Simple Processing - Transpose

- The transpose image $\mathbf{B}(M \times N)$ of $\mathbf{A}(N \times M)$ can be obtained as $B(j, i)=A(i, j)$ $(i=0, \ldots, N-1, j=0, \ldots, M-1)$.

Simple Processing - Flip Vertical

- The vertical flipped image B $(N \times M)$ of $\mathbf{A}(N \times M)$ can be obtained as $B(i, M-1-j)=A(i, j)(i=0, \ldots, N-1, j=0, \ldots, M-1)$.

A

B
\gg clear B;
\gg for $i=1: 512$
for $j=1: 512$
$B(i, 512+1-j)=A(i, j) ;$
end
end

Simple Processing - Cropping

- The cropped image B $\left(N_{1} \times N_{2}\right)$ of $\mathbf{A}(N \times M)$, starting from $\left(n_{1}, n_{2}\right)$, can be obtained as $B(k, l)=A\left(n_{1}+k, n_{2}+l\right)\left(k=0, \ldots, N_{1}-1, l=0, \ldots, N_{2}-1\right)$.

Simple Image Statistics - Sample Mean and Sample Variance

- The sample mean $\left(m_{A}\right)$ of an image $\mathbf{A}(N \times M)$:

$$
\begin{equation*}
m_{A}=\frac{\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} A(i, j)}{N M} \tag{1}
\end{equation*}
$$

- The sample variance $\left(\sigma_{A}^{2}\right)$ of \mathbf{A} :

$$
\begin{equation*}
\sigma_{A}^{2}=\frac{\sum_{i=0}^{N-1} \sum_{j=0}^{M-1}\left(A(i, j)-m_{A}\right)^{2}}{N M} \tag{2}
\end{equation*}
$$

- The sample standard deviation, $\sigma_{A}=\sqrt{\sigma_{A}^{2}}$.

