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Chapter one

Dynamical system

Dynamical Systems are systems, described by one or more equations that
evolve over time. For example, the growth of a population can be described by
dynamic equations. Time can be understood to be either discrete (day 1, day 2
etc.) or continuous (3.4567... seconds). If we take time to be continuous,
dynamical systems will be described by differential equations - equations that
involve the derivative (the instantaneous change) of a function. If we take time
to be discrete, dynamical systems will be described by difference equations -
equations relating the value of a variable at time t + 1 to its value at time t.
Definition of dynamical systems

Definition: A dynamical system may be understood as a mathematical

prescription for evolving the state of a system in time.

It is defined by a phase (or state) space D (in this course D € R™ ) and a one-
parameter family of mappings, ¢, : D — D, where t (time) € R.
Time-continuous dynamical systems

LetDc R",n€ N,x = (x4,x5,...,X,) €D, t ER.

x=fx@®)=f) 1)
The function f:D c R™ — R™, s called a vector field, which can be written

as a system of n first order, autonomous, ordinary differential equations
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dx
d_tl = fl(xl'xZJ ""xn);

dx,
=0 = aGen e ),

dxn

= i x e x). 3)
The formal solution of Eq. (2) (if 3), x(t) = <pt(x(0)),

is called the trajectory of the vector field.

For examples:

1) Single species growth, the logistic equation

dy Yy
o = by(1—2),

Where x population at time , b > 0 brith rate and k carrying capacity.

ckebt

k+cebt’

2) The Lotka—Volterra equations, also known as the predator—prey

The solution of equation above is y(t) =

equations, are a pair of first-order nonlinear differential equations, frequently
used to describe the dynamics of biological systems in which two species
interact, one as a predator and the other as prey. The populations change

through time according to the pair of equations

dx
— = ax — pXx
dt ﬁ y’

dy _
— = oxy — vy,
where

« X is the number of prey (for example, rabbits);
« Yy isthe number of some predator (for example, foxes);

o % and % represent the instantaneous growth rates of the two populations;


https://en.wikipedia.org/wiki/Nonlinear
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Systems_biology
https://en.wikipedia.org/wiki/Predator
https://en.wikipedia.org/wiki/Rabbit
https://en.wikipedia.org/wiki/Predation
https://en.wikipedia.org/wiki/Fox
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« trepresents time;
« a,p,y, oare positive real parameters describing the interaction of the
two species.

Autonomous differential equation: A differential equation of (1),

Is said to be autonomous, because x is determined by x alone .

The solutions of autonomous equations have the following important
property.

Definition: the autonomous dynamical system (1),

is said to have a fixed point at x = a if and only if f(a) = 0.

Clearly x = a is also a solution of the equation.

Remark: Fixed points are also referred to as critical point, singular
point and stationary point.

The qualitative theory of solution curves of (1) is determined by f(x).
When f(x) # 0, then the solution are either increasing or decreasing,
when f(a) = 0 there is a solution x(t) = a

This is information can be repressed on the x-line (phase line) rather
than t, x —plane.

The geometric representation of the qualitative behavior of the

differential equation x = f(x) is called its phase portrait.


https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Species
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Classification of fixed points

Definition-Stable

A fixed point P is stable if all trajectories that start close to P stay close to
P as x increases.

Additionally a fixed point is asymptotically stable if all trajectories to P

tends to P as x — oo.

Definition-unstable
A fixed point P is unstable if it is not stable.
Definition-attractor
For a one dimensional system an asymptotically stable fixed point is called
an attractor. And can be graphed in phase line as
P is attractor
s e e
Definition-repellor
For a one dimensional system a fixed point P such that all trajectories close
to P move away from P, as x increases, is called a repellor. And can be
graphed in phase line as
P isrepoller
— 0 »
Definition-shunt
For a one dimensional system a fixed point P such that in every
neighborhood of P some trajectories are attracted to P and some are
repelled by P, is called a shunt. And can be graphed in phase line as

P isshunt P is shunt

-
P o ) <
<

4
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For example: Obtain and classify the fixed points of the following
Dx =x

2) & =2 (x? — 1)

d
)=y -1
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Definition: two differential equation of the form x = f(x) are said to
by qualitatively equivalent if they have the same number of fixed

points, of the same arranged in the same order along the phase line.

