Electric al Engineering Department Engineering mathematics Diploma 2023-2024

Chapter One

Laplace Transforms

Contents of Chapter One

- Laplace Transform of basic functions using the definition
- Transform of derivatives and integrals
- Properties of Laplace Transform
- Inverse Laplace Transform
- Solution of linear differential equations using Laplace Transform
- Circuit Applications

Laplace Transforms

If $f(t)$ is a function defined for all $t \geq 0$, its Laplace transform is the integral of $f(t)$ times $e^{-s t}$ from $t=0$ to ∞. It is a function of s, say, $F(s)$, and is denoted by $\mathcal{L}\{f\}$; thus

$$
F(s)=\mathcal{L}\{f\}=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

The operation $\mathcal{L}\}$ transforms $f(t)$, which is in the time domain, into $F(s)$, which is in the complex frequency domain, or simply (s-domain) where s is the complex variable $(\sigma+j \omega)$

Laplace Transforms

Evaluating Laplace transform using the definition

1. $f(t)=k$

$$
\begin{gathered}
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} k e^{-s t} d t \\
F(s)=-\frac{k}{s}\left[e^{-s t}\right]_{t=0}^{t=\infty}=-\frac{k}{s}\left[e^{-s \infty}-e^{-s 0}\right]=\frac{k}{s} \\
\mathcal{L}\{k\}=\frac{k}{s}
\end{gathered}
$$

For $f(t)=5$

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} 5 e^{-s t} d t=-\left.\frac{5}{s} e^{-s t}\right|_{0} ^{\infty}=\left[-\frac{5}{s} e^{-s \infty}\right]-\left[-\frac{5 e^{-s 0}}{s}\right]=\frac{5}{s}
$$

Laplace Transforms

2. $f(t)=t$

$$
\begin{aligned}
& F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} t e^{-s t} d t \\
& \int u d v=u v-\int v d u
\end{aligned}
$$

By letting $u=t$ and $d v=e^{-s t} d t$ we find

$$
\begin{aligned}
& \int t e^{-s t} d t=-\frac{1}{s} t e^{-s t}+\frac{1}{s} \int e^{-s t} d t=-\frac{1}{s} t e^{-s t}-\frac{1}{s^{2}} e^{-s t} \\
& F(s)=\left[-\frac{1}{s} t e^{-s t}-\frac{1}{s^{2}} e^{-s t}\right]_{t=0}^{t=\infty}=\frac{1}{s^{2}} \\
& \mathcal{L}\{t\}=\frac{1}{s^{2}}
\end{aligned}
$$

In general,

$$
\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

Laplace Transforms
 3. $f(t)=e^{-a t}$

$$
\begin{gathered}
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} e^{-a t} e^{-s t} d t \\
F(s)=\int_{0}^{\infty} e^{-(a+s) t} d t=\left[\frac{-e^{-(a+s) t}}{a+s}\right]_{t=0}^{t=\infty} \\
F(s)=\left[\frac{-e^{-(a+s) \infty}}{a+s}+\frac{e^{-(a+s) 0}}{a+s}\right]=\frac{1}{a+s} \\
\mathcal{L}\left\{e^{-a t}\right\}=\frac{1}{s+a}
\end{gathered}
$$

Laplace Transforms

4. $f(t)=e^{a t}$

$$
\begin{gathered}
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} e^{a t} e^{-s t} d t \\
F(s)=\int_{0}^{\infty} e^{-(s-a) t} d t=\left[-\frac{e^{-(s-a) t}}{s-a}\right]_{t=0}^{t=\infty} \\
F(s)=\left[\frac{-e^{-(s-a) \infty}}{s-a}+\frac{e^{-(s-a) 0}}{s-a}\right]=\frac{1}{s-a} \\
\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}
\end{gathered}
$$

Laplace Transforms

5. $f(t)=\cos \omega t$

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\int_{0}^{\infty} \cos \omega t e^{-s t} d t=\int_{0}^{\infty}\left[\frac{e^{j \omega t}+e^{-j \omega t}}{2}\right] e^{-s t} d t \\
&=\frac{1}{2}\left[\int_{0}^{\infty} e^{j \omega t} e^{-s t} d t+\int_{0}^{\infty} e^{-j \omega t} e^{-s t} d t\right] \\
&=\frac{1}{2}\left[\mathcal{L}\left\{e^{j \omega t}\right\}+\mathcal{L}\left\{e^{-j \omega t}\right\}\right] \\
&=\frac{1}{2}\left[\frac{1}{s-j \omega}+\frac{1}{s+j \omega}\right]=\frac{s}{s^{2}+\omega^{2}} \\
& \mathcal{L}\{\cos \omega t\}=\frac{s}{s^{2}+\omega^{2}}
\end{aligned}
$$

Laplace Transforms

6. $f(t)=e^{-a t} \sin \omega t$

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-a t} * \sin (w t) * e^{-s t} * d t=\int_{0}^{\infty} e^{-a t} * \frac{e^{j w t}-e^{-j w t}}{2 j} * e^{-s t} * d t \\
& \quad=\frac{1}{2 j} \int_{0}^{\infty}\left[e^{-a t+j w t} e^{-s t}-e^{-a t-j w t} e^{-s t}\right] * d t \\
& \quad=\frac{1}{2 j}\left[\frac{1}{(s+a)-j w}-\frac{1}{(s+a)+j w}\right]
\end{aligned}
$$

$$
\mathcal{L}\left\{e^{-a t} \sin \omega t\right\}=\frac{\omega}{(s+a)^{2}+\omega^{2}}
$$

Laplace Transforms

7. $\mathcal{L}\left\{\frac{d f(t)}{d t}\right\}$

$$
\mathcal{L}\left\{\frac{d f(t)}{d t}\right\}=\int_{0}^{\infty} \frac{d f(t)}{d t} e^{-s t} d t
$$

