
cgvr.korea.ac.kr 1

2D Viewing

cgvr.korea.ac.kr 2

Contents

 3D Rendering Pipeline

 2D Rendering Pipeline

 Clipping

 Cohen-Sutherland Line Clipping

 Sutherland-Hodgeman Polygon Clipping

 Viewport Transformation

 Scan Conversion

 Summary of Transformation

cgvr.korea.ac.kr 3

3D Rendering Pipeline

Model Transformation

Lighting

Viewing Transformation

Projection Transformation

Clipping

Viewport Transformation

Scan Conversion

3D Primitives

Image

3D Modeling Coordinates

3D World Coordinates

3D World Coordinates

3D Viewing Coordinates

2D Projection Coordinates

2D Projection Coordinates

2D Device Coordinates

2D Device Coordinates

cgvr.korea.ac.kr 4

3D Rendering Pipeline

Model Transformation

Lighting

Viewing Transformation

Projection Transformation

Clipping

Viewport Transformation

Scan Conversion

3D Primitives

Image

3D Modeling Coordinates

3D World Coordinates

3D World Coordinates

3D Viewing Coordinates

2D Projection Coordinates

2D Projection Coordinates

2D Device Coordinates

2D Device Coordinates

cgvr.korea.ac.kr 5

2D Rendering Pipeline

3D Primitives

Clipping

Viewport Transformation

Scan Conversion

Image

Clip portions of geometric primitives

residing outside window

Transform the clipped primitives

from screen to image coordinates

Fill pixel representing primitives

in screen coordinates

2D Primitives

cgvr.korea.ac.kr 6

2D Rendering Pipeline

3D Primitives

Clipping

Viewport Transformation

Scan Conversion

Image

Clip portions of geometric primitives

residing outside window

Transform the clipped primitives

from screen to image coordinates

Fill pixel representing primitives

in screen coordinates

2D Primitives

cgvr.korea.ac.kr 7

Clipping

 Avoid Drawing Parts of Primitives Outside

Window

 Window defines part of scene being viewed

 Must draw geometric primitives only inside window

World

Coordinates

cgvr.korea.ac.kr 8

Clipping

 Avoid Drawing Parts of Primitives Outside

Window

 Window defines part of scene being viewed

 Must draw geometric primitives only inside window

cgvr.korea.ac.kr 9

Clipping

 Avoid Drawing Parts of Primitives Outside

Window

 Points

 Lines

 Polygons

 Circles

 etc.

cgvr.korea.ac.kr 10

Point Clipping

 Is Point(x,y) Inside the Clip Window?

(x, y)

wx2wx1
wy1

wy2
Inside =

(x>=wx1) &&

(x<=wx2) &&

(y>=wy1) &&

(y<=wy2);

cgvr.korea.ac.kr 11

Line Clipping

 Find the Part of a Line Inside the Clip

Window
P7

P8

P10

P9

P1

P2

P5

P4

P3

P6

Before Clipping

cgvr.korea.ac.kr 12

Line Clipping

 Find the Part of a Line Inside the Clip

Window

After Clipping

P4

P3

P6

P’8

P’7

P’5

cgvr.korea.ac.kr 13

Cohen-Sutherland Line
Clipping

 Use Simple Tests to Classify Easy Cases

First
P7

P8

P10

P9

P1

P2

P5

P4

P3

P6

cgvr.korea.ac.kr 14

Cohen-Sutherland Line
Clipping

 Classify Some Lines Quickly by AND of Bit Codes

Representing Regions of Two Endpoints (Must Be 0)

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

P1

P2

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

cgvr.korea.ac.kr 15

Cohen-Sutherland Line
Clipping

 Classify Some Lines Quickly by AND of Bit Codes

Representing Regions of Two Endpoints (Must Be 0)

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

P1

P2

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

cgvr.korea.ac.kr 16

Cohen-Sutherland Line
Clipping

 Classify Some Lines Quickly by AND of Bit Codes

Representing Regions of Two Endpoints (Must Be 0)

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

cgvr.korea.ac.kr 17

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

cgvr.korea.ac.kr 18

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

cgvr.korea.ac.kr 19

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

cgvr.korea.ac.kr 20

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

cgvr.korea.ac.kr 21

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

cgvr.korea.ac.kr 22

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

cgvr.korea.ac.kr 23

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P6

P9

0001

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

cgvr.korea.ac.kr 24

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P6

P9

0001

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

cgvr.korea.ac.kr 25

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

cgvr.korea.ac.kr 26

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

cgvr.korea.ac.kr 27

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

cgvr.korea.ac.kr 28

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

cgvr.korea.ac.kr 29

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P10

P6

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

P’9

cgvr.korea.ac.kr 30

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P6

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

P10

P’9

cgvr.korea.ac.kr 31

Cohen-Sutherland Line
Clipping

 Compute Intersections with Window Boundary for

Lines That Can’t be Classified Quickly

P6

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

cgvr.korea.ac.kr 32

Polygon Clipping

 Find the Part of a Polygon Inside the Clip

Window?