Example: show that the differential equations x = (x + 2)(x + 1) is
qualitatively equivalent to x = %(x2 —1).
And the equation x =—(x+2)(x+ 1) is not qualitatively

equivalent to x = %(x2 —1).

Solution:



Example: Arrange the following differential equation in the
qualitative equation group

1) x = coshx

2)x = (x —a)?

3)x =coshx —1

4)x =e*
Solution:
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Home work
1) Find the fixed points of the following autonomous differential
equations
aA)x=x+1 b)x = x — x3 ¢) x = sinh(x?)
d)x = x* — x3 — 2x? e)x =x*+1
Determine the nature (attractor , repellor or shunt) of each fixed point
and hence construct the phase portrait of each equation.
2) Which differential equations in the following list, have the same
phase portrait? (qualitatively equivalent)
a) x = sinhx
b)x=ax, a>0

. _(xln|x] x#0
o %= T,

d) x = sinx
e)x =x3—x
f) x = tanhx
3) Show that the phase portrait of x=(a—x)(b—x) is
qualitatively the same as that of y = y(y —c) for all real
a,b,c:a # b &c # 0
Chapter Two
Linear system:
A system X = F(X), where X is a vector in R", is called a linear
system of dimension n if F: R™ — R™ is a linear mapping.

Since F is linear it can be written in the form
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f1(x1, X2, oy Xp) aj; Qi =t Qn X1
T RS T I R I L | I
fn(xb X2y weny xn) an1 Ap2 Ann Xn

Thus X = F(X) = AX, where A is the coefficient matrix

Dynamic system in the Plane: consider the form

= F(x,)
(X = F(X),X = (;)F = (g))

Where f &g are real valued continuous function for every real value
x,y and their partial derivatives are continuous.
Definition: a solution of system (1) is a pair of real valued functions
(U,(t),U,(t)) defined on a common interval | s.t

Ul:(t) = f(U:1(1), U2(1))

Up(t) = g(Us(t), U2(t))
Definition: the graph of a solution on any function U, (t), U,(t)
defined on an interval I, is the set of all points (¢, x, y)which satisfy

x=U;(t),y=U,(t),Vtel
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: X=X
Example: consider ;' = "Z
xz = _Xl
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Remark: if x,(t) = a, x,(t) = b is a solution (1) where a, b are
constant. Then x;(t) = 0 &x,(t) =0 - f(a,b) = a &g(a,b) =0
The graph of this solutionisaline x; = a& x, = b

I.e the line paralle to the t-axis which intersects the (x4, x,) plane in
the point (a, b)

Theorem (1) : let w(t) = (u,(t), u,(t))be a solution of (1) and
suppose « is a number. Then w(t + ) is also solution, for any
constant «

Proof:



Remark: in the theorem above it follows that if a solution curve

translated parallel to t-axis another solution curve obtained

Theorem(2): let w; = (uq, v1)& w, = (u,, v,) be solution of (1)
and let there are number t; &t, such that w;(t;) = w,(t,). Then
wy(ty) = wa(t +1t; —t1)

Proof:

.................................................................................
.................................................................................
.................................................................................
.................................................................................
.......................................................................

.................................................................................
.................................................................................
.................................................................................
.................................................................................
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Trajectory: observe every solution x = x(t),y = y(t) defines a
curve in the three dimensional space t, x, y. Thus is, to say set of all
points (t, x,y) describe a curve in the three dimensional space.

The geometric theory of the differential equations begins with
observation that every solution x = x(t),y = y(t), t, <t <t, of

x=f(xy)
5= girgy @

Also defined a curve in xy —plane, as t runs from t,to t;, the set of
points (x(t), y(t)), tracc out a curve I'in the xy —plane. This
curve is called trajectory of solution of (1). That is represented
parametrically by more than one solution.