By using $\int u d v=u v-\int v d u$

$$
u=e^{-s t} \Longrightarrow d u=-s e^{-s t} d t
$$

$$
d v=\frac{d f(t)}{d t} d t \quad \Longrightarrow \quad v=f(t)
$$

$$
\int_{0}^{\infty} \frac{d f(t)}{d t} e^{-s t} d t=\left[e^{-s t} f(t)\right]_{t=0}^{t=\infty}+s \int_{0}^{\infty} f(t) e^{-s t} d t
$$

$$
=0-f(0)+s \int_{0}^{\infty} f(t) e^{-s t} d t
$$

$$
\mathcal{L}\left\{\frac{d f(t)}{d t}\right\}=s F(s)-f(0)
$$

Laplace Transforms

We can extend the previous to show

$$
\begin{aligned}
& \mathcal{L}\left\{\frac{d^{2} f(t)}{d t^{2}}\right\}=s^{2} F(s)-s f(0)-f^{\prime}(0) \\
& \mathcal{L}\left\{\frac{d^{3} f(t)}{d t^{3}}\right\}=s^{3} F(s)-s^{2} f(0)-s f^{\prime}(0)-f^{\prime \prime}(0)
\end{aligned}
$$

In general

$$
\begin{aligned}
\mathcal{L}\left\{\frac{d^{n} f(t)}{d t^{n}}\right\}= & s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)- \\
& \ldots-f^{(n-1)}(0)
\end{aligned}
$$

Laplace Transforms

8. $\mathcal{L}\left\{\int f(t) d t\right\}$

$$
\mathcal{L}\left\{\int f(t) d t\right\}=\frac{F(s)}{s}+\frac{1}{s}\left[\int f(t) d t\right]_{t=0}
$$

$$
\mathcal{L}\left\{\int_{0}^{t} f(t) d t\right\}=\frac{F(s)}{s}
$$

Laplace Transform Table

Function, $f(t)$	Laplace transform, $F(s)$	Fanction, $f(f)$	Laplace transform, F(s)
1	$\frac{1}{5}$	$e^{-a r} \cos b t$	$\frac{s+a}{(3+a)^{2}+b^{2}}$
t	$\frac{1}{s^{2}}$	$\sinh b t$	$\frac{b}{s^{2}-b^{2}}$
I^{2}	$\frac{2}{s^{3}}$	coshbt	$\frac{s}{s^{2}-b^{2}}$
t^{n}	$\frac{n!}{s^{I I+1}}$	$e^{-0 t} \sinh b t$	$\frac{b}{(s+a)^{2}-b^{2}}$
$e^{a t}$	$\frac{1}{s-a}$	$\mathrm{e}^{-\mathrm{at}} \cosh b t$	$\frac{s+a}{(s+a)^{2}-b^{2}}$
$e^{-a r}$	$\frac{1}{x+a}$	$t \sin b r$	$\frac{2 b s}{\left(s^{2}+b^{2}\right)^{2}}$
$t^{n} \mathrm{e}^{-\pi}$	$\frac{n!}{(s+a)^{n+1}}$	$t \cos b t$	$\frac{s^{2}-b^{2}}{\left(s^{2}+b^{2}\right)^{2}}$
$\sin b t$	$\frac{b}{s^{2}+b^{2}}$	$u(t)$ unit step	$\frac{1}{s}$
$\cos b t$	$\frac{s}{s^{2}+b^{2}}$	$u(t-d)$	$\frac{e^{-s d}}{s}$
$e^{-a t} \sin b t$	$\frac{b}{(x+a)^{2}+b^{2}}$	$\begin{aligned} & 8(t) \\ & 8\left(t-d^{\prime}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{e}^{-s d} \end{aligned}$

Laplace Transforms

Example:
Find the Laplace transform of following impulse function

Laplace Transforms

Other Examples
$f(t) \quad F(s) \quad f(t)$
$F(s)$
$f(t)$
$F(s)$
(a) $t^{3} \quad \frac{6}{s^{4}}$
(e) $\cos (t / 2) \frac{s}{s^{2}+0.25}$
(h) $t \sin 4 t \frac{8 s}{\left(s^{2}+16\right)^{2}}$
(b) $t^{7} \quad \frac{7!}{s^{8}}$
(f) $\sinh 3 t \frac{3}{s^{2}-9}$
(i) $\mathrm{e}^{-t} \sin 2 t \frac{2}{(s+1)^{2}+4}$
(c) $\sin 4 t \frac{4}{s^{2}+16}$
(g) $\cosh 5 t \frac{s}{s^{2}-25}$
(j) $\mathrm{e}^{3 t} \cos t \frac{s-3}{(s-3)^{2}+1}$
(d) $\mathrm{e}^{-2 t} \frac{1}{s+2}$

Properties of Laplace Transforms

- Linearity

$$
\mathcal{L}\{a f(t) \pm b g(t)\}=a \mathcal{L}\{f(t)\} \pm b \mathcal{L}\{g(t)\}
$$

- First shift theorem (Frequency shift theorem)

$$
\mathcal{L}\left\{e^{ \pm a t} f(t)\right\}=F(s \mp a)
$$

- Second shift theorem (Time shift theorem)

$$
\mathcal{L}\{f(t-a) u(t-a)\}=e^{-a s} F(s)
$$

Properties of Laplace Transforms

- Time scaling

$$
\mathcal{L}\{f(a t)\}=\frac{1}{a} F\left(\frac{s}{a}\right)
$$

- Multiplication by time

$$
\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n} F(s)}{d s^{n}}
$$

Properties of Laplace Transforms

Examples:
Determine the Laplace transform of
a) $f(t)=t^{3}-3 e^{-4 t}+\sin 2 t$
b) $f(t)=\left(1-e^{-3 t}\right) \cos t-\frac{t^{4}}{4}$
c) $f(t)=e^{-5 t} t^{3}$
d) $f(t)=(t-2)^{2} u(t-2)$
e) $f(t)=t g^{\prime}(t)$

Properties of Laplace Transforms

a)

$$
\begin{aligned}
\mathcal{L}\left\{t^{3}-3 e^{-4 t}+\sin 2 t\right\} & =\mathcal{L}\left\{t^{3}\right\}-3 \mathcal{L}\left\{e^{-4 t}\right\}+\mathcal{L}\{\sin 2 t\} \\
& =\frac{6}{s^{4}}-\frac{3}{s+4}+\frac{2}{s^{2}+4}
\end{aligned}
$$

b)

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\mathcal{L}\left\{\cos t-e^{-3 t} \cos t-\frac{t^{4}}{4}\right\} \\
& =\mathcal{L}\{\cos t\}-\mathcal{L}\left\{e^{-3 t} \cos t\right\}-\frac{1}{4} \mathcal{L}\left\{t^{4}\right\} \\
& =\frac{s}{s^{2}+1}-\frac{s+3}{(s+3)^{2}+1}-\frac{6}{s^{5}}
\end{aligned}
$$

