Electrical Engineering Department Engineering mathematics Diploma 2023-2024

Chapter One

Laplace Transforms

Contents of Chapter One

- Laplace Transform of basic functions using the definition
- Transform of derivatives and integrals
- Properties of Laplace Transform
- Inverse Laplace Transform
- Solution of linear differential equations using Laplace Transform
- Circuit Applications

If f(t) is a function defined for all $t \ge 0$, its Laplace transform is the integral of f(t) times e^{-st} from t = 0 to ∞ . It is a function of s, say, F(s), and is denoted by $\mathcal{L}\{f\}$; thus

$$F(s) = \mathcal{L}{f} = \int_0^\infty f(t)e^{-st}dt$$

The operation $\mathcal{L}\{\}$ transforms f(t), which is in the time domain, into F(s), which is in the complex frequency domain, or simply (s-domain) where s is the complex variable $(\sigma + j\omega)$

Laplace Transforms

Evaluating Laplace transform using the definition

1.
$$f(t) = k$$

$$F(s) = \mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = \int_0^\infty ke^{-st}dt$$

$$F(s) = -\frac{k}{s} [e^{-st}]_{t=0}^{t=\infty} = -\frac{k}{s} [e^{-s\infty} - e^{-s0}] = \frac{k}{s}$$

$$\mathcal{L}\{k\} = \frac{k}{s}$$

For f(t) = 5

$$F(s) = \int_0^\infty f(t)e^{-st}dt = \int_0^\infty 5e^{-st}dt = -\frac{5}{s}e^{-st}\Big|_0^\infty = \left[-\frac{5}{s}e^{-s\infty}\right] - \left[-\frac{5e^{-s0}}{s}\right] = \frac{5}{s}$$

$$2. f(t) = t$$

$$F(s) = \mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = \int_0^\infty te^{-st}dt$$
$$\int udv = uv - \int vdu$$

By letting u = t and $dv = e^{-st}dt$ we find

$$\int te^{-st}dt = -\frac{1}{s}te^{-st} + \frac{1}{s}\int e^{-st}dt = -\frac{1}{s}te^{-st} - \frac{1}{s^2}e^{-st}$$

$$F(s) = \left[-\frac{1}{s}te^{-st} - \frac{1}{s^2}e^{-st} \right]_{t=0}^{t=\infty} = \frac{1}{s^2}$$

$$\mathcal{L}\{t\} = \frac{1}{s^2}$$

In general,

$$\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}}$$

$$3. f(t) = e^{-at}$$

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt = \int_0^\infty e^{-at}e^{-st}dt$$

$$F(s) = \int_0^\infty e^{-(a+s)t}dt = \left[\frac{-e^{-(a+s)t}}{a+s}\right]_{t=0}^{t=\infty}$$

$$F(s) = \left[\frac{-e^{-(a+s)\infty}}{a+s} + \frac{e^{-(a+s)0}}{a+s}\right] = \frac{1}{a+s}$$

$$\mathcal{L}\{e^{-at}\} = \frac{1}{s+a}$$

$$4. f(t) = e^{at}$$

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt = \int_0^\infty e^{at}e^{-st}dt$$

$$F(s) = \int_0^\infty e^{-(s-a)t} dt = \left[-\frac{e^{-(s-a)t}}{s-a} \right]_{t=0}^{t=\infty}$$

$$F(s) = \left[\frac{-e^{-(s-a)\infty}}{s-a} + \frac{e^{-(s-a)0}}{s-a} \right] = \frac{1}{s-a}$$

$$\mathcal{L}\{e^{at}\} = \frac{1}{s-a}$$

$$5. f(t) = \cos \omega t$$

$$\mathcal{L}{f(t)} = \int_0^\infty \cos \omega t \, e^{-st} dt = \int_0^\infty \left[\frac{e^{j\omega t} + e^{-j\omega t}}{2} \right] e^{-st} dt$$

$$= \frac{1}{2} \left[\int_0^\infty e^{j\omega t} e^{-st} dt + \int_0^\infty e^{-j\omega t} e^{-st} dt \right]$$

$$= \frac{1}{2} \left[\mathcal{L}{e^{j\omega t}} + \mathcal{L}{e^{-j\omega t}} \right]$$

$$= \frac{1}{2} \left[\frac{1}{s - j\omega} + \frac{1}{s + j\omega} \right] = \frac{s}{s^2 + \omega^2}$$

$$\mathcal{L}{e^{j\omega t}} = \frac{s}{s^2 + \omega^2}$$

$$\mathcal{L}\{\cos\omega t\} = \frac{s}{s^2 + \omega^2}$$

$$6. f(t) = e^{-at} \sin \omega t$$

$$\int_{0}^{\infty} e^{-at} * \sin(wt) * e^{-st} * dt = \int_{0}^{\infty} e^{-at} * \frac{e^{jwt} - e^{-jwt}}{2j} * e^{-st} * dt$$

$$= \frac{1}{2j} \int_{0}^{\infty} \left[e^{-at + jwt} e^{-st} - e^{-at - jwt} e^{-st} \right] * dt$$

$$= \frac{1}{2j} \left[\frac{1}{(s+a) - jw} - \frac{1}{(s+a) + jw} \right]$$

$$\mathcal{L}\lbrace e^{-at}\sin\omega t\rbrace = \frac{\omega}{(s+a)^2 + \omega^2}$$