Definition: let u, v be a solution of (1), let C be its graph, and let I
be the projection of C on to xy —plane. The curve I is called the
trajectory of u, v. Note that (x, y) lies on I iff there is a number ¢,

s.t the point (ty, x,y) lieson C

Theorem (classification of trajectory)

Through every point in the xy —plane, there passes a unique
trajectory, which is either a point, a simple closed curve or a simple
arc. The trajectory of a constant solution is a point. The trajectory of
non- constant periodic solution is a simple closed curve. The
trajectory of a non- constant and non-periodic solution is a simple
arc.

Definition: the trajectory of a constant solution of
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x=f(xy)
y=gley)
Is called fixed point (singular) point.

(1)

Equivalently, the point (x,, yo) is called a fixed point of (1). If
f(a,b) =g(a,b) =0

Definition: the trajectory of periodic solution is called orbit.
Definition: the xy —plane itself is called the phase plane
Definition: the decomposition of the phase plane in to trajectory of
system (1) is called phase portrait.

Example: find singular point of the systems

1)5C=3x—2y x=x+2y—-1
y=x+y )y=—2x—4y+2
X=x+y
3)y=x+y—1

Solution:



Theorem: through each point in the xy-plane there passes a unique
trajectory. (through any point passing at most one trajectory)

Proof:



Autonomies system in the plane:

Consider linear (homogeneous) systems

X = ax + by . (X
7= cx 4 dy (1) (X = AX,X = (y))
_(a by. : . : )
Where A = (C d) is anon singular (invertible) constant matrix.

Since, A is invertible, that det(4) = ad — bc # 0, which implies
(0,0) is the singular point of the system.

Definition: a linear system X = AX is said to be simple, if the matrix
A is anon singular ((det(4) # 0) and A has non- zero eigenvalues.
Has a single isolated fixed point in the phase plane.

Definition: a square matrix A is said to be similar to a matrix B if

there exist an invertable matrix P such that A = P~1BP
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Theorem: let P be anon- singular matrix then the linear change of
X = PY transform the linear system X = AX into a system Y = JY
where ] = P~1AP.

Proof:

Example: find the matrix representation of the linear system

.X:l = X1 + 2x2
'X:Z = 2x2

Under the change of variables x; = y; + 2y,&x, = y, IS

transformed into 2%~ 2
Yo = 2Y;
Solution



Proposition: let A be areal 2 x 2matrix then there is a real non-
singular matrix P such that ] = P~1AP which is one of the

following types

1. ] = (%1 f ) where 1, &A1, are two real distinct eigenvalues
2

of 4,0 # A4, # 1, ER

2. | = (AOO AO ) where A, is repeated eigenvalues of
0

A,ana A is diagonal matrix 0 # A, €R

Ao 1 : :
3. ] = ( 00 1 ) where A, is repeated eigenvalues of
0

A,ana A is not diagonal matrix 0+ Ay €R

4. | = (g _aﬁ) where A has complex eigenvalues A = a + if8

where o, ER, # 0
The matrix J is said to be the Jordan (Canonical) form of A. the
eigenvalues of A(and J) are the values of A for which

P,(1) = A2 — tr(A)A + det(4) = 0
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Here tr(A) = a + b is the trace of A and
det(4) = ad — bc is the determinate of A

Thus, the eigenvalues of A are

Ay == (tr(4) + VB)& 1, == (tr(4) — VA)

2
With A= [(tr(A))2 — 4 det(A)] it is the natural of the eigenvalues
Real distinct (A> 0)
Real equal (A= 0)
Complex (A< 0)
Simple Canonical Systems
We consider the following cases
Casel/ A have real distinct eigenvalues 1;& 1,