Properties of Laplace Transforms

c) Let $g(t)=t^{3}$ then $G(s)=\frac{6}{s^{4}}$

Therefor

$$
\begin{aligned}
F(s)=\mathcal{L}\left\{e^{-5 t} t^{3}\right\} & =\mathcal{L}\left\{e^{-5 t} g(t)\right\} \\
& =G(s+5)=\frac{6}{(s+5)^{4}}
\end{aligned}
$$

d) Let $g(t)=t^{2}$ then $G(s)=\frac{2}{s^{3}}$
and also $g(t-2)=(t-2)^{2}$
Therefor

$$
\begin{aligned}
F(s)=\mathcal{L}\left\{(t-2)^{2} u(t-2)\right\} & =\mathcal{L}\{g(t-2) u(t-2)\} \\
& =e^{-2 s} G(s)=\frac{2 e^{-2 s}}{s^{3}}
\end{aligned}
$$

Properties of Laplace Transforms

e)

$$
\begin{aligned}
\mathcal{L}\left\{\operatorname{tg}^{\prime}(t)\right\} & =-\frac{d}{d s} \mathcal{L}\left\{g^{\prime}(t)\right\} \\
& =-\frac{d}{d s}[s G(s)-g(0)] \\
& =-\left[G(s)+s G^{\prime}(s)-0\right] \\
& =-G(s)-s G^{\prime}(s)
\end{aligned}
$$

Properties of Laplace Transforms

Examples:

$$
\begin{gathered}
f(t)= \begin{cases}1 & 1 \leq \boldsymbol{t} \leq 3 \\
0 & \text { elsewhere }\end{cases} \\
\underbrace{f(t)}_{-\boldsymbol{u}(t-3)} \\
\boldsymbol{f}(\boldsymbol{t})=\boldsymbol{u}(\boldsymbol{t}-1)-\boldsymbol{u}(\boldsymbol{t}-3) \\
\boldsymbol{F}(\boldsymbol{s})=\boldsymbol{e}^{-s} \frac{1}{s}-\boldsymbol{e}^{-3 s} \frac{1}{s}=\frac{1}{s}\left(e^{-s}-\boldsymbol{e}^{-3 s}\right)
\end{gathered}
$$

Properties of Laplace Transforms

Examples:

Let $u(t)$ be the unite step function. Find the Laplace transform of the ramp function

$$
r(t)=t u(t)
$$

Solution:

$$
\begin{aligned}
& u(t) \leftrightarrow U(s)=\frac{1}{s} \\
& \boldsymbol{u}(t) \leftrightarrow-\frac{d}{d t}\left(\frac{1}{s}\right)=\frac{1}{s^{2}} \\
& t^{2} \boldsymbol{u}(t) \leftrightarrow-\frac{d}{d s}\left(\frac{1}{s^{2}}\right)=\frac{2}{s^{3}}
\end{aligned}
$$

By successive application of the property, one can show that

$$
t^{n}(u(t)) \leftrightarrow \frac{n!}{s^{n+1}}
$$

This result, plus linearity, allows computation of the transform of any polynomial

Properties of Laplace Transforms

Examples: Find the Laplace transform of

$$
f(t)=t e^{-(t-1)} u(t-1)-e^{-(t-1)} u(t-1)
$$

Solution:
One can apply the time shifting property if the time variable always appears as it appears in the argument of the step. In this case as $t-1$

$$
\begin{aligned}
& f(t)=(t-1+1) e^{-(t-1)} u(t-1)-e^{-(t-1)} u(t-1) \\
& \begin{aligned}
& f(t)=(t-1) e^{-(t-1)} u(t-1)+e^{-(t-1)} u(t-1)-e^{-(t-1)} u(t-1) \\
&=(t-1) e^{-(t-1)} u(t-1) \\
& t u(t) \leftrightarrow \frac{1}{s^{2}} \\
& t e^{-t} u(t) \leftrightarrow \frac{1}{(s+1)^{2}} \\
& \therefore(t-1) e^{-(t-1)} u(t-1) \leftrightarrow \frac{e^{-3}}{(s+1)^{2}}
\end{aligned}
\end{aligned}
$$

Laplace Transforms

Laplace Transform of a Periodic Function $f(t)$
The Laplace Transform of the periodic function, $f(t)$ with period p, equals the Laplace Transform of one cycle of the function, divided by $\left(1-e^{-s p}\right)$.

$$
\mathcal{L}\{f(t)\}=\frac{\mathcal{L}\left\{f_{1}(t)\right\}}{1-e^{-s p}}
$$

Example: Full-wave rectifier of $\sin t$ is

Solution: We have

$$
f_{1}(t)=\sin t \times[u(t)-u(t-\pi)]
$$

And the period $p=\pi$.

$$
\begin{aligned}
\mathcal{L}\left\{f_{1}(t)\right\} & =\mathcal{L}\{\sin t \times[u(t)-u(t-\pi)]\} \\
\mathcal{L}\left\{f_{1}(t)\right\} & =\mathcal{L}\{\sin t \times u(t)\}-\mathcal{L}\{\sin (t) \times u(t-\pi)\}
\end{aligned}
$$

But since $\sin t=-\sin (t-\pi)$

$$
\begin{aligned}
\mathcal{L}\left\{f_{1}(t)\right\} & =\mathcal{L}\{\sin t \times u(t)\}+\mathcal{L}\{\sin (t-\pi) \times u(t-\pi)\} \\
& =\frac{1}{s^{2}+1}+\frac{e^{-\pi s}}{s^{2}+1}
\end{aligned}
$$

So the Laplace Transform of the periodic function is given by:

$$
\mathcal{L}\{f(t)\}=\frac{1+e^{-\pi s}}{\left(s^{2}+1\right)\left(1-e^{-\pi s}\right)}
$$

Inverse Laplace Transform

The inverse Laplace transform of $F(s)$ is $f(t)$, i.e.

$$
\mathcal{L}^{-1}[F(s)]=f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F(s) e^{t s} d s
$$

