Lecture 2 \& 3 Geologic Time

Geologic Time

Two ways to relate time in geology:
> Relative: Placing events in a sequence based on their positions in the geologic record.

Chronologic : Placing a specific number of years on an event or rock sample.

Geologic Time Scale

- a combination of the two types of age determinations
> a relative sequence of lithologic units
- established using logical principles
> measured against a framework of chronologic dates.

Geologic Time and the "geologic column"

- Developed using logical rules to establish relative sequences of events
- superposition
- cross-cutting relationships
- original horizontality
- lateral continuity
- Added to as new information is obtained and data is refined
- Use of fossils for correlation and age determination Numerical Dates attached to strata after the
- development of Radiometric techniques

Still being refined as more information becomes available

The Geologic Time Scale $(1: 2)$

The Geologic Time Scale (2:2)

Relative Dating Methods

determines the relative sequence of events. > which came first, which came last.
> no numeric age assigned

6 Relative age principles:
> Superposition
> Original Horizontality,
> Lateral continuity
Cross-cutting Relationships
> Inclusions
> Fossil succession.

Those in yellow are most useful

History of Historical Geology

- Niels Stensen (Nicolaus Steno)
- Fundamental Principles of Relative Time
> Principle of Superposition- see below
> Principle of Original Horizontality- see below
> Principle of Original Lateral Continuity- see below

Law of Superposition

- In undisturbed strata, the layer on the bottom is oldest, those above are younger.

Guaveimestone

Tapeas Sandstone

Vistnu Schist

Original Horizontality

Sediments are generally deposited as horizontal layers.

Lateral Continuity

Sediment layers extend laterally in all direction until they thin \& pinch out as they meet the edge of the depositional basin.

Charles Lyell

- 1 st Principles of Geology text
- included description and use of
> principles of cross-cutting relationships
$>$ principles of inclusions
- relative time tools

Cross-cutting Relationships

That which cuts through is younger than the Object that is cut

Relative Ages of Lava Flows and Sills

Pieces of cool ed lava

Lava flow
(a) Strata on either side is "cooked"
(b)
"cooked" on bottom
side only

Principle of Inclusions

- Inclusions (one rock type contained in another rock type) are older than the rock they are embedded in. That is, the younger rock contains the inclusions

(a)

(b)

Principle of Inclusions

Faunal/Floral Succession

- Fossil assemblages (groupings of fossils) succeed one another through time.
- Correlationrelating rocks in one location to those in another using relative age stratigraphic principles
- Faunal Successior
- Superposition - Lateral Continuity Cross-cutting

Unconformities surfaces

represent a long time.

a time when rocks were not

deposited or

a time when rocks were croded

Hiatus

the gap in time represented in the rocks by an unconformity
3 kinds
Angular Unconformity Nonconformity
$\begin{array}{lll}\text { M.Y.A. } & & \\ 0- & \text { Amount } & \\ 1- & \begin{array}{c}\text { of rock } \\ \text { removed }\end{array} & \\ 2- & \text { byerosion } & \begin{array}{l}\text { Time of } \\ \text { erosion }\end{array}\end{array}$

(d)

Disconformity

Disconformities

A surface of erosion or non-deposition between Parallel sedimentary rock beds of differing ages.

Angular Unconformities

- An angular unconformity is an erosional surface on tilted or folded strata, over which younger strata have been deposited.

Nonconformities

A nonconformity is an erosional surface on igneous or metamorphic rocks which are overlain by sedimentary rocks.

Age Estimates of Earth
Counting lifetimes in the Bible
Comparing cooling rates of iron pellets.
Determine sedimentation rates \& compare

Estimate age based on salinity of the ocean. all age estimates were off by billions of years some were more off than others!

Absolute Dating Methods

Radioactive Decay sequences

 acts as an atomic clockwe see the clock at the end of its cycle analogous to starting a stopwatch
allows assignment of numerical dates to rocks.
Radioactive isotopes change (decay) into
daughter isotopes at known rates.
rates vary with the isotope
${ }^{+}$e.g., ${ }^{235} \mathrm{U} \quad,{ }^{40} \mathrm{~K},{ }^{14} \mathrm{C}$, etc.

Decay

unstable nuclei in parent isotope emits subatomic particles and transform into another isotopic element (daughter). does so at a known rate, measured in the lab

Half-life
The amount of time needed for one-half of a radioactive parent to decay into daughter isotope.

Assumptions?-you bet
Cross-checks ensure validity of method.

Rate of Decay

All atoms are parent isotope or some known ratio of parent to daughter

1 half-life period has elapsed, half of the material has changed to a daughter isotope (6 parent: 6 daughter)

2 half-lives elapsed, half of the parent remaining is transformed into a daughter isotope (3 parent: 9 daughter)

3 half-lives elapsed, half of the parent remaining is transformed into a daughter isotope (1.5 parent: 10.5 daughter) We would see the rock at this point.

Five Radioactive Isotope Pairs

Isotopes	Half-Life	Effective Dating Range of Parent (Years)	Minerals and Rocks That Can
Parent Daughter	(Years)		Be Dated
Uranium 238 Lead 206	4.5 billion	10 million to 4.6 billion	Zircon Uraninite
Uranium 235 Lead 207	704 million		
Thorium 232 Lead 208	14 billion	48.8 billion	Muscovite Biotite
Rubidium 87 Strontium 87	4.6 billion	10 million to 4.6 billion	Potassium feldspar Whole metamorphic or igneous rock
Potassium 40 Argon 40	1.3 billion	$\begin{aligned} & 100,000 \text { to } \\ & 4.6 \text { billion } \end{aligned}$	Glauconite Muscovite Biotite Hornblende Whole volcanic rock