In this case J is given by

J= (Al 0 )then the X = AX transformsto Y = JY

0 2,
Y1> _ (/11 0) iy 0N =M1y
<3i2 0 4 (yZ) V2 = 422
d d
21 Ay == 2 Adt 5>y, = C1ellt\
dt Y1 (%)
& = Ay, == 4 = Apdt == y, = cye’2t
dt Y2

If C;, = C, = 0 then (*) yields a singular points
If C; = 0andC, # 0, we obtain two rays,
y; =0,v, > 0(for C, > 0)and y; = 0,y, < 0(for C, < 0)

Similarly, when Positive and negative parts of y, —axis
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IfC; #0and C, # 0

Now from (*)

Aot s pt=2 ot = —ln(yl)
C1 C1
2 _ phat oy Aot = 22 5o ¢ = —ln(—)
Cz 2
A
L (2) - (2] - n(2) - 2)
Al 1 /12 CZ /11
Az )
(3’2) (}’1)/11 (3’2) (3’1)/11
In In -\ )=\
Ca Gy C; Gy
A A Az Az
Yy, = CzyllC - kyfL1 e (2%), k= () M

We have three case, depending on the nature of 1, &A1,
i) IfA, <A, <0
Note that as t increase (i.e t — o) then every trajectory tends
to the origin
ey, (t) >0 ast— o

y,(t) >0 ast—> o
Az
Since % > 1, then the eq(**) y, = kyfl Is approximately is
1

parabola
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)

In this case , the origin is called Stable node.

IfA1,&A, are positive with 0 < 1, < A4
The phase portraits looks exactly the same as above except
that now every trajectory tends to origin as t — —oo then
every trajectory tends to the origin
lLey;(t) >0 ast > —

y,(t) >0 ast—» —oo

Since A2 < 1, then
A
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The origin is called unstable node
i) 1fA,&A; are positive signs with 1, < 0,4, >0
then y,(t) >0 ast > —x

y,(t) >0 ast — o
Az
2

Since i— < 0, then equation y, = l’cyf1

1

Is approximately hyperbola

In this case the origin is saddle point
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Case b) A has a repeated eigenvalues 1, = % € R,when A=0 -

A= VB2 — 4AC there are two cases

If A is diagonal, then system X = AX transform into system
Y =JY, where
_ (% O (N
]_<0 /10>'&Y_(}/2)

Then

Whenc; = 0,theny;, =0andy, > 0ifc, >0
andy, <0ifc, <0
Similarly
If ¢, =0,theny, =0andy; >0ifc; >0
andy; < 0ifc; <0
every trajectory tends toward or away from the origin
accordingto 1o < 0oriy >0
1) When 1, < 0, every trajectory tends to the origin as t — oo

and in this case the origin is called stable star node
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2) When A, > 0 ,every trajectory ran away from the origin as

t — +oo and the origin is called unstable star node

ii. If Ais not diagonal. in this case the system X = AX transform

1=(5 )

toY = JY, where
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SO0,
From eq(2) we get y, = c,e’ot
Then % - yl - /10311 + Czellot - % — ){Oyl - Czellot

Is first linear differential equation with P(t) = —A4, and
Q(t) = cyeot
So, the solution is given

[e=JAodte, oot 4 ¢,
Y1 = o~ [ Aodt = e’ot lcz j dt + Cl]

= etol[c,t + 4]

Clearly y, = Y1

C2t+C1
There are two cases depending on the sign of 4,
Suppose first that A, < 0, then every trajectory tends to the origin as

t — oo. Then the origin is called stable improper node
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Second if 4, > 0, the phase portrait differs only in the origin of the
trajectory, which tends a way from the origin as t — oo. Then the

origin is called unstable improper node

Case 3) if A has complex eigenvalues A,,4, = a + i3, B # 0 where
A< 0 - B2 —4AC <0
Then X = AX transformto Y = JY where

-G

Now, we have
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Y1 =ay; — ,33’2} 1)
Y2 =By +ay,

We now use polar coordinates

Let y; = rcosf and y, = rsinfwith r > 0& r = \/y? + y2
y, = Fcos6 — rsinfé
y, = rsinf + rcosf6