7.
$$\mathcal{L}\left\{\frac{df(t)}{dt}\right\} = \int_0^\infty \frac{df(t)}{dt} e^{-st} dt$$
By using
$$\int u dv = uv - \int v du$$

$$u = e^{-st} \implies du = -se^{-st} dt$$

$$dv = \frac{df(t)}{dt} dt \implies v = f(t)$$

$$\int_0^\infty \frac{df(t)}{dt} e^{-st} dt = [e^{-st}f(t)]_{t=0}^{t=\infty} + s \int_0^\infty f(t)e^{-st} dt$$

$$= 0 - f(0) + s \int_0^\infty f(t)e^{-st} dt$$

$$\mathcal{L}\left\{\frac{df(t)}{dt}\right\} = sF(s) - f(0)$$

We can extend the previous to show

$$\mathcal{L}\left\{\frac{d^2f(t)}{dt^2}\right\} = s^2F(s) - sf(0) - f'(0)$$

$$\mathcal{L}\left\{\frac{d^3f(t)}{dt^3}\right\} = s^3F(s) - s^2f(0) - sf'(0) - f''(0)$$

In general

$$\mathcal{L}\left\{\frac{d^n f(t)}{dt^n}\right\} = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$

8.
$$\mathcal{L}\{\int f(t)dt\}$$

$$\mathcal{L}\left\{\int f(t)dt\right\} = \frac{F(s)}{s} + \frac{1}{s} \left[\int f(t)dt\right]_{t=0}$$

$$\mathcal{L}\left\{\int_0^t f(t)dt\right\} = \frac{F(s)}{s}$$

Laplace 7	Transform	Table
-----------	-----------	-------

Function, $f(t)$	Laplace transform, $F(s)$	Function, $f(t)$	Laplace transform, $F(s)$
1	1 ,	e ^{-at} cos bt	$\frac{s+a}{(s+a)^2+b^2}$
į	$\frac{1}{s^2}$ $\frac{2}{s^3}$	sinh bt	$\frac{b}{s^2 - b^2}$
t ₂	$\frac{2}{s^3}$	cosh bt	$\frac{s}{s^2 - b^2}$
t ⁿ	$\frac{n!}{s^{n+1}}$	$e^{-at} \sinh bt$	$\frac{b}{(s+a)^2-b^2}$
ear	$\frac{1}{s-a}$	$e^{-at} \cosh bt$	$\frac{s+a}{(s+a)^2-b^2}$
e-et	$\frac{1}{s+a}$	t sin bī	$\frac{2bs}{(s^2+b^2)^2}$
$t^{n}e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	t cos bt	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$
sin bt	$\frac{b}{s^2 + b^2}$	u(t) unit step	$\frac{1}{s}$
cos bt	$\frac{s}{s^2 + b^2}$	u(t-d)	$\frac{e^{-sd}}{s}$
e ^{-at} sin bt	b	δ(t)	1
	$(s+a)^2+b^2$	$\delta(t-d)$	e^{-sd}

Example:

Find the Laplace transform of following impulse function

$$\mathcal{L}\{\delta(t-t_0)\} = \int_0^\infty \delta(t-t_0)e^{-st}dt = e^{-st_0}$$

Other Examples

F(s)

f(t)

F(s)

f(t)

F(s)

(a)
$$t^3 = \frac{6}{s^4}$$

$$\frac{6}{c^4}$$

(e)
$$\cos(t/2)$$

(e)
$$\cos(t/2) = \frac{s}{s^2 + 0.25}$$
 (h) $t \sin 4t$

(h)
$$t \sin 4t$$

$$\frac{8s}{(s^2+16)^2}$$

(b)
$$t^{7}$$

$$\frac{7!}{8}$$

(f)
$$\sinh 3t$$

$$\frac{3}{s^2 - 9}$$

(i)
$$e^{-t} \sin 2t$$

(b)
$$t^7$$
 $\frac{7!}{s^8}$ (f) $\sinh 3t$ $\frac{3}{s^2 - 9}$ (i) $e^{-t} \sin 2t$ $\frac{2}{(s+1)^2 + 4}$

(c)
$$\sin 4t \quad \frac{4}{s^2 + 16}$$

$$\frac{s}{s^2 - 25}$$

(j)
$$e^{3t}\cos t$$

(g)
$$\cosh 5t$$
 $\frac{s}{s^2 - 25}$ (j) $e^{3t} \cos t$ $\frac{s - 3}{(s - 3)^2 + 1}$

(d)
$$e^{-2t}$$

$$\frac{1}{s+2}$$

Properties of Laplace Transforms

Linearity

$$\mathcal{L}\{af(t) \pm bg(t)\} = a\mathcal{L}\{f(t)\} \pm b\mathcal{L}\{g(t)\}\$$

• First shift theorem (Frequency shift theorem)

$$\mathcal{L}\{e^{\pm at}f(t)\} = F(s \mp a)$$

• Second shift theorem (Time shift theorem)

$$\mathcal{L}\{f(t-a)u(t-a)\} = e^{-as}F(s)$$

• Time scaling

$$\mathcal{L}\{f(at)\} = \frac{1}{a}F\left(\frac{s}{a}\right)$$

Multiplication by time

$$\mathcal{L}\lbrace t^n f(t)\rbrace = (-1)^n \frac{d^n F(s)}{ds^n}$$

Properties of Laplace Transforms

Examples:

Determine the Laplace transform of

a)
$$f(t) = t^3 - 3e^{-4t} + \sin 2t$$

b)
$$f(t) = (1 - e^{-3t})\cos t - \frac{t^4}{4}$$

c)
$$f(t) = e^{-5t}t^3$$

d)
$$f(t) = (t-2)^2 u(t-2)$$

e)
$$f(t) = tg'(t)$$

a)
$$\mathcal{L}\{t^3 - 3e^{-4t} + \sin 2t\} = \mathcal{L}\{t^3\} - 3\mathcal{L}\{e^{-4t}\} + \mathcal{L}\{\sin 2t\}$$

$$= \frac{6}{s^4} - \frac{3}{s+4} + \frac{2}{s^2+4}$$

b)
$$\mathcal{L}{f(t)} = \mathcal{L}\left\{\cos t - e^{-3t}\cos t - \frac{t^4}{4}\right\}$$

$$= \mathcal{L}\{\cos t\} - \mathcal{L}\left\{e^{-3t}\cos t\right\} - \frac{1}{4}\mathcal{L}\left\{t^4\right\}$$

$$= \frac{s}{s^2 + 1} - \frac{s + 3}{(s + 3)^2 + 1} - \frac{6}{s^5}$$

Properties of Laplace Transforms

c) Let
$$g(t) = t^3$$
 then $G(s) = \frac{6}{s^4}$

Therefor

$$F(s) = \mathcal{L}\{e^{-5t}t^3\} = \mathcal{L}\{e^{-5t}g(t)\}$$
$$= G(s+5) = \frac{6}{(s+5)^4}$$

d) Let
$$g(t) = t^2$$
 then $G(s) = \frac{2}{s^3}$
and also $g(t-2) = (t-2)^2$
Therefor

$$F(s) = \mathcal{L}\{(t-2)^2 u(t-2)\} = \mathcal{L}\{g(t-2)u(t-2)\}$$
$$= e^{-2s}G(s) = \frac{2e^{-2s}}{s^3}$$

e)
$$\mathcal{L}\{tg'(t)\} = -\frac{d}{ds}\mathcal{L}\{g'(t)\}$$

$$= -\frac{d}{ds}[sG(s) - g(0)]$$

$$= -[G(s) + sG'(s) - 0]$$

$$= -G(s) - sG'(s)$$

Properties of Laplace Transforms

Examples:

$$f(t) = \begin{cases} 1 & 1 \le t \le 3 \\ 0 & \text{elsewhere} \end{cases}$$

$$f(t) = \begin{cases} f(t) & u(t-1) \\ & -u(t-3) \end{cases}$$

$$f(t) = u(t-1) - u(t-3)$$

$$F(s) = e^{-s} \frac{1}{s} - e^{-3s} \frac{1}{s} = \frac{1}{s} \left(e^{-s} - e^{-3s} \right)$$

Examples:

Let u(t) be the unite step function. Find the Laplace transform of the ramp function

$$r(t) = tu(t)$$

Solution:

$$u(t) \leftrightarrow U(s) = \frac{1}{s}$$

$$tu(t) \leftrightarrow -\frac{d}{dt} \left(\frac{1}{s}\right) = \frac{1}{s^2}$$

$$t^2 u(t) \leftrightarrow -\frac{d}{ds} \left(\frac{1}{s^2}\right) = \frac{2}{s^3}$$

By successive application of the property, one can show that

$$t^{n}(u(t)) \leftrightarrow \frac{n!}{s^{n+1}}$$

This result, plus linearity, allows computation of the transform of any polynomial

Properties of Laplace Transforms

Examples: Find the Laplace transform of

$$f(t) = te^{-(t-1)}u(t-1) - e^{-(t-1)}u(t-1)$$

Solution:

One can apply the time shifting property if the time variable always appears as it appears in the argument of the step. In this case as t-1

$$f(t) = (t-1+1)e^{-(t-1)}u(t-1) - e^{-(t-1)}u(t-1)$$

$$f(t) = (t-1)e^{-(t-1)}u(t-1) + e^{-(t-1)}u(t-1) - e^{-(t-1)}u(t-1)$$

$$= (t-1)e^{-(t-1)}u(t-1)$$

$$tu(t) \leftrightarrow \frac{1}{s^2}$$

$$te^{-t}u(t) \leftrightarrow \frac{1}{(s+1)^2}$$

$$\therefore (t-1)e^{-(t-1)}u(t-1) \leftrightarrow \frac{e^{-s}}{(s+1)^2}$$

Laplace Transform of a Periodic Function f(t)

The Laplace Transform of the periodic function, f(t) with period p, equals the Laplace Transform of one cycle of the function, divided by $(1 - e^{-sp})$.

$$\mathcal{L}{f(t)} = \frac{\mathcal{L}{f_1(t)}}{1 - e^{-sp}}$$

Example: Full-wave rectifier of sin t is

Solution: We have

$$f_1(t) = \sin t \times [u(t) - u(t - \pi)]$$

And the period $p = \pi$.

$$\mathcal{L}{f_1(t)} = \mathcal{L}{\sin t \times [u(t) - u(t - \pi)]}$$

$$\mathcal{L}{f_1(t)} = \mathcal{L}{\sin t \times u(t)} - \mathcal{L}{\sin(t) \times u(t - \pi)}$$

But since $\sin t = -\sin(t - \pi)$

$$\mathcal{L}{f_1(t)} = \mathcal{L}{\sin t \times u(t)} + \mathcal{L}{\sin(t - \pi) \times u(t - \pi)}$$
$$= \frac{1}{s^2 + 1} + \frac{e^{-\pi s}}{s^2 + 1}$$

So the Laplace Transform of the periodic function is given by:

$$\mathcal{L}{f(t)} = \frac{1 + e^{-\pi s}}{(s^2 + 1)(1 - e^{-\pi s})}$$

The inverse Laplace transform of F(s) is f(t), i.e.

$$\mathcal{L}^{-1}[F(s)] = f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + j\infty} F(s)e^{ts}ds$$

Where \mathcal{L}^{-1} is inverse Laplace transform operator. Examples: Find the inverse Laplace transform of

a)
$$\frac{2}{S^3}$$

b)
$$\frac{2}{S^4}$$

c)
$$\frac{1}{S^2 + 25}$$

d)
$$\frac{5s-6}{s^2+9}$$

e)
$$\frac{s+1}{(s+1)^2+4}$$

e)
$$\frac{s+1}{(s+1)^2+4}$$
 f) $\frac{s}{(s+1)^2+4}$

Inverse Laplace Transform

Solutions:

From the table of Laplace Transform

(a)
$$\mathcal{L}^{-1} \left\{ \frac{2}{s^3} \right\} = \mathcal{L}^{-1} \left\{ \frac{2!}{s^3} \right\} = t^2$$

(b)
$$\mathcal{L}^{-1}\left\{\frac{2}{s^4}\right\} = \frac{2}{3!}\mathcal{L}^{-1}\left\{\frac{3!}{s^4}\right\} = \frac{1}{3}t^3$$

(c)
$$\mathcal{L}^{-1} \left\{ \frac{1}{s^2 + 25} \right\} = \frac{1}{5} \mathcal{L}^{-1} \left\{ \frac{5}{s^2 + 5^2} \right\} = \frac{1}{5} \sin 5t$$

(d) Write
$$\frac{5s-6}{s^2+9} = 5\frac{s}{s^2+3^2} - 2\frac{3}{s^2+3^2}$$

$$\therefore \mathcal{L}^{-1} \left\{ \frac{5s-6}{s^2+9} \right\} = 5\mathcal{L}^{-1} \left\{ \frac{s}{s^2+3^2} \right\} - 2\mathcal{L}^{-1} \left\{ \frac{3}{s^2+3^2} \right\}$$

$$= 5\cos 3t - 2\sin 3t$$

(e)
$$\mathcal{L}^{-1} \left\{ \frac{s+1}{(s+1)^2 + 4} \right\} = e^{-t} \cos 2t$$

Inverse Laplace Transform

(f) Since the ILT of the terms cannot be found directly from the table, we need to rewrite it as the following

$$\frac{s}{(s+1)^2 + 4} = \frac{(s+1)-1}{(s+1)^2 + 4} = \frac{s+1}{(s+1)^2 + 4} - \frac{1}{(s+1)^2 + 4}$$
$$= \frac{s+1}{(s+1)^2 + 2^2} - \frac{1}{2} \cdot \frac{2}{(s+1)^2 + 2^2}$$

$$\therefore \mathcal{L}^{-1} \left\{ \frac{s}{(s+1)^2 + 4} \right\} = \mathcal{L}^{-1} \left\{ \frac{s+1}{(s+1)^2 + 2^2} \right\} - \frac{1}{2} \mathcal{L}^{-1} \left\{ \frac{2}{(s+1)^2 + 2^2} \right\}$$
$$= e^{-t} \cos 2t - \frac{1}{2} e^{-t} \sin 2t$$

Most of the Laplace transforms that we encounter are proper rational functions of the form

$$F(s) = \frac{P(s)}{Q(s)} = \frac{a_m s^m + a_{m-1} s^{m-1} + \dots + a_1 s + a_0}{b_n s^n + b_{n-1} s^{n-1} + \dots + b_1 s + b_0}$$

Zeros: roots of numerator Poles: roots of denominator

Partial Fraction Expansion:

If m < n and the poles are distinct

$$F(s) = \frac{P(s)}{Q(s)} = \frac{K_1}{s - p_1} + \frac{K_2}{s - p_2} + \frac{K_3}{s - p_3} + \dots + \frac{K_n}{s - p_n}$$

Inverse Laplace Transform

If m < n and the poles are duplicated

$$\frac{P(s)}{(s-p_1)^r} = \frac{K_1}{(s-p_1)^r} + \frac{K_2}{(s-p_1)^{r-1}} + \frac{K_3}{(s-p_1)^{r-2}} + \dots + \frac{K_r}{s-p_1}$$

The Coefficients $K_1, K_2, ... K_r$ can be found as follow

$$K_n = \frac{1}{(n-1)!} \times \left[\frac{d^{n-1}}{ds^{n-1}} [(s-p_1)^r F(s)] \right]_{s=p_1}$$

Where n = 1, 2, 3, ..., r

Examples: Find the inverse Laplace transform of

(a)
$$\frac{s-8}{s(s-2)}$$

(b)
$$\frac{9}{2s^2 + 7s - 4}$$

(c)
$$\frac{4s+1}{s^3+2s^2+s}$$

(d)
$$\frac{7s-20}{s(s^2-4s+20)}$$

(e)
$$\frac{s^2}{s^2 + 5s + 6}$$

(f)
$$F(s) = \frac{s^2 + 2s + 3}{(s+1)^3}$$

Inverse Laplace Transform

Solutions: We use the partial fraction technique

(a)
$$F(s) = \frac{s-8}{s(s-2)} = \frac{A}{s} + \frac{B}{s-2} = \frac{4}{s} - \frac{3}{s-2}$$

 $\mathcal{L}^{-1}[F(s)] = \mathcal{L}^{-1}\left[\frac{4}{s} - \frac{3}{s-2}\right] = 4 - 3e^{2t}$

(b)
$$F(s) = \frac{9}{2s^2 + 7s - 4} = \frac{2}{2s - 1} - \frac{1}{s + 4} = \frac{1}{s - 1/2} - \frac{1}{s + 4}$$

$$\mathcal{L}^{-1}[F(s)] = \mathcal{L}^{-1}\left[\frac{1}{s-1/2} - \frac{1}{s+4}\right] = e^{t/2} - e^{-4t}$$

(c)
$$\mathcal{L}^{-1} \left\{ \frac{4s+1}{s^3 + 2s^2 + s} \right\} = \mathcal{L}^{-1} \left\{ \frac{4s+1}{s(s+1)^2} \right\}$$
$$= \mathcal{L}^{-1} \left\{ \frac{1}{s} + \frac{3}{(s+1)^2} - \frac{1}{s+1} \right\}$$
$$= 1 + 3e^{-t}t - e^{-t}$$

where, if we let $F(s) = \frac{1}{s^2}$, then f(t) = t. Hence,

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^2}\right\} = \mathcal{L}^{-1}\left\{F(s+1)\right\} = e^{-t}f(t) = e^{-t}t$$

Inverse Laplace Transform

(d)
$$\mathcal{L}^{-1} \left\{ \frac{7s - 20}{s(s^2 - 4s + 20)} \right\} = \mathcal{L}^{-1} \left\{ -\frac{1}{s} + \frac{s + 3}{s^2 - 4s + 20} \right\}$$

$$= \mathcal{L}^{-1} \left\{ -\frac{1}{s} + \frac{s + 3}{(s - 2)^2 + 16} \right\}$$

$$= \mathcal{L}^{-1} \left\{ -\frac{1}{s} + \frac{(s - 2) + 5}{(s - 2)^2 + 16} \right\}$$

$$= \mathcal{L}^{-1} \left\{ -\frac{1}{s} + \frac{s - 2}{(s - 2)^2 + 16} + \frac{5}{(s - 2)^2 + 16} \right\}$$

$$= -1 + e^{2t} \cos 4t + \frac{5}{4} e^{2t} \sin 4t$$

(e)
$$\mathcal{L}^{-1} \left\{ \frac{s^2}{s^2 + 5s + 6} \right\} = \mathcal{L}^{-1} \left\{ 1 - \frac{5s + 6}{s^2 + 5s + 6} \right\}$$

$$= \mathcal{L}^{-1} \left\{ 1 - \frac{5s + 6}{(s + 2)(s + 3)} \right\}$$

$$= \mathcal{L}^{-1} \left\{ 1 + \frac{4}{s + 2} - \frac{9}{s + 3} \right\}$$

$$= \delta(t) + 4e^{-2t} - 9\bar{e}^{3t}$$

(f)
$$F(s) = \frac{s^2 + 2s + 3}{(s+1)^3} = \frac{K_1}{(s+1)^3} + \frac{K_2}{(s+1)^2} + \frac{K_3}{s+1}$$

$$(s+1)^3 \frac{s^2 + 2s + 3}{(s+1)^3} = (s+1)^3 \left[\frac{K_1}{(s+1)^3} + \frac{K_2}{(s+1)^2} + \frac{K_3}{s+1} \right]$$

$$s^2 + 2s + 3 = K_1 + (s+1)K_2 + (s+1)^2 K_3$$

$$[s^2 + 2s + 3]_{s=-1} = [K_1 + (s+1)K_2 + (s+1)^2 K_3]_{s=-1} \Rightarrow K_1 = 2$$

$$[2s + 2]_{s=-1} = [K_2 + 2(s+1)K_3]_{s=-1} \Rightarrow K_2 = 0$$

$$[2]_{s=-1} = [2K_3]_{s=-1} \Rightarrow K_3 = 1$$

$$\mathcal{L}^{-1}[F(s)] = \mathcal{L}^{-1} \left[\frac{2}{(s+1)^3} + \frac{1}{s+1} \right]$$

$$f(t) = t^2 e^{-t} + e^{-t}$$

Matlab command for partial fraction Expansion:

$$\frac{2s^3 + 5s^2 + 3s + 6}{s^3 + 6s^2 + 11s + 6}$$

The command

Gives the following result

$$2 + \frac{-6}{s+3} + \frac{-4}{s+2} + \frac{3}{s+1}$$

Inverse Laplace Transform

The Convolution Theorem:

f(t) * g(t) is called as the convolution of f(t) and g(t),

And it is defined by

$$f(t) * g(t) = \int_0^t f(t - v)g(v)dv$$

Convolution property: f(t) * g(t) = g(t) * f(t)

Therefore,

$$f(t) * g(t) = \int_0^t f(t - v)g(v)dv = \int_0^t f(v)g(t - v)dv = g(t) * f(t)$$

Sometime, f(t) * g(t) is denoted as (f * g)(t) or simply f * g.

In Laplace transform

$$\mathcal{L}^{-1}{F(s)G(s)} = f(t) * g(t)$$

Examples: Use the convolution theorem to find the inverse Laplace transforms of the following:

(a)
$$\frac{1}{(s-1)(s+2)}$$

(b)
$$\frac{12}{s(s^2+9)}$$

(c)
$$\frac{7}{s^2(s+5)}$$

Inverse Laplace Transform

Solution

(a)
$$\mathcal{L}^{-1} \left\{ \frac{1}{(s-1)(s+2)} \right\} = \mathcal{L}^{-1} \left\{ \frac{1}{s-1} \right\} * \mathcal{L}^{-1} \left\{ \frac{1}{s+2} \right\}$$

$$= e^{t} * e^{-2t}$$

$$= \int_{0}^{t} e^{t-v} e^{-2v} dv = \int_{0}^{t} e^{t-3v} dv = \left[\frac{e^{t-3v}}{-3} \right]_{0}^{t}$$

$$= \frac{e^{-2t} - e^{t}}{-3} = \frac{e^{t} - e^{-2t}}{3}$$

Solution

(b)
$$\mathcal{L}^{-1} \left\{ \frac{12}{s(s^2 + 9)} \right\} = 4\mathcal{L}^{-1} \left\{ \frac{1}{s} \cdot \frac{3}{s^2 + 9} \right\}$$

$$= 4\mathcal{L}^{-1} \left\{ \frac{1}{s} \right\} * \mathcal{L}^{-1} \left\{ \frac{3}{s^2 + 9} \right\}$$