Where \mathcal{L}^{-1} is inverse Laplace transform operator.
Examples: Find the inverse Laplace transform of
a) $\frac{2}{s^{3}}$
b) $\frac{2}{S^{4}}$
c) $\frac{1}{S^{2}+25}$
d) $\frac{5 s-6}{s^{2}+9}$
e) $\frac{s+1}{(s+1)^{2}+4}$
f) $\frac{s}{(s+1)^{2}+4}$

Inverse Laplace Transform

Solutions:

From the table of Laplace Transform
(a) $\mathcal{L}^{-1}\left\{\frac{2}{s^{3}}\right\}=\mathcal{L}^{-1}\left\{\frac{2!}{s^{3}}\right\}=t^{2}$
(b) $\mathcal{L}^{-1}\left\{\frac{2}{s^{4}}\right\}=\frac{2}{3!} \mathcal{L}^{-1}\left\{\frac{3!}{s^{4}}\right\}=\frac{1}{3} t^{3}$
(c) $\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+25}\right\}=\frac{1}{5} \mathcal{L}^{-1}\left\{\frac{5}{s^{2}+5^{2}}\right\}=\frac{1}{5} \sin 5 t$

Inverse Laplace Transform

(d) Write $\frac{5 s-6}{s^{2}+9}=5 \frac{s}{s^{2}+3^{2}}-2 \frac{3}{s^{2}+3^{2}}$

$$
\begin{aligned}
\therefore \mathcal{L}^{-1}\left\{\frac{5 s-6}{s^{2}+9}\right\} & =5 \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}-2 \mathcal{L}^{-1}\left\{\frac{3}{s^{2}+3^{2}}\right\} \\
& =5 \cos 3 t-2 \sin 3 t
\end{aligned}
$$

(e) $\quad \mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+4}\right\}=e^{-t} \cos 2 t$

Inverse Laplace Transform

(f) Since the ILT of the terms cannot be found directly from the table, we need to rewrite it as the following

$$
\begin{gathered}
\frac{s}{(s+1)^{2}+4}=\frac{(s+1)-1}{(s+1)^{2}+4}=\frac{s+1}{(s+1)^{2}+4}-\frac{1}{(s+1)^{2}+4} \\
= \\
\left.\begin{array}{rl}
\therefore \mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+2^{2}}-\frac{1}{2} \cdot \frac{2}{(s+1)^{2}+4}\right\}
\end{array}\right\}=\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+2^{2}}\right\}-\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{2}{(s+1)^{2}+2^{2}}\right\} \\
\\
=e^{-t} \cos 2 t-\frac{1}{2} e^{-t} \sin 2 t
\end{gathered}
$$

Inverse Laplace Transform

Most of the Laplace transforms that we encounter are proper rational functions of the form

$$
F(s)=\frac{P(s)}{Q(s)}=\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+a_{1} s+a_{0}}{b_{n} s^{n}+b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}
$$

Zeros: roots of numerator
Poles: roots of denominator

Partial Fraction Expansion:

If $m<n$ and the poles are distinct

$$
F(s)=\frac{P(s)}{Q(s)}=\frac{K_{1}}{s-p_{1}}+\frac{K_{2}}{s-p_{2}}+\frac{K_{3}}{s-p_{3}}+\cdots+\frac{K_{n}}{s-p_{n}}
$$

Inverse Laplace Transform

If $m<n$ and the poles are duplicated

$$
\frac{P(s)}{\left(s-p_{1}\right)^{r}}=\frac{K_{1}}{\left(s-p_{1}\right)^{r}}+\frac{K_{2}}{\left(s-p_{1}\right)^{r-1}}+\frac{K_{3}}{\left(s-p_{1}\right)^{r-2}}+\cdots+\frac{K_{r}}{s-p_{1}}
$$

The Coefficients $K_{1}, K_{2}, \ldots K_{r}$ can be found as follow

$$
K_{n}=\frac{1}{(n-1)!} \times\left[\frac{d^{n-1}}{d s^{n-1}}\left[\left(s-p_{1}\right)^{r} F(s)\right]\right]_{s=p_{1}}
$$

Where $n=1,2,3, \ldots, r$

Inverse Laplace Transform

Examples: Find the inverse Laplace transform of
(a) $\frac{s-8}{s(s-2)}$
(b) $\frac{9}{2 s^{2}+7 s-4}$
(c) $\frac{4 s+1}{s^{3}+2 s^{2}+s}$
(d) $\frac{7 s-20}{s\left(s^{2}-4 s+20\right)}$
(e) $\frac{s^{2}}{s^{2}+5 s+6}$
(f) $\quad F(s)=\frac{s^{2}+2 s+3}{(s+1)^{3}}$

Inverse Laplace Transform

Solutions: We use the partial fraction technique
(a) $\quad F(s)=\frac{s-8}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2}=\frac{4}{s}-\frac{3}{s-2}$

$$
\mathcal{L}^{-1}[F(s)]=\mathcal{L}^{-1}\left[\frac{4}{s}-\frac{3}{s-2}\right]=4-3 e^{2 t}
$$

(b) $F(s)=\frac{9}{2 s^{2}+7 s-4}=\frac{2}{2 s-1}-\frac{1}{s+4}=\frac{1}{s-1 / 2}-\frac{1}{s+4}$

$$
\mathcal{L}^{-1}[F(s)]=\mathcal{L}^{-1}\left[\frac{1}{s-1 / 2}-\frac{1}{s+4}\right]=e^{t / 2}-e^{-4 t}
$$

Inverse Laplace Transform

(c) $\quad \mathcal{L}^{-1}\left\{\frac{4 s+1}{s^{3}+2 s^{2}+s}\right\}=\mathcal{L}^{-1}\left\{\frac{4 s+1}{s(s+1)^{2}}\right\}$

$$
\begin{aligned}
& =\mathcal{L}^{-1}\left\{\frac{1}{s}+\frac{3}{(s+1)^{2}}-\frac{1}{s+1}\right\} \\
& =1+3 e^{-t} t-e^{-t}
\end{aligned}
$$

where, if we let $F(s)=\frac{1}{s^{2}}$, then $f(t)=t$. Hence,

$$
\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}}\right\}=\mathcal{L}^{-1}\{F(s+1)\}=e^{-t} f(t)=e^{-t} t
$$