Solving these two equations for 7and 6

Put eq (2), y; = rcos6 and y, = rsinf in eq(1)

Fcos® — rsinf@ = arcos® — Prsind .. ... ... (3)
7sinf + rcos@0 = PrcosO + arsind .. ... ... (4)

Multiply eq(3) by cos6 and eq(4) by sinf and adding the result, so
we get
7(cos?0 + sin?0) = ar(cos?8 + sin?0)

dr dr
- _ _ _ . pat
r=ar ->—=qar > —=adt > r =€
dt T

Multiply eq(4) by cos@ and eq(3) by (—sin6) and adding the result,

so we get

0r(cos?0 + sin?6) = Lr(cos?6 + sin?0)

: do
9=,8—>E=,8—>d9=,8dt—>9=,8t+cz withr = c,e®

y, = rcosO = c;e%cos( Bt + ¢y)
y, = rsinf = c,e% sin(Bt + c,)

There are several different cases
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1) If @« = 0thenr = ;& ¥y + y2 = c# is the equation of circles
then trajectories other than the origin are circles centered on

the origin, every trajectory other than the origin itself is

therefore an orbit all have period %” the time for one revolution

around the origin

The origin is called center
2) If a > 0,thenr — 0 as t — oo and the trajectories are spiral.
Which approach to the origin with increasingt. we now

eliminate t from rand 9 we have

dr_ &dH_
ac v dt_ﬁ
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dr « dr « a
> —=—=r->—=—=df0 > nlr[=-0+k->r

g p ro b b

a

%9
= ceP” wherec = ek

Is the equation of logarithmic spiral and the origin is called

stable focus

3) Ifa > 0,thenr - o as t — oo and the trajectories are spiral.

Then the origin is called unstable focus
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Examples determine the type of phase portrait of the corresponding
Jordan form of each of the following system

'X:l = —X1 +x2

1) x.z = 4x1 — Xy

Solution






.X:1 - 2x1 +x2

3) X:z - _le + 4XZ

Solution)






Trace-determinant diagram
Recall that the polynomial of a square matrix A is defined to be
P(A) =det(A—Al) = |A — Al

a b

Fora2 X2 matrix A, A = (C d)’ we have

P(A)=|a;A df/1|=,12—(a+b)/1+(ad—bc)

=12 —tr(4A)A + det(4)
So the eigenvalues are

A = (tr(4) + VAand 1, == (tr(4) — VA
Where A = (tr(4))? — 4det(A)
We now explain how the phase portrait of the linear autonomous
system depend on trace and determinate of the constant coefficient
matrix A

1) If det(A) < 0, the eigenvalues are real and of opposite sign

then the phase portrait is a saddle (always is unstable)

(tr(A)? . )
2) If 0 < det(4) < . (i.eA > 0), the eigenvalues are real,

distinct and of the same sign, the phase portrait is a node as

well as stable if tr(A) < 0, unstable if tr(4) > 0
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2
3)If0 < @ < det(4) (i.eA < 0), then eigenvalues are

neither real nor purely imaginary and the phase portrait is
sparil, stable if tr(A) < 0 and unstable if tr(4) > 0
4) If tr(A) = 0 and det(4) > 0, the eigenvalues are purely
imaginary and the phase portrait is a center.
5) If A = 0, the eigenvalues are real and equal (repeated) in this
case we have two case depend on matrix A:
1) If Alis diagonal, then the phase portrait is a star node,
stable if tr(4) < 0 and unstable if tr(4) > 0
i) If Ais not diagonal, then the phase portrait is a improper
node, stable if tr(4) < 0 and unstable if tr(4) > 0
Remark
1) The direction of twist can be identified by the sign of the
coefficient C in the original matrix A. so we have the

following for cases
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2) The direction of trajectories in a case are depend on C

3) The phase portrait of the improper node have the following

four cases
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Example ) determine the type of phase portrait of the corresponding

Jordan( Canonical) form of the system X = AX

1) A= (‘11 j)

Solution

.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Solution
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6) A = (_15 _11)

Solution

.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................