$$= 4(1 * \sin 3t)$$

$$= 4\int_{0}^{t} 1 \sin 3v dv$$

$$= 4\left[\frac{-\cos 3v}{3} \right]_{0}^{t} = \frac{4}{3} (1 - \cos 3t)$$

Inverse Laplace Transform

(c)
$$\mathcal{L}^{-1} \left\{ \frac{7}{s^2(s+5)} \right\} = 7 \mathcal{L}^{-1} \left\{ \frac{1}{s^2} \cdot \frac{1}{s+5} \right\}$$

$$= 7 \mathcal{L}^{-1} \left\{ \frac{1}{s^2} \right\} * \mathcal{L}^{-1} \left\{ \frac{1}{s+5} \right\}$$

$$= 7t * e^{-5t} = 7 \int_0^t v e^{-5(t-v)} dv = 7 \int_0^t v e^{5(v-t)} dv$$

$$= 7 \left[\frac{v e^{5(v-t)}}{5} \right]_0^t - 7 \int_0^t \frac{e^{5(v-t)}}{5} dv$$

$$= 7 \left(\frac{t e^0 - 0}{5} \right) - 7 \left[\frac{e^{5(v-t)}}{25} \right]_0^t = \frac{7t}{5} - \frac{7(1 - e^{-5t})}{25}$$

$$= \frac{7}{25} (5t + e^{-5t} - 1)$$

Solution of LDEs Using Laplace Transform

Example: Solve the following Linear DE

$$y'' + 5y' + 6y = 0$$
, $y(0) = 2$, $y'(0) = 3$

Solution: taking the Laplace transform of Linear DE

$$\mathcal{L}\{y'' + 5y' + 6y\} = \mathcal{L}\{y''\} + 5\mathcal{L}\{y'\} + 6\mathcal{L}\{y\} = \mathcal{L}\{0\} = 0$$

Now find the Laplace transform of derivatives

$$[s^{s}Y(s) - sy(0) - y'(0)] + 5[sY(s) - y(0)] + 6Y(s) = 0$$

Rearranging the equation

$$(s^2 + 5s + 6)Y(s) - (s + 5)y(0) - y'(0) = 0$$

Substituting in the initial conditions, we obtain

$$(s^2 + 5s + 6)Y(s) - 2(s + 5) - 3 = 0$$

$$Y(s) = \frac{2s+13}{(s+3)(s+2)}$$

Solution of LDEs Using Laplace Transform

Using partial fraction decomposition, Y(s) can be rewritten:

$$\frac{2s+13}{(s+3)(s+2)} = \frac{A}{(s+3)} + \frac{B}{(s+2)}$$
$$2s+13 = A(s+2) + B(s+3)$$
$$2s+13 = (A+B)s + (2A+3B)$$
$$A+B=2, 2A+3B=13$$
$$A=-7, B=9$$

Thus

$$Y(s) = -\frac{7}{(s+3)} + \frac{9}{(s+2)}$$

Now we can find the inverse Laplace transform of Y(s) to get y(t)

$$y(t) = -7e^{-3t} + 9e^{-2t}$$

Solution of LDEs Using Laplace Transform

Example: Solve the following Linear DE

$$y'' + y = \sin 2t$$
, $y(0) = 2$, $y'(0) = 1$

Solution: taking the Laplace transform of Linear DE

$$\mathcal{L}\{y'' + y\} = \mathcal{L}\{y''\} + \mathcal{L}\{y\} = \mathcal{L}\{\sin 2t\}$$

Now find the Laplace transform of derivatives

$$[s^{s}Y(s) - sy(0) - y'(0)] + Y(s) = \frac{2}{s^{2} + 4}$$

Rearranging the equation

$$(s^2 + 1)Y(s) - sy(0) - y'(0) = \frac{2}{s^2 + 4}$$

Substituting in the initial conditions, we obtain

$$(s^{2} + 1)Y(s) - 2s - 1 = \frac{2}{s^{2} + 4}$$
$$Y(s) = \frac{2s^{3} + s^{2} + 8s + 6}{(s^{2} + 1)(s^{2} + 4)}$$

Solution of LDEs Using Laplace Transform

Using partial fraction, Y(s) can be rewritten:

$$Y(s) = \frac{2s^3 + s^2 + 8s + 6}{(s^2 + 1)(s^2 + 4)} = \frac{As + B}{s^2 + 1} + \frac{Cs + D}{s^2 + 4}$$

Then

$$2s^{3} + s^{2} + 8s + 6 = (As + B)(s^{2} + 4) + (Cs + D)(s^{2} + 1)$$
$$= (A + C)s^{3} + (B + D)s^{2} + (4A + C)s + (4B + D)$$

Solving, we obtain A = 2, B = 5/3, C = 0, and D = -2/3. Thus

$$Y(s) = \frac{2s}{s^2 + 1} + \frac{5/3}{s^2 + 1} - \frac{2/3}{s^2 + 4}$$

Now we can find the inverse Laplace transform of Y(s) to get y(t)

$$y(t) = 2\cos t + \frac{5}{3}\sin t - \frac{1}{3}\sin 2t$$

Solution of LDEs Using Laplace Transform

Example: Solve the following Linear DE

$$y'' + 2y' + 5y = 3$$
, $y(0) = 0$, $y'(0) = 0$

$$\mathcal{L}{y''} + 2\mathcal{L}{y'} + 5\mathcal{L}{y} = \mathcal{L}{3}$$

$$[s^{s}Y(s) - sy(0) - y'(0)] + 2[sY(s) - y(0)] + 5Y(s) = \frac{3}{s}$$

$$[s^2 + 2s + 5]Y(s) = \frac{3}{s}$$

$$Y(s) = \frac{3}{s(s+1-2j)(s+1+2j)} = \frac{A}{s} + \frac{B_1}{(s+1-2j)} + \frac{B_2}{(s+1+2j)}$$

$$y(t) = A + B_1 e^{-(1-2j)t} + B_1 e^{-(1+2j)t}$$

Where
$$A = 0.6$$
, $B_1 = -0.3 + 0.15j = 0.33e^{2.6779j}$, $B_2 = -0.3 - 0.15j = 0.33e^{-2.6779j}$

Initial and Final Value theorem

INITIAL VALUE THEOREM

Assume that f(t) has Laplace transform.