Inverse Laplace Transform

(d) $\quad \mathcal{L}^{-1}\left\{\frac{7 s-20}{s\left(s^{2}-4 s+20\right)}\right\}=\mathcal{L}^{-1}\left\{-\frac{1}{s}+\frac{s+3}{s^{2}-4 s+20}\right\}$

$$
=\mathcal{L}^{-1}\left\{-\frac{1}{s}+\frac{s+3}{(s-2)^{2}+16}\right\}
$$

$$
=\mathcal{L}^{-1}\left\{-\frac{1}{s}+\frac{(s-2)+5}{(s-2)^{2}+16}\right\}
$$

$$
=\mathcal{L}^{-1}\left\{-\frac{1}{s}+\frac{s-2}{(s-2)^{2}+16}+\frac{5}{(s-2)^{2}+16}\right\}
$$

$$
=-1+e^{2 t} \cos 4 t+\frac{5}{4} e^{2 t} \sin 4 t
$$

Inverse Laplace Transform

(e)

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s^{2}}{s^{2}+5 s+6}\right\} & =\mathcal{L}^{-1}\left\{1-\frac{5 s+6}{s^{2}+5 s+6}\right\} \\
& =\mathcal{L}^{-1}\left\{1-\frac{5 s+6}{(s+2)(s+3)}\right\} \\
& =\mathcal{L}^{-1}\left\{1+\frac{4}{s+2}-\frac{9}{s+3}\right\} \\
& =\delta(t)+4 e^{-2 t}-9 e^{-3 t}
\end{aligned}
$$

(f)

$$
\begin{aligned}
& F(s)=\frac{s^{2}+2 s+3}{(s+1)^{3}}=\frac{K_{1}}{(s+1)^{3}}+\frac{K_{2}}{(s+1)^{2}}+\frac{K_{3}}{s+1} \\
& (s+1)^{3} \frac{s^{2}+2 s+3}{(s+1)^{3}}=(s+1)^{3}\left[\frac{K_{1}}{(s+1)^{3}}+\frac{K_{2}}{(s+1)^{2}}+\frac{K_{3}}{s+1}\right] \\
& s^{2}+2 s+3=K_{1}+(s+1) K_{2}+(s+1)^{2} K_{3} \\
& {\left[s^{2}+2 s+3\right]_{s=-1}=\left[K_{1}+(s+1) K_{2}+(s+1)^{2} K_{3}\right]_{s=-1} \Rightarrow K_{1}=2} \\
& {[2 s+2]_{s=-1}=\left[K_{2}+2(s+1) K_{3}\right]_{s=-1} \Rightarrow K_{2}=0} \\
& {[2]_{s=-1}=\left[2 K_{3}\right]_{s=-1} \Rightarrow K_{3}=1} \\
& \mathcal{L}^{-1}[F(s)]=\mathcal{L}^{-1}\left[\frac{2}{(s+1)^{3}}+\frac{1}{s+1}\right] \\
& f(t)=t^{2} e^{-t}+e^{-t}
\end{aligned}
$$

Inverse Laplace Transform

Matlab command for partial fraction Expansion:

```
num = [\begin{array}{llll}{2}&{5}&{3}&{6}\end{array}]
den = [lllll
```

$$
\frac{2 s^{3}+5 s^{2}+3 s+6}{s^{3}+6 s^{2}+11 s+6}
$$

The command

```
[r,p,k] = residue(num,den)
```

Gives the following result

```
[r,p,k] = residue(num,den)
r=
    -6.0000
    -4.0000
    3.0000
p =
    -3.0000
    -2.0000
    -1.0000
k =
    2
```


Inverse Laplace Transform

The Convolution Theorem:

$f(t) * g(t)$ is called as the convolution of $f(t)$ and $g(t)$,
And it is defined by

$$
f(t) * g(t)=\int_{0}^{t} f(t-v) g(v) d v
$$

Convolution property: $f(t) * g(t)=g(t) * f(t)$
Therefore,

$$
f(t) * g(t)=\int_{0}^{t} f(t-v) g(v) d v=\int_{0}^{t} f(v) g(t-v) d v=g(t) * f(t)
$$

Sometime, $f(t) * g(t)$ is denoted as $(f * g)(t)$ or simply $f * g$.

In Laplace transform

$$
\mathcal{L}^{-1}\{F(s) G(s)\}=f(t) * g(t)
$$

Inverse Laplace Transform

Examples: Use the convolution theorem to find the inverse Laplace transforms of the following:
(a) $\frac{1}{(s-1)(s+2)}$
(b) $\frac{12}{s\left(s^{2}+9\right)}$
(c) $\frac{7}{s^{2}(s+5)}$

Inverse Laplace Transform

Solution

(a) $\mathcal{L}^{-1}\left\{\frac{1}{(s-1)(s+2)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} * \mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}$

$$
=e^{t} * e^{-2 t}
$$

$$
=\int_{0}^{t} e^{t-v} e^{-2 v} d v=\int_{0}^{t} e^{t-3 v} d v=\left[\frac{e^{t-3 v}}{-3}\right]_{0}^{x}
$$

$$
=\frac{e^{-2 t}-e^{t}}{-3}=\frac{e^{t}-e^{-2 t}}{3}
$$

Inverse Laplace Transform

Solution

$$
\text { (b) } \begin{aligned}
\mathcal{L}^{-1}\left\{\frac{12}{s\left(s^{2}+9\right)}\right\} & =4 \mathcal{L}^{-1}\left\{\frac{1}{s} \cdot \frac{3}{s^{2}+9}\right\} \\
& =4 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\} * \mathcal{L}^{-1}\left\{\frac{3}{s^{2}+9}\right\} \\
& =4(1 * \sin 3 t) \\
& =4 \int_{0}^{t} 1 \sin 3 v d v \\
& =4\left[\frac{-\cos 3 v}{3}\right]_{0}^{t}=\frac{4}{3}(1-\cos 3 t)
\end{aligned}
$$

Inverse Laplace Transform

(c) $\mathcal{L}^{-1}\left\{\frac{7}{s^{2}(s+5)}\right\}=7 \mathcal{L}^{-1}\left\{\frac{1}{s^{2}} \cdot \frac{1}{s+5}\right\}$
$=7 \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\} * \mathcal{L}^{-1}\left\{\frac{1}{s+5}\right\}$
$=7 t * e^{-5 t}=7 \int_{0}^{t} v e^{-5(t-v)} d v=7 \int_{0}^{t} v e^{5(v-t)} d v$
$=7\left[\frac{v e^{5(\nu-t)}}{5}\right]_{0}^{t}-7 \int_{0}^{t} \frac{e^{5(u-t)}}{5} d v$
$=7\left(\frac{t e^{0}-0}{5}\right)-7\left[\frac{e^{5(\nu-t)}}{25}\right]_{0}^{t}=\frac{7 t}{5}-\frac{7\left(1-e^{-5 t}\right)}{25}$

$$
=\frac{7}{25}\left(5 t+e^{-5 t}-1\right)
$$

Solution of LDEs Using Laplace Transform

Example: Solve the following Linear DE

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0, \quad y(0)=2, \quad y^{\prime}(0)=3
$$

Solution: taking the Laplace transform of Linear DE

$$
\mathcal{L}\left\{y^{\prime \prime}+5 y^{\prime}+6 y\right\}=\mathcal{L}\left\{y^{\prime \prime}\right\}+5 \mathcal{L}\left\{y^{\prime}\right\}+6 \mathcal{L}\{y\}=\mathcal{L}\{0\}=0
$$

Now find the Laplace transform of derivatives

$$
\left[s^{s} Y(s)-s y(0)-y^{\prime}(0)\right]+5[s Y(s)-y(0)]+6 Y(s)=0
$$

Rearranging the equation

$$
\left(s^{2}+5 s+6\right) Y(s)-(s+5) y(0)-y^{\prime}(0)=0
$$

Substituting in the initial conditions, we obtain

$$
\begin{gathered}
\left(s^{2}+5 s+6\right) Y(s)-2(s+5)-3=0 \\
Y(s)=\frac{2 s+13}{(s+3)(s+2)}
\end{gathered}
$$

Solution of LDEs Using Laplace Transform

Using partial fraction decomposition, $Y(s)$ can be rewritten:

$$
\begin{aligned}
\frac{2 s+13}{(s+3)(s+2)} & =\frac{A}{(s+3)}+\frac{B}{(s+2)} \\
2 s+13 & =A(s+2)+B(s+3) \\
2 s+13 & =(A+B) s+(2 A+3 B) \\
A+B & =2,2 A+3 B=13 \\
A & =-7, B=9
\end{aligned}
$$

Thus

$$
Y(s)=-\frac{7}{(s+3)}+\frac{9}{(s+2)}
$$

Now we can find the inverse Laplace transform of $Y(s)$ to get $y(t)$

$$
y(t)=-7 e^{-3 t}+9 e^{-2 t}
$$

Solution of LDEs Using Laplace Transform

Example: Solve the following Linear DE

$$
y^{\prime \prime}+y=\sin 2 t, y(0)=2, \quad y^{\prime}(0)=1
$$

Solution: taking the Laplace transform of Linear DE

$$
\mathcal{L}\left\{y^{\prime \prime}+y\right\}=\mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\{y\}=\mathcal{L}\{\sin 2 t\}
$$

Now find the Laplace transform of derivatives

$$
\left[s^{s} Y(s)-s y(0)-y^{\prime}(0)\right]+Y(s)=\frac{2}{s^{2}+4}
$$

Rearranging the equation

$$
\left(s^{2}+1\right) Y(s)-s y(0)-y^{\prime}(0)=\frac{2}{s^{2}+4}
$$

Substituting in the initial conditions, we obtain

$$
\begin{gathered}
\left(s^{2}+1\right) Y(s)-2 s-1=\frac{2}{s^{2}+4} \\
Y(s)=\frac{2 s^{3}+s^{2}+8 s+6}{\left(s^{2}+1\right)\left(s^{2}+4\right)}
\end{gathered}
$$

Solution of LDEs Using Laplace Transform

Using partial fraction, $Y(s)$ can be rewritten:

$$
Y(s)=\frac{2 s^{3}+s^{2}+8 s+6}{\left(s^{2}+1\right)\left(s^{2}+4\right)}=\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+4}
$$

Then

$$
\begin{aligned}
2 s^{3}+s^{2}+8 s+6 & =(A s+B)\left(s^{2}+4\right)+(C s+D)\left(s^{2}+1\right) \\
& =(A+C) s^{3}+(B+D) s^{2}+(4 A+C) s+(4 B+D)
\end{aligned}
$$

Solving, we obtain $A=2, B=5 / 3, C=0$, and $D=-2 / 3$. Thus

$$
Y(s)=\frac{2 s}{s^{2}+1}+\frac{5 / 3}{s^{2}+1}-\frac{2 / 3}{s^{2}+4}
$$

Now we can find the inverse Laplace transform of $Y(s)$ to get $y(t)$

$$
y(t)=2 \cos t+\frac{5}{3} \sin t-\frac{1}{3} \sin 2 t
$$

Solution of LDEs Using Laplace Transform

Example: Solve the following Linear DE

$$
\begin{aligned}
& \quad y^{\prime \prime}+2 y^{\prime}+5 y=3, y(0)=0, \quad y^{\prime}(0)=0 \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}+2 \mathcal{L}\left\{y^{\prime}\right\}+5 \mathcal{L}\{y\}=\mathcal{L}\{3\} \\
& {\left[s^{s} Y(s)-s y(0)-y^{\prime}(0)\right]+2[s Y(s)-y(0)]+5 Y(s)=\frac{3}{s}} \\
& {\left[s^{2}+2 s+5\right] Y(s)=\frac{3}{s}} \\
& Y(s)=\frac{3}{s(s+1-2 j)(s+1+2 j)}=\frac{A}{s}+\frac{B_{1}}{(s+1-2 j)}+\frac{B_{2}}{(s+1+2 j)} \\
& y(t)=A+B_{1} e^{-(1-2 j) t}+B_{1} e^{-(1+2 j) t} \\
& \text { Where } A=0.6, B_{1}=-0.3+0.15 j=0.33 e^{2.6779 j}, B_{2}=-0.3-0.15 j=0.33 e^{-2.6779 j}
\end{aligned}
$$

Initial and Final Value theorem

INITIAL VALUE THEOREM

Assume that $f(t)$ has Laplace transform.
Then,

$$
\lim _{t \rightarrow 0} f(t)=\lim _{s \rightarrow \infty} s F(s)
$$

FINAL VALUE THEOREM

Assume that $f(t)$ has Laplace transform and that $\lim _{n \rightarrow \infty} f(t)$ exist.
Then,

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)
$$

Note: $\lim _{n \rightarrow \infty} f(t)$ will exist if $F(s)$ has poles with negative real part and at most a single pole at $s=0$.

Initial and Final Value theorem

Example: Given

$$
F(s)=\frac{10(s+1)}{s\left(s^{2}+2 s+2\right)}
$$

Determine the initial and final values for $f(t)$.

$$
\lim _{t \rightarrow 0} f(t)=\lim _{s \rightarrow \infty} s F(s)=\lim _{s \rightarrow \infty} \frac{10(s+1)}{s^{2}+2 s+2}=0
$$

$F(s)$ has one pole at $\mathrm{s}=0$ and the others have negative real part. The final value theorem can be applied.

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)=\lim _{s \rightarrow 0} \frac{10(s+1)}{s^{2}+2 s+2}=5
$$

Note: Computing the inverse one can get

$$
f(t)=5+5 \sqrt{2} e^{-t} \cos \left(t-\frac{3 \pi}{4}\right)
$$

Initial and Final Value theorem

Example: Investigate the application of initial and final value theorem to the Laplace transform function

$$
F(s)=\frac{1}{(s+2)(s-3)}
$$

Solution:
For the initial value theorem:

$$
\begin{aligned}
& \lim _{s \rightarrow \infty} s F(s)=\lim _{s \rightarrow \infty} \frac{s}{(s+2)(s-3)}=0 \\
& f(t)=\frac{1}{5}\left(e^{3 t}-e^{-2 t}\right) \\
& \lim _{t \rightarrow 0} f(t)=\lim _{t \rightarrow 0} \frac{1}{5}\left(e^{0}-e^{0}\right)=0
\end{aligned}
$$

For the final value theorem:

$$
\begin{aligned}
& \lim _{s \rightarrow 0} s F(s)=\lim _{s \rightarrow 0} \frac{s}{(s+2)(s-3)}=0 \\
& \lim _{t \rightarrow \infty} f(t)=\lim _{t \rightarrow \infty} \frac{1}{5}\left(e^{\infty}-e^{-\infty}\right)=\infty
\end{aligned}
$$

Circuit Application

1. RLC circuit with initial condition

2. Transfer functions

3. Block Diagram

RLC circuit

$$
v_{L}(t)=L \frac{d i_{L}(t)}{d t}
$$

Taking the Laplace transform

$$
V_{L}(s)=(s L) I_{L}(s)-L i_{L}(0)
$$

$$
i_{L}(t)=\frac{1}{L} \int_{0}^{t} v_{L}(t) d t+i_{L}(0)
$$

Taking the Laplace transform

$$
I_{L}(s)=\frac{V_{L}(s)}{s L}+\frac{i_{L}(0)}{s}
$$

RLC circuit

$$
v_{c}(t)=\frac{1}{C} \int_{0}^{t} i_{c}(t) d t+v_{c}(0)
$$

Taking the Laplace transform

$$
V_{c}(s)=\frac{1}{s C} I_{c}(s)+\frac{v_{c}(0)}{s}
$$

$$
i_{c}(t)=C \frac{d v_{c}(t)}{d t}
$$

Taking the Laplace transform

$$
I_{c}(s)=\frac{V_{c}(s)}{1 / s C}-C v_{c}(0)
$$

RLC circuit

Example:

In the RL-Series circuit given that $i(0)=5 \mathrm{Amp}$, find $i(t)$

Using KVL

$$
\begin{gathered}
L \frac{d i}{d t}+R i=3 u(t) \quad \text { Taking Laplace transform } \\
L[s I(s)-i(0)]+R I(s)=\frac{3}{s}
\end{gathered}
$$

RLC circuit

$$
\begin{aligned}
& 2[s I(s)-5]+4 I(s)=\frac{3}{s} \\
& I(s)[2 s+4]=\frac{3}{s}+10 \\
& I(s)[s+2]=\frac{1.5}{s}+5=\frac{5 s+3 / 2}{s} \\
& I(s)=\frac{5 s+3 / 2}{s(s+2)}=\frac{A}{s}+\frac{B}{s+2}=\frac{A(s+2)+B s}{s(s+2)}
\end{aligned}
$$

Equating coefficients

$$
\begin{aligned}
& \frac{3}{2}=2 A \quad \Longrightarrow \quad A=\frac{3}{4} \\
& 5=A+B \quad \Longrightarrow \quad B=\frac{17}{4}
\end{aligned}
$$

$$
I(s)=\frac{5 s+3 / 2}{s(s+2)}=\frac{3}{4 s}+\frac{17}{4(s+2)} \Longrightarrow \mathcal{L}^{-1}\{I(s)\}=i(t)=\frac{3}{4} u(t)+\frac{17}{4} e^{-2 t} u(t)
$$

RLC circuit

Example:

The switch in the following circuit moves from position a to position b at $t=0$ second. Compute $i_{o}(t)$ for $t>0$.

RLC circuit

Solution:

The i.c. (initial condition) are not given directly. Hence, at first we need to find the i.c. by analyzing the circuit when $t \leq 0$:

$$
\begin{aligned}
& i_{L}(0)=\frac{24}{5}=4.8 A \\
& v_{L}(0)=0 V
\end{aligned}
$$

RLC circuit

Then, we can analyze the circuit for $t>0$ by considering the i.c.

$$
I=\frac{-3}{0.625 s+\left(\frac{10}{s} \| 1\right)}=\frac{-3}{0.625 s+\left(\frac{\frac{10}{s}}{\frac{10}{s}+1}\right)}=\frac{-3}{0.625 s+\left(\frac{10}{s+10}\right)}=\frac{-3}{\frac{0.625 s^{2}+6.25 s+10}{s+10}}
$$

RLC circuit

Using current divider rule, we find that
$I_{0}=\frac{\frac{10}{s}}{\frac{10}{s}+1} I=\frac{10}{(10+s)} \frac{-3(s+10)}{0.625 s^{2}+6.25 s+10}=\frac{-30}{0.625 s^{2}+6.25 s+10}$
$I_{0}=\frac{-30}{0.625 s^{2}+6.25 s+10}=\frac{-30}{0.625\left(s^{2}+10 s+16\right)}=\frac{-48}{s^{2}+10 s+16}$

Using partial fraction, we have

$$
\begin{aligned}
& I_{0}(s)=\frac{-48}{(s+8)(s+2)}=\frac{8}{s+8}-\frac{8}{s+2} \\
& i_{0}(t)=8\left(e^{-8 t}-e^{-2 t}\right) u(t) \mathrm{A}
\end{aligned}
$$

Transfer Function

In time domain, $y(t)=h(t) * x(t)$
In s-domain, $Y(s)=H(s) X(s)$
\therefore Transfer Function, $H(S)=\frac{Y(s)}{X(s)}$

Transfer Function

Example:
For the following circuit, find $H(s)=V_{o}(s) / V_{i}(s)$. Assume zero initial conditions.

Transfer Function

Solution:
Transform the circuit into s-domain with zero i.c.:

Transfer Function

$$
Z_{0}=4 \| \frac{10}{s}=\frac{\frac{40}{s}}{4+\frac{10}{s}}=\frac{40}{4 s+10}=\frac{20}{2 s+5}
$$

Using voltage divider

$$
\begin{aligned}
& V_{0}=\frac{\frac{20}{2 s+5}}{\frac{20}{2 s+5}+s+2} V_{s}=\frac{20}{20+(2 s+5)(s+2)} V_{s} \\
& V_{0}=\frac{20}{2 S^{2}+9 s+30} V_{s} \\
& H(S)=\frac{V_{o}(s)}{V_{s}(s)}=\frac{20}{2 S^{2}+9 s+30}
\end{aligned}
$$

Transfer Function

Example:
Obtain the transfer function $H(s)=V_{0}(s) / V_{i}(s)$, for the following circuit.

Transfer Function

Solution:
Transform the circuit into s-domain (We can assume zero i.c. unless stated in the question)

Transfer Function

We found that

$$
\begin{aligned}
& V_{o}=3(I+2 I)=9 I \\
& V_{s}=\frac{2}{s} I+(s+3) 3 I=\left(\frac{2}{s}+3 s+9\right) I \\
& \therefore \quad H(s)=\frac{V_{o}(s)}{V_{s}(s)}=\frac{9}{\frac{2}{s}+3 s+9}=\frac{9 s}{3 s^{2}+9 s+2}
\end{aligned}
$$

Block Diagram

A block diagram is a graphical tool that can help us to visualize the model of a system and evaluate the mathematical relationships between their elements, using their transfer functions.

The Transfer Function Block

The transfer function $G(s)$ is

- defined only for a linear time-invariant system and not for nonlinear systems.
- Is a property of the system and is independent of the input to the system.
- Commutative $G_{1} G_{2}=G_{2} G_{1}$
- Associative $G_{1}+G_{2}=G_{2}+G_{1}$

Block Diagram Elements

Blocks in series or cascaded blocks

- When blocks are connected in series, there must be no loading effect.

Block Diagram

Closed-loop Feedback System

R
C
B
$E=(R-B) \quad$ is the error
$G=\frac{C}{E}$
$G H=\frac{B}{E} \quad$ is called the open-loop transfer function

Block Diagram

Overall transfer function of closed-loop feedback system
$E(s)=R(s)-B(s)$
$\frac{C(s)}{G(s)}=R(s)-B(s)$
$\frac{C(s)}{G(s)}=R(s)-C(s) H(s)$
$\frac{C(s)}{G(s)}+C(s) H(s)=R(s)$
$C(s)\left[\frac{1}{G(s)}+H(s)\right]=R(s)$
$C(s)\left[\frac{1+G(s) H(s)}{G(s)}\right]=R(s)$
$\frac{C(s)}{R(s)}=\left[\frac{G(s)}{1+G(s) H(s)}\right]$

Block Diagram

- Eliminating a negative feedback loop The overall transfer function for a negative feedback loop is given by

$$
\frac{C(s)}{R(s)}=\left[\frac{G(s)}{1+G(s) H(s)}\right]
$$

- Eliminating a positive feedback loop

The overall transfer function for a positive feedback loop is given by

$$
\frac{C(s)}{R(s)}=\left[\frac{G(s)}{1-G(s) H(s)}\right]
$$

Block Diagram

$G_{e} \quad$ is the controller transfer function
$G_{p} \quad$ is the plant transfer function
$M \quad$ is the manipulated variable
D
is the external disturbance
$G_{e} G_{p}=\frac{C}{E} \quad$ is the feed-forward transfer function
$G_{e} G_{p} H=\frac{B}{E} \quad$ is the open-loop transfer function

Block Diagram

Assuming $D=0$, we can re-draw

$$
\frac{C}{R}=\frac{G}{1+G H}=\frac{G_{c} G_{p}}{1+G_{c} G_{p} H}
$$

Assuming $R=0$, we can re-draw

$\frac{C}{D}=\frac{G}{1+G H}=\frac{G_{p}}{1+G_{p} G_{c} H}$

Block Diagram

Example: Determine $C(s) / R(s)$

Block Diagram

Block Diagram

Block Diagram

\qquad

Block Diagram

,

Block Diagram

Inverting operational amplifier circuit:

Block Diagram

$$
\left.\begin{array}{rl}
Z_{1}(s) & =\frac{1}{C_{1} s+\frac{1}{R_{1}}}=\frac{1}{5.6^{*} 10^{-6} s+\frac{1}{360^{*} 10^{3}}} \\
& =\frac{360 * 10^{3}}{2.016 s+1}
\end{array}\right\} \begin{aligned}
Z_{2}(s) & =R_{2}+\frac{1}{C_{2} s}=220 * 10^{3}+\frac{10^{7}}{s}=\frac{220 * 10^{3} s+10^{7}}{s} \\
\frac{V_{o}(s)}{V_{i}(s)} & =-\frac{Z_{2}(s)}{Z_{1}(s)}=-\frac{\frac{220 * 10^{3} s+10^{7}}{s}}{\frac{360 * 10^{3}}{2.016 s+1}} \\
\frac{V_{o}(s)}{V_{i}(s)} & =-\frac{\left(220 * 10^{3} s+10^{7}\right)(2.016 s+1)}{360 * 10^{3} s}=-1.232 \frac{s^{2}+45.95 s+22.55}{s}
\end{aligned}
$$

