0.80$. The observed interval $(\overline{x} ks, \overline{x} + ks)$ is often called an 80 per cent prediction interval for X_9 . ### **EXERCISES** - 7) Let two independent random samples, each of size 10, from two independent normal distributions $n(\mu_1, \sigma^2)$ and $n(\mu_2, \sigma^2)$ yield $\bar{x} = 4.8$, $s_1^2 = 8.64$, $\bar{y} = 5.6$, $s_2^2 = 7.88$. Find a 95 per cent confidence interval for $\mu_1 \mu_2$. - 8) Let X and Y be the means of two independent random samples, each of size n, from the respective distributions $n(\mu_1, \sigma^2)$ and $n(\mu_2, \sigma^2)$, where the common variance is known. Find n such that $\Pr(X Y \sigma/5 < \mu_1 \mu_2 < \overline{X} Y + \sigma/5) = 0.90$. - 9) If 8.6, 7.9, 8.3, 6.4, 8.4, 9.8, 7.2, 7.8, 7.5 are the observed values of a random sample of size 9 from a distribution that is $n(8, \sigma^2)$, construct a 90 per cent confidence interval for σ^2 . - 10) Let X_1, X_2, \ldots, X_n be a random sample from the distribution $n(\mu, \sigma^2)$. Let 0 < a < b. Show that the mathematical expectation of the length of the random interval $\left[\sum_{i=1}^{n} (X_i \mu)^2/b, \sum_{i=1}^{n} (X_i \mu)^2/a\right]$ is $(b a) \times (n\sigma^2/ab)$. - 11) A random sample of size 15 from the normal distribution $n(\mu, \sigma^2)$ yields $\bar{x} = 3.2$ and $s^2 = 4.24$. Determine a 90 per cent confidence interval for σ^2 . - 12) Let two independent random samples of sizes n=16 and m=10, taken from two independent normal distributions $n(\mu_1, \sigma_1^2)$ and $n(\mu_2, \sigma_2^2)$, respectively, yield $\bar{x}=3.6$, $s_1^2=4.14$, $\bar{y}=13.6$, $s_2^2=7.26$. Find a 90 per cent confidence interval for σ_2^2/σ_1^2 when μ_1 and μ_2 are unknown. # **Chapter Three** ### **Exercises:** - 2) Let X_1, X_2, \ldots, X_{10} be a random sample of size 10 from a normal distribution $n(0, \sigma^2)$. Find a best critical region of size $\alpha = 0.05$ for testing H_0 : $\sigma^2 = 1$ against H_1 : $\sigma^2 = 2$. Is this a best critical region of size 0.05 for testing H_0 : $\sigma^2 = 1$ against H_1 : $\sigma^2 = 4$? Against H_1 : $\sigma^2 = \sigma_1^2 > 1$? - 3) If X_1, X_2, \ldots, X_n is a random sample from a distribution having p.d.f. of the form $f(x; \theta) = \theta x^{\theta-1}$, 0 < x < 1, zero elsewhere, show that a best critical region for testing H_0 : $\theta = 1$ against H_1 : $\theta = 2$ is $C = \left\{(x_1, x_2, \ldots, x_n); c \leq \prod_{i=1}^n x_i\right\}$. - 4) Let X_1, X_2, \ldots, X_{10} be a random sample from a distribution that is $n(\theta_1, \theta_2)$. Find a best test of the simple hypothesis H_0 : $\theta_1 = \theta_1' = 0$, $\theta_2 = \theta_2' = 1$ against the alternative simple hypothesis H_1 : $\theta_1 = \theta_1'' = 1$, $\theta_2 = \theta_2'' = 4$. - 5) Let X_1, X_2, \ldots, X_n denote a random sample from a normal distribution $n(\theta, 100)$. Show that $C = \{(x_1, x_2, \ldots, x_n); c \leq \overline{x} = \sum_{i=1}^{n} x_i/n\}$ is a best critical region for testing H_0 : $\theta = 75$ against H_1 : $\theta = 78$. Find n and c so that $$\Pr[(X_1, X_2, ..., X_n) \in C; H_0] = \Pr(\overline{X} \ge c; H_0) = 0.05$$ and $$\Pr[(X_1, X_2, ..., X_n) \in C; H_1] = \Pr(\overline{X} \geq c; H_1) = 0.90$$, approximately. - 6) Let X_1, X_2, \ldots, X_n denote a random sample from a distribution having the p.d.f. $f(x; p) = p^x (1 p)^{1-x}$, x = 0, 1, zero elsewhere. Show that $C = \{(x_1, \ldots, x_n); \sum_{i=1}^{n} x_i \leq c\}$ is a best critical region for testing $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{1}{3}$. Use the central limit theorem to find n and c so that approximately $\Pr\left(\sum_{i=1}^{n} X_i \leq c; H_0\right) = 0.10$ and $\Pr\left(\sum_{i=1}^{n} X_i \leq c; H_1\right) = 0.80$. - 7) Let X_1, X_2, \ldots, X_{10} denote a random sample of size 10 from a Poisson distribution with mean θ . Show that the critical region C defined by $\sum_{i=1}^{10} x_i \geq 3$ is a best critical region for testing H_0 : $\theta = 0.1$ against H_1 : $\theta = 0.5$. Determine, for this test, the significance level α and the power at $\theta = 0.5$.