Chapter Three

Non-Linear System in the plane
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Definition/ suppose the system can be written in the form
X:1 - axl + be + gl(xl,xz)}
X:Z - Cx1 + de + gz(xl,xZ)

Where lim Z%%2) — o ggp = \[xZ + x2

r—0 r

: X
The linear systemx.2 = cx; + dx,

= axq4 + bx, . i i ..
1 1 2 is said to be the linearization or

(linearized system) of eq(1) at the origin.

ax, + bx,

The vector field (cxl + dx,

) is called the linear part of
(axl + bx, + g4 (xl,xz))

cx; +dx, + go(xq,x5)
Example 1/ find the linearization of the following system
) = i %= e

Xy = Xy + XpSiNX, X, = xie¥271
solution



Remark!/ if (a, b)is a fixed point of x = f(x) ,

where x = (;C;) and f = (;1) and it is not origin let
2

y1=x1—a_>x1=y1+a

V2=%X2—b "x,=y,+b
y1=%1=fi(L+ay,+b) or V1= f1 (Vn,y2)
Yo =%, = fo(y1 +a,y, + b) Vo = f2 V1, ¥2)

Oy = £(3) v @ where y = (1) & = (11)
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The system (2) has the fixed point at the origin since functions

f1(x1,x2) &f,(x1, x,) are continuously differentiable at some
neighbourhood of the point (a, b).

By Tayler expansion, then

f.(a b il
f1(x1;xz)—f1(a b)+(x1—a) l( ) l(g )
X1 X2
+Ri(x1, xZ) [ = 1,2
The remainder functions R; (xy, x,) satisfy lir%m = 0 where
Tr—

r=4/(x; —a)? + (x, — b)? since (a, b) is a fixed point, then
fi(a,b) = 0and
afi(a, b) ofi(a,b)

Yi=Y1——F—— o, 3’26—)(2+R1(J’1+a;3b+b)
| 3f,(ab 3f,(ab
Y2 =1 Za(xl ) 2%2)"‘}?2(3’1"‘@;)’2"‘1?)

The linearization of this system at a fixed point (a, b) is given by

h Oh
(y1)= dx; 0x, (yl)
Y2 % % Y2
dx; 0x,

(xlfx2)=(a'b)

. Ri(y1+a,y,+b) _ 2 2
Because lim . =0, r=yyf+y;

r—0

1 = x1+x2 —_ xz
Example2/ show that the system " has only one
X2 = —X1 — X1X2

fixed point and find the linearization of it at this fixed point.
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Solution



Example3/ find the linearization of the system at the fixed point of
.X:1 - _xz + x1 + xlxz

Xy = X1 — Xy — X3
Solution:



Def/ a fixed point (a, b)of a non- linear system x,l = 11001, X%2) 4
Xz = f2(x1,%2)

said to be simple if it’s linearized system is simple i.e

0 0
——fi(a, b) ——fi(a, b)
5x1 axz + 0

0 0
a_xle(a' b) a_xsz(a'b)

Theorem “linearization theorem ““/ let the non-linear system x =
f(x) have a simple fixed point at x = 0. then in a neighbourhood of
the region the phase portrait of the system and it’s linearization are
qualitatively equivalent provided the linearized system is not a
center .

Example 4/ use the linearization theorem to determine the phase

portrait of the system

. v N
Y1 = X1+ 4% + ™ =15 4he origin.

Xy, = —Xy — x,e%1
i) 1= %2
x'z =—x1—(1+X12+xf)x2

. 2
X1 =x5—3x1+ 2
i)™t 2 1

X, = xf — x5

Solution:






Theorem “ symmetric condition”/ if the origin is the fixed point of

X1 = f1(x1,%2)
Xy = fo(x000) (1)

and is the center for the linearized system if

f1(x1, —x3) = —f1(x1,x3) or f1(=x1,x3) = f1(x1,x;)even
f2(x1, =x2) = fo(x1,%2) fo(—x41,x3) = —f,(xq1,x,)0dd

Then the origin is the center for eq(1)
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Example5/ determine the type of fixed point in the following

X1 = 2X1X, — 2X, B x=y+1
Xy = X1 — X3 y=—4x +8

i)
Solution:

..................................................................................
.................................................................................
.................................................................................
.................................................................................
................................................................................
..................................................................................
.................................................................................
.................................................................................
.................................................................................
................................................................................
..................................................................................
.................................................................................
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.................................................................................









Remark/ symmetric condition theorem is not necessary and

sufficient condition

Non- simple fixed point

Def/ a fixed point (a, b)of a non- linear system x,l = 11001, X2) 4
X2 = f2(%1,%2)

said to be non- simple if it’s linearized system is non-simple i.e

0
dx,

0
a_xlfl(“’ b) fi(a, b)

0 d
a_xle(a' b) a_xsz(a'b)

Example6 / sketch the phase portrait of the following

: f 2
X, = x? X1 = X1~ X3

1) . L
)XZ = X3 )

Xp = Xp(%1 — x%)

Solution:






Stability of fixed point

. .X' — X4, X
We consider the autonomous ~,* f1(x1, %2)

Xy = f2(x1,%2)
Def/ let (a, b)be a fixed point in (1) we say that (a, b) is stable if for
every ¢ > 0,36 > 0, s.t every solution u, v which satisfies
[u(t,) — al]* + [v(t,) — b]* < 62 forsomet >ty ... (2)
Also satisfies [u(t) —a]? + [v(t) — b]*> < &? Vt>t,
Geometrically/ this means that a fixed point (a, b) of (1) is said to
be stable if for every neighbourhood Nof (a, b)there is a smaller
neighbourhood N’ € Nof (a, b) s.t every trajectory which passes

through N’ remains in N as t increase
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Def/ a fixed point (a, b) of (1) is said to be asymptotically stable if

(a, b) is stable and if 6 can be chosen so that

[u(t,) — al]* + [v(t,) — b]* < 62 for some t > t, implies that
(u(t),v(t)) = (a,b)att - o

Geometrically/ a fixed point (a, b) of (1) is said to be
asymptotically stable if there is a neighbourhood Nof (a, b) s.t every
trajectory passing through N approaches (a,b) ast — oo,

Remark/ every asymptotically stable fixed point is stable by taking

N’ = N, but converse is not true.

X1 =Xy . -
Example7/ show that the systemx. 1_ ;3IS stable at the origin but
2 — M

not asymptotically stable.

Solution :

..................................................................................
.................................................................................
.................................................................................
.................................................................................
................................................................................
..................................................................................
.................................................................................
.................................................................................
.................................................................................



Def/ a fixed point of the system (1) which is stable but not
asymptotically stable is said to be weakly or neutrally stable
Example/ center is stable but not asymptotically stable so it is called
weakly stable

Def/ a fixed point of system (1) which is not stable is said to be
unstable

Geometrically/ this means that there is a neighbourhood N of the
fixed point (a, b) such that for every neighbourhood N’ c Nthere is
at least one trajectory which passes through N’ and does not remain
in N

Example/ saddle point is unstable fixed point

unstable node is unstable fixed point
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Remark/ the fixed point of a linear system X = AX with |4]| # 0 is
stable if no eigen value of Ahas positive real part asymptotically
stable if both eigen values have negative real part, and weakly stable
if the eigen values are purely imaginary thus stable nodes and focus
are asymptotically stable saddle point ,unstable node, focus are
unstable and center are weakly stable.

Example8/ show that the two systems

X1 = —xy + X, (XF + x%) 1)
Xy = X+ (2 4 a2) |

Xy = —x — x1(xf + xzz)} 2)
Xy = x1 — % (X + x3)

Both have the some linearized systems at the origin, but their phase
portraits are qualitatively different

Solution:
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