Before Clipping

cgvr.korea.ac.kr 33

Polygon Clipping

 Find the Part of a Polygon Inside the Clip

Window?

After Clipping

cgvr.korea.ac.kr 34

Sutherland-Hodgeman Polygon Clipping

 Clip to Each Window Boundary One at a

Time

cgvr.korea.ac.kr 35

Sutherland-Hodgeman Polygon Clipping

 Clip to Each Window Boundary One at a

Time

cgvr.korea.ac.kr 36

Sutherland-Hodgeman
Polygon Clipping

 Clip to Each Window Boundary One at a

Time

cgvr.korea.ac.kr 37

Sutherland-Hodgeman Polygon Clipping

 Clip to Each Window Boundary One at a

Time

cgvr.korea.ac.kr 38

Sutherland-Hodgeman Polygon Clipping

 Clip to Each Window Boundary One at a

Time

cgvr.korea.ac.kr 39

Sutherland-Hodgman Polygon Clipping

 Clip a polygon by processing the polygon boundary as

a whole against each window edge.

 Processing all polygon vertices against each clip

rectangle boundary in turn.

 Beginning with the initial set of polygon vertices, we
could first clip the polygon against the left rectangle

boundary to produce a new sequence of vertices.

 The new set of vertices could be successively passed

to a right boundary clipper, a bottom boundary clipper,

and a top boundary clipper, a right boundary clipper.

cgvr.korea.ac.kr 40

Sutherland-Hodgman Polygon Clipping

Lift Clipper Right
Clipper

Bottom
Clipper

Top Clipper

At each step, a new sequence of output

vertices is generated and passed to the

next window boundary clipper.

cgvr.korea.ac.kr 41

Sutherland-Hodgman Polygon Clipping

There are four possible cases when processing

vertices in sequence around the perimeter of a

polygon.

As each pair of adjacent polygon vertices is
passed to a next window boundary clipper, we

make the following tests:

cgvr.korea.ac.kr 42

Sutherland-Hodgman Polygon Clipping

1. If the first vertex is outside the window

boundary and the second vertex is inside

Then , both the intersection point of the polygon
edge with the window boundary and the second

vertex are added to the output vertex list.

cgvr.korea.ac.kr 43

Sutherland-Hodgman Polygon Clipping

2. If both input vertices are inside the window

boundary.

Then, only the second vertex is added to the
output vertex list.

cgvr.korea.ac.kr 44

Sutherland-Hodgman Polygon Clipping

3. If the first vertex is inside the window

boundary and the second vertex is outside.

Then, only the edge intersection with the window

boundary is added to the output vertex list.

cgvr.korea.ac.kr 45

Sutherland-Hodgman Polygon Clipping

4. If both input vertices are outside the window

boundary.

Then, nothing is added to the output vertex list.

cgvr.korea.ac.kr 46

Sutherland-Hodgman Polygon Clipping
Example:- Apply Polygon clipping for following

Triangle with Xmin=5, Xmax=20 , Ymin=5 , Ymax=25

A(0,8) C(25,8)

B(12,27)

B’’B’

A’’

A’

C’’

C’

Sutherland-Hodgman Polygon Clipping
Solution:-

First Step:- we want to check the points if its in or out

A=1000 its out

B= 0001 its out

C=0100 its out

Second Step:- We should find intersection points by using

line clipping.

1. For line A B we have two intersection A’ and B’

2. For line B C we have two intersection B’’ and C’

3. For Line C A we have two intersection C’’ and A’’

Sutherland-Hodgman Polygon Clipping

Solution:-

Third Step:- Then we will apply Sutherland-Hodgman algorithm

(Left, Right, Bottom, Top sequence) to get the clipped polygon.

1. For Left the output is [A’,B],[C],[A’’]

A(0,8) C(25,8)

B(12,27)

B’’B’

A’’

A’

C’’

C’

Sutherland-Hodgman Polygon Clipping

Solution:-

Third Step:- Then we will apply Sutherland-Hodgman algorithm

(Left, Right, Bottom, Top sequence) to get the clipped polygon.

2. For Right the output is [B],[C’],[C’’,A’’]

A(0,8) C(25,8)

B(12,27)

B’’B’

A’’

A’

C’’

C’

Sutherland-Hodgman Polygon Clipping

Solution:-

Third Step:- Then we will apply Sutherland-Hodgman algorithm

(Left, Right, Bottom, Top sequence) to get the clipped polygon.

3. For Bottom the output is [B],[C’],[C’’],[A’’],[A’]

A(0,8) C(25,8)

B(12,27)

B’’B’

A’’

A’

C’’

C’

Sutherland-Hodgman Polygon Clipping

Solution:-

Third Step:- Then we will apply Sutherland-Hodgman algorithm

(Left, Right, Bottom, Top sequence) to get the clipped polygon.

4. For Top the output is [B’],[B’’,C’],[C’’],[A’’],[A’]

A(0,8) C(25,8)

B(12,27)

B’’B’

A’’

A’

C’’

C’

Sutherland-Hodgman Polygon Clipping

Solution:-

Third Step:- Then we will apply Sutherland-Hodgman algorithm

(Left, Right, Bottom, Top sequence) to get the clipped polygon.

Final Points [B’],[B’’,C’],[C’’],[A’’],[A’]

A(0,8) C(25,8)

B(12,27)

B’’B’

A’’

A’

C’’

C’

Sutherland-Hodgman Polygon Clipping

Solution:-

Final Polygon

A(0,8) C(25,8)

B(12,27)

B’’B’

A’’

A’

C’’

C’

cgvr.korea.ac.kr 54

Sutherland-Hodgman Polygon Clipping
Example:-

We illustrate this algorithm by processing the area in

figure against the left window boundary.

Vertices 1 and 2 are outside of the boundary.

Vertex 3, which is inside, 1' and vertex 3 are

saved.

Vertex 4 and 5 are inside, and they also

saved.

Vertex 6 is outside, 5' is saved.

Using the five saved points, we would repeat

the process for the next window boundary.

Sutherland-Hodgman Polygon Clipping

The Sutherland-Hodgman algorithm correctly clips

convex polygons, but concave polygons may be

displayed with extraneous lines as demonstrated in

figure.

Since there is only one output vertex list, the last

vertex in the list is always joined to the first vertex.

Weiler-Atherton Polygon Clipping

cgvr.korea.ac.kr 56

This algorithm was developed for identifying visible

surfaces, and can be used to clip a fill area that is

either a convex polygon or a concave polygon.

The basic idea of this algorithm is that instead of

proceeding around the polygon edges as vertices are

processed, we will follow the window boundaries.

The path we follow depends on:

 polygon-processing direction (clockwise or

counterclockwise)

 The pair of polygon vertices outside-to-inside or an

inside-to-outside.

Weiler-Atherton Polygon Clipping

cgvr.korea.ac.kr 57

 For clockwise processing of polygon vertices, we

use the following rules:

• For an outside-to-inside pair of vertices, follow

polygon boundaries.

• For an inside-to-outside pair of vertices, follow

window boundaries in a clockwise direction.

cgvr.korea.ac.kr 58

Weiler-Atherton Polygon Clipping
Example:- Apply Polygon clipping for following

Triangle with Xmin=5, Xmax=20 , Ymin=5 , Ymax=25

A(0,8) C(25,8)

B(12,27)

B’’B’

A’’

A’

C’’

C’

Weiler-Atherton Polygon Clipping
Solution:-

First Step:- we want to check the points if its in or out

A=1000 its out

B= 0001 its out

C=0100 its out

Second Step:- We should find intersection points by using

line clipping.

1. For line A B we have two intersection A’ and B’

2. For line B C we have two intersection B’’ and C’

3. For Line C A we have two intersection C’’ and A’’

Weiler-Atherton Polygon Clipping

Solution:-

Third Step:- Then we will apply Weiler-Atherton Polygon Clipping
to get the clipped polygon.

A(0,8) C(25,8)

B(12,27)

B’’B’

A’’

A’

C’’

C’

Weiler-Atherton Polygon Clipping

Solution:-

1. A OUT to B’ IN Follow Polygon

B’’B’

A’’

A’

C’’

C’

Weiler-Atherton Polygon Clipping

Solution:-

2. A’ IN to B OUT Follow window boundaries

B’’B’

A’’

A’

C’’

C’

Weiler-Atherton Polygon Clipping

Solution:-

3. B OUT to C’ IN Follow Polygon

B’’B’

A’’

A’

C’’

C’

Weiler-Atherton Polygon Clipping

Solution:-

4. B’’ IN to C OUT Follow window boundaries

B’’B’

A’’

A’

C’’

C’

Weiler-Atherton Polygon Clipping

Solution:-

5. C OUT to A’’ IN Follow Polygon

B’’B’

A’’

A’

C’’

C’

Weiler-Atherton Polygon Clipping

Solution:-

6. C’’ IN to A OUT Follow window boundaries

B’’B’

A’’

A’

C’’

C’

Weiler-Atherton Polygon Clipping

cgvr.korea.ac.kr 67

Text Clipping

cgvr.korea.ac.kr 68

There are several techniques that can be used
to provide text clipping in a graphics
packages.

The choice of clipping method depends on
how characters are generated and what
requirements we have for displaying character
strings.

Text Clipping

cgvr.korea.ac.kr 69

All-or-none string-clipping

• If all of the string is inside a clip window, we
keep it.

• Otherwise the string is discarded.

Text Clipping

cgvr.korea.ac.kr 70

All-or-none character-clipping

Here we discard only those characters that are
not completely inside the window

Text Clipping

cgvr.korea.ac.kr 71

Clip the components of individual characters

We treat characters in much the same way
that we treated lines.

If an individual character overlaps a clip
window boundary, we clip off the parts of the
character that are outside the window

cgvr.korea.ac.kr 72

2D Rendering Pipeline

3D Primitives

Clipping

Viewport Transformation

Scan Conversion

Image

Clip portions of geometric primitives

residing outside window

Transform the clipped primitives

from screen to image coordinates

Fill pixel representing primitives

in screen coordinates

2D Primitives

cgvr.korea.ac.kr 73

Viewport Transformation

 Transform 2D Geometric Primitives from

Screen Coordinate System (Projection

Coordinates) to Image Coordinate System

(Device Coordinates)

Screen Image

Viewport

cgvr.korea.ac.kr 74

Window vs. Viewport

 Window

 World-coordinate area selected for display

 What is to be viewed

 Viewport

 Area on the display device to which a window is

mapped

 Where it is to be displayed

cgvr.korea.ac.kr 75

Viewport Transformation

 Window-to-Viewport Mapping

(wx, wy)

wx2wx1
wy1

wy2

(vx, vy)

vx2vx1
vy1

vy2
Window Viewport

Screen Coordinates Image Coordinates

vx = vx1 + (wx – wx1) * (vx2 – vx1) / (wx2 – wx1);

vy = vy1 + (wy – wy1) * (vy2 – vy1) / (wy2 – wy1);

cgvr.korea.ac.kr 76

Viewport Transformation

P1(10, 10)

405
5

25

?

4010
10

40
Window (Rectangle) Viewport (Square)

Screen Coordinates Image Coordinates

vx = vx1 + (wx – wx1) * (vx2 – vx1) / (wx2 – wx1);

vy = vy1 + (wy – wy1) * (vy2 – vy1) / (wy2 – wy1);

P2(30, 10)

P3(20, 20)

cgvr.korea.ac.kr 77

Viewport Transformation

P1(10, 10)

555
5

25

?

4010
10

40
Window (Rectangle) Viewport (Square)

Screen Coordinates Image Coordinates

vxp1 = 10 + (10 – 5) * (40 – 10) / (55 – 5)=13;

vyp1 = 10 + (10 – 5) * (40 – 10) / (25 – 5)=17.5;

P2(30, 10)

P3(20, 20)

cgvr.korea.ac.kr 78

Viewport Transformation

P1(10, 10)

555
5

25

(13,17.5)

4010
10

40
Window (Rectangle) Viewport (Square)

Screen Coordinates Image Coordinates

vxp2 = 10 + (30 – 5) * (40 – 10) / (55 – 5)=25;

vyp2 = 10 + (10 – 5) * (40 – 10) / (25 – 5)=17.5;

P2(30, 10)

P3(20, 20)

(25,17.5)

cgvr.korea.ac.kr 79

Viewport Transformation

P1(10, 10)

555
5

25

(13,17.5)

4010
10

40
Window (Rectangle) Viewport (Square)

Screen Coordinates Image Coordinates

vxp3 = 10 + (20 – 5) * (40 – 10) / (55 – 5)=19;

vyp3 = 10 + (20 – 5) * (40 – 10) / (25 – 5)=32.5;

P2(30, 10)

P3(20, 20)

(25,17.5)

(19,32.5)

cgvr.korea.ac.kr 80

2D Rendering Pipeline

3D Primitives

Clipping

Viewport Transformation

Scan Conversion

Image

Clip portions of geometric primitives

residing outside window

Transform the clipped primitives

from screen to image coordinates

Fill pixel representing primitives

in screen coordinates

2D Primitives

cgvr.korea.ac.kr 81

Summary of Transformation

P(x, y, z)

Viewing
Transformation

Projection
Transformation

Window-to-Viewport
Transformation

P(x, y)

Modeling
Transformation

3D Object Coordinates

3D World Coordinates

3D Viewing Coordinates

2D Projection Coordinates

2D Device Coordinates

