10

Practical : 11
Class 3
Advanced Database
Lecturer :Dr. Haider Haddad

Set Operations
· A UNION
A union used to Implement a Full Outer JOIN
We looked at how data can be retrieved from multiple tables using joins. In this lecturer we will discuss how data can be retrieved from multiple tables using set operations available in Microsoft® SQL Server® 2008.

1- Introducing Set Operations
A set is a collection of objects. In a relational database, a table is regarded
as a set of rows. In relational database tables, there are not supposed to be duplicate rows; however, if a primary key is not defined for a table, spurious duplicate rows can occur. Three explