# **Chapter Two**

#### EXERCISES

- 1) Let the observed value of the mean X of a random sample of size 20 from a distribution that is  $n(\mu, 80)$  be 81.2. Find a 95 per cent confidence interval for  $\mu$ .
- 2) Let  $\overline{X}$  be the mean of a random sample of size n from a distribution that is  $n(\mu, 9)$ . Find n such that  $\Pr(\overline{X} 1 < \mu < \overline{X} + 1) = 0.90$ , approximately.
- 3) Let a random sample of size 17 from the normal distribution  $n(\mu, \sigma^2)$  yield  $\bar{x} = 4.7$  and  $s^2 = 5.76$ . Determine a 90 per cent confidence interval for  $\mu$ .
- 4) Let X denote the mean of a random sample of size n from a distribution that has mean  $\mu$ , variance  $\sigma^2 = 10$ , and a moment-generating function. Find n so that the probability is approximately 0.954 that the random interval  $(X \frac{1}{2}, X + \frac{1}{2})$  includes  $\mu$ .
- 5) Let  $X_1, X_2, \ldots, X_9$  be a random sample of size 9 from a distribution that is  $n(\mu, \sigma^2)$ .
- (a) If  $\sigma$  is known, find the length of a 95 per cent confidence interval for  $\mu$  if this interval is based on the random variable  $\sqrt{9}(\overline{X} \mu)/\sigma$ .
- (b) If  $\sigma$  is unknown, find the expected value of the length of a 95 per cent confidence interval for  $\mu$  if this interval is based on the random variable  $\sqrt{8}(\bar{X}-\mu)/S$ .
  - (c) Compare these two answers. Hint. Write  $E(S) = (\sigma/\sqrt{n})E[(nS^2/\sigma^2)^{1/2}]$ .
- 6) Let  $X_1, X_2, \ldots, X_n, X_{n+1}$  be a random sample of size n+1, n>1, from a distribution that is  $n(\mu, \sigma^2)$ . Let  $\overline{X} = \sum_{1}^{n} X_i/n$  and  $S^2 = \sum_{1}^{n} (X_i \overline{X})^2/n$ . Find the constant c so that the statistic  $c(\overline{X} X_{n+1})/S$  has a t distribution. If n=8, determine k such that  $\Pr(\overline{X} kS < X_9 < \overline{X} + kS) = 0.80$ . The observed interval  $(\overline{x} ks, \overline{x} + ks)$  is often called an 80 per cent prediction interval for  $X_9$ .

### **EXERCISES**

- 7) Let two independent random samples, each of size 10, from two independent normal distributions  $n(\mu_1, \sigma^2)$  and  $n(\mu_2, \sigma^2)$  yield  $\bar{x} = 4.8$ ,  $s_1^2 = 8.64$ ,  $\bar{y} = 5.6$ ,  $s_2^2 = 7.88$ . Find a 95 per cent confidence interval for  $\mu_1 \mu_2$ .
- 8) Let X and Y be the means of two independent random samples, each of size n, from the respective distributions  $n(\mu_1, \sigma^2)$  and  $n(\mu_2, \sigma^2)$ , where the common variance is known. Find n such that  $\Pr(X Y \sigma/5 < \mu_1 \mu_2 < \overline{X} Y + \sigma/5) = 0.90$ .
- 9) If 8.6, 7.9, 8.3, 6.4, 8.4, 9.8, 7.2, 7.8, 7.5 are the observed values of a random sample of size 9 from a distribution that is  $n(8, \sigma^2)$ , construct a 90 per cent confidence interval for  $\sigma^2$ .
- 10) Let  $X_1, X_2, \ldots, X_n$  be a random sample from the distribution  $n(\mu, \sigma^2)$ . Let 0 < a < b. Show that the mathematical expectation of the length of the random interval  $\left[\sum_{i=1}^{n} (X_i \mu)^2/b, \sum_{i=1}^{n} (X_i \mu)^2/a\right]$  is  $(b a) \times (n\sigma^2/ab)$ .
- 11) A random sample of size 15 from the normal distribution  $n(\mu, \sigma^2)$  yields  $\bar{x} = 3.2$  and  $s^2 = 4.24$ . Determine a 90 per cent confidence interval for  $\sigma^2$ .
- 12) Let two independent random samples of sizes n=16 and m=10, taken from two independent normal distributions  $n(\mu_1, \sigma_1^2)$  and  $n(\mu_2, \sigma_2^2)$ , respectively, yield  $\bar{x}=3.6$ ,  $s_1^2=4.14$ ,  $\bar{y}=13.6$ ,  $s_2^2=7.26$ . Find a 90 per cent confidence interval for  $\sigma_2^2/\sigma_1^2$  when  $\mu_1$  and  $\mu_2$  are unknown.

# **Chapter Three**

### **Exercises:**

- 2) Let  $X_1, X_2, \ldots, X_{10}$  be a random sample of size 10 from a normal distribution  $n(0, \sigma^2)$ . Find a best critical region of size  $\alpha = 0.05$  for testing  $H_0$ :  $\sigma^2 = 1$  against  $H_1$ :  $\sigma^2 = 2$ . Is this a best critical region of size 0.05 for testing  $H_0$ :  $\sigma^2 = 1$  against  $H_1$ :  $\sigma^2 = 4$ ? Against  $H_1$ :  $\sigma^2 = \sigma_1^2 > 1$ ?
- 3) If  $X_1, X_2, \ldots, X_n$  is a random sample from a distribution having p.d.f. of the form  $f(x; \theta) = \theta x^{\theta-1}$ , 0 < x < 1, zero elsewhere, show that a best critical region for testing  $H_0$ :  $\theta = 1$  against  $H_1$ :  $\theta = 2$  is  $C = \left\{(x_1, x_2, \ldots, x_n); c \leq \prod_{i=1}^n x_i\right\}$ .
- 4) Let  $X_1, X_2, \ldots, X_{10}$  be a random sample from a distribution that is  $n(\theta_1, \theta_2)$ . Find a best test of the simple hypothesis  $H_0$ :  $\theta_1 = \theta_1' = 0$ ,  $\theta_2 = \theta_2' = 1$  against the alternative simple hypothesis  $H_1$ :  $\theta_1 = \theta_1'' = 1$ ,  $\theta_2 = \theta_2'' = 4$ .
- 5) Let  $X_1, X_2, \ldots, X_n$  denote a random sample from a normal distribution  $n(\theta, 100)$ . Show that  $C = \{(x_1, x_2, \ldots, x_n); c \leq \overline{x} = \sum_{i=1}^{n} x_i/n\}$  is a best critical region for testing  $H_0$ :  $\theta = 75$  against  $H_1$ :  $\theta = 78$ . Find n and c so that

$$\Pr[(X_1, X_2, ..., X_n) \in C; H_0] = \Pr(\overline{X} \ge c; H_0) = 0.05$$
  
and

$$\Pr[(X_1, X_2, ..., X_n) \in C; H_1] = \Pr(\overline{X} \geq c; H_1) = 0.90$$
, approximately.

- 6) Let  $X_1, X_2, \ldots, X_n$  denote a random sample from a distribution having the p.d.f.  $f(x; p) = p^x (1 p)^{1-x}$ , x = 0, 1, zero elsewhere. Show that  $C = \{(x_1, \ldots, x_n); \sum_{i=1}^{n} x_i \leq c\}$  is a best critical region for testing  $H_0: p = \frac{1}{2}$  against  $H_1: p = \frac{1}{3}$ . Use the central limit theorem to find n and c so that approximately  $\Pr\left(\sum_{i=1}^{n} X_i \leq c; H_0\right) = 0.10$  and  $\Pr\left(\sum_{i=1}^{n} X_i \leq c; H_1\right) = 0.80$ .
- 7) Let  $X_1, X_2, \ldots, X_{10}$  denote a random sample of size 10 from a Poisson distribution with mean  $\theta$ . Show that the critical region C defined by  $\sum_{i=1}^{10} x_i \geq 3$  is a best critical region for testing  $H_0$ :  $\theta = 0.1$  against  $H_1$ :  $\theta = 0.5$ . Determine, for this test, the significance level  $\alpha$  and the power at  $\theta = 0.5$ .