Then,

$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$$

FINAL VALUE THEOREM

Assume that f(t) has Laplace transform and that $\lim_{n\to\infty} f(t)$ exist.

Then,

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

Note: $\lim_{n\to\infty} f(t)$ will exist if F(s) has poles with negative real part and at most a single pole at s=0.

Initial and Final Value theorem

Example: Given

$$F(s) = \frac{10(s+1)}{s(s^2 + 2s + 2)}$$

Determine the initial and final values for f(t).

$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \frac{10(s+1)}{s^2 + 2s + 2} = 0$$

F(s) has one pole at s=0 and the others have negative real part. The final value theorem can be applied.

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) = \lim_{s \to 0} \frac{10(s+1)}{s^2 + 2s + 2} = 5$$

Note: Computing the inverse one can get

$$f(t) = 5 + 5\sqrt{2}e^{-t}\cos\left(t - \frac{3\pi}{4}\right)$$

Initial and Final Value theorem

Example: Investigate the application of initial and final value theorem to the Laplace transform function

$$F(s) = \frac{1}{(s+2)(s-3)}$$

Solution:

For the initial value theorem:

$$\lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \frac{s}{(s+2)(s-3)} = 0$$

$$f(t) = \frac{1}{5}(e^{3t} - e^{-2t})$$

$$\lim_{t \to 0} f(t) = \lim_{t \to 0} \frac{1}{5} (e^0 - e^0) = 0$$

For the final value theorem:

$$\lim_{s \to 0} sF(s) = \lim_{s \to 0} \frac{s}{(s+2)(s-3)} = 0$$

$$\lim_{t \to \infty} f(t) = \lim_{t \to \infty} \frac{1}{5} (e^{\infty} - e^{-\infty}) = \infty$$

∴ the system is not stable (is not steady-state gain)

Circuit Application

- 1. RLC circuit with initial condition
- 2. Transfer functions
- 3. Block Diagram

RLC circuit

$$v_L(t) = L \frac{di_L(t)}{dt}$$

Taking the Laplace transform

$$V_L(s) = (sL)I_L(s) - Li_L(0)$$

$$I(s)$$
+
 $V(s)$
 SL
 $i(0)$
 S

$$i_L(t) = \frac{1}{L} \int_0^t v_L(t) dt + i_L(0)$$

Taking the Laplace transform

$$I_L(s) = \frac{V_L(s)}{sL} + \frac{i_L(0)}{s}$$

$$v_c(t) = \frac{1}{C} \int_0^t i_c(t) dt + v_c(0)$$

Taking the Laplace transform

$$V_c(s) = \frac{1}{sC}I_c(s) + \frac{v_c(0)}{s}$$

$$i_c(t) = C \frac{dv_c(t)}{dt}$$

Taking the Laplace transform

$$I_c(s) = \frac{V_c(s)}{1/sC} - Cv_c(0)$$

RLC circuit

Example:

In the RL-Series circuit given that i(0) = 5 Amp, find i(t)

Using KVL

$$L\frac{di}{dt} + Ri = 3u(t)$$
 Taking Laplace transform

$$L[sI(s) - i(0)] + RI(s) = \frac{3}{s}$$

$$2[sI(s) - 5] + 4I(s) = \frac{3}{s}$$

$$I(s)[2s + 4] = \frac{3}{s} + 10$$

$$I(s)[s + 2] = \frac{1.5}{s} + 5 = \frac{5s + 3/2}{s}$$

$$I(s) = \frac{5s + 3/2}{s(s + 2)} = \frac{A}{s} + \frac{B}{s + 2} = \frac{A(s + 2) + Bs}{s(s + 2)}$$

Equating coefficients

$$\frac{3}{2} = 2A \implies A = \frac{3}{4}$$

$$5 = A + B \implies B = \frac{17}{4}$$

$$I(s) = \frac{5s + 3/2}{s(s+2)} = \frac{3}{4s} + \frac{17}{4(s+2)} \implies \mathcal{L}^{-1}\{I(s)\} = i(t) = \frac{3}{4}u(t) + \frac{17}{4}e^{-2t}u(t)$$

RLC circuit

Example:

The switch in the following circuit moves from position a to position b at t = 0 second. Compute $i_o(t)$ for t > 0.

Solution:

The i.c. (initial condition) are not given directly. Hence, at first we need to find the i.c. by analyzing the circuit when $t \leq 0$:

$$i_L(0) = \frac{24}{5} = 4.8A$$
$$v_L(0) = 0V$$

$$v_L(0) = 0V$$

RLC circuit

Then, we can analyze the circuit for t > 0 by considering the i.c.

$$\begin{array}{c|c}
0.625s \\
\hline
I \uparrow \\
Li_L(0) = 3 \\
\end{array}$$

$$I = \frac{-3}{0.625s + \left(\frac{10}{s}\right\|1)} = \frac{-3}{0.625s + \left(\frac{\frac{10}{s}}{\frac{10}{s} + 1}\right)} = \frac{-3}{0.625s + \left(\frac{10}{s + 10}\right)} = \frac{-3}{\frac{0.625s^2 + 6.25s + 10}{s + 10}}$$

$$I = \frac{-3(s+10)}{0.625s^2 + 6.25s + 10}$$

Using current divider rule, we find that

$$I_0 = \frac{\frac{10}{s}}{\frac{10}{s} + 1}I = \frac{10}{(10 + s)} \frac{-3(s + 10)}{0.625s^2 + 6.25s + 10} = \frac{-30}{0.625s^2 + 6.25s + 10}$$

$$I_0 = \frac{-30}{0.625s^2 + 6.25s + 10} = \frac{-30}{0.625(s^2 + 10s + 16)} = \frac{-48}{s^2 + 10s + 16}$$

Using partial fraction, we have

$$I_0(s) = \frac{-48}{(s+8)(s+2)} = \frac{8}{s+8} - \frac{8}{s+2}$$

$$i_0(t) = 8(e^{-8t} - e^{-2t})u(t)$$
 A

Transfer Function

In time domain, y(t) = h(t) * x(t)

In s-domain, Y(s) = H(s)X(s)

∴Transfer Function,
$$H(S) = \frac{Y(s)}{X(s)}$$

Transfer Function

Example:

For the following circuit, find $H(s) = V_o(s)/V_i(s)$. Assume zero initial conditions.

Transfer Function

Solution:

Transform the circuit into s-domain with zero i.c.:

Transfer Function

$$Z_0 = 4 \left\| \frac{10}{s} = \frac{\frac{40}{s}}{4 + \frac{10}{s}} = \frac{40}{4s + 10} = \frac{20}{2s + 5} \right\|$$

Using voltage divider

$$V_0 = \frac{\frac{20}{2s+5}}{\frac{20}{2s+5} + s + 2} V_s = \frac{20}{20 + (2s+5)(s+2)} V_s$$

$$V_0 = \frac{20}{2S^2 + 9s + 30} V_s$$

$$H(S) = \frac{V_o(s)}{V_S(s)} = \frac{20}{2S^2 + 9s + 30}$$

Transfer Function

Example:

Obtain the transfer function $H(s) = V_0(s)/V_i(s)$, for the following circuit.

Transfer Function

Solution:

Transform the circuit into s-domain (We can assume zero i.c. unless stated in the question)

Transfer Function

We found that

$$V_o = 3(I + 2I) = 9I$$

$$V_s = \frac{2}{s}I + (s+3)3I = \left(\frac{2}{s} + 3s + 9\right)I$$

$$\therefore H(s) = \frac{V_o(s)}{V_s(s)} = \frac{9}{\frac{2}{s} + 3s + 9} = \frac{9s}{3s^2 + 9s + 2}$$

A block diagram is a graphical tool that can help us to visualize the model of a system and evaluate the mathematical relationships between their elements, using their transfer functions.

Block Diagram Elements

Closed-loop Feedback System

R is called the reference input

C is the output or controlled variable

B is the feedback

E = (R - B) is the error

 $G = \frac{C}{E}$ is called the feed-forward transfer function

 $GH = \frac{B}{E}$ is called the open-loop transfer function

Overall transfer function of closed-loop feedback system

$$E(s) = R(s) - B(s)$$

$$\frac{C(s)}{G(s)} = R(s) - B(s)$$

$$\frac{C(s)}{G(s)} = R(s) - C(s)H(s)$$

$$\frac{C(s)}{G(s)} + C(s)H(s) = R(s)$$

$$C(s) \left[\frac{1}{G(s)} + H(s)\right] = R(s)$$

$$C(s) \left[\frac{1 + G(s)H(s)}{G(s)}\right] = R(s)$$

$$\frac{C(s)}{R(s)} = \left[\frac{G(s)}{1 + G(s)H(s)}\right]$$

Block Diagram

• Eliminating a negative feedback loop

The overall transfer function for a negative feedback loop is given by

$$\frac{C(s)}{R(s)} = \left[\frac{G(s)}{1 + G(s)H(s)} \right]$$

• Eliminating a positive feedback loop
The overall transfer function for a positive feedback loop
is given by

$$\frac{C(s)}{R(s)} = \left[\frac{G(s)}{1 - G(s)H(s)} \right]$$

 G_e

is the controller transfer function

 G_p

is the plant transfer function

Μ

is the manipulated variable

D

is the external disturbance

$$G_e G_p = \frac{C}{E}$$

is the feed-forward transfer function

$$G_e G_p H = \frac{B}{E}$$

is the open-loop transfer function

Block Diagram

Assuming D = 0, we can re-draw

$$\frac{C}{R} = \frac{G}{1 + GH} = \frac{G_c G_p}{1 + G_c G_p H}$$

Assuming R = 0, we can re-draw

Example: Determine C(s)/R(s)

Block Diagram

Block Diagram

Block Diagram

Inverting operational amplifier circuit:

$$Z_1(s) = \frac{1}{C_1 s + \frac{1}{R_1}} = \frac{1}{5.6 * 10^{-6} s + \frac{1}{360 * 10^3}}$$
$$= \frac{360 * 10^3}{2.016 s + 1}$$

$$Z_2(s) = R_2 + \frac{1}{C_2 s} = 220 * 10^3 + \frac{10^7}{s} = \frac{220 * 10^3 s + 10^7}{s}$$

$$\frac{V_o(s)}{V_i(s)} = -\frac{Z_2(s)}{Z_1(s)} = -\frac{\frac{220 * 10^3 s + 10^7}{s}}{\frac{360 * 10^3}{2.016s + 1}}$$

$$\frac{V_o(s)}{V_i(s)} = -\frac{(220 * 10^3 s + 10^7)(2.016s + 1)}{360 * 10^3 s} = -1.232 \frac{s^2 + 45.95s + 22.55}{s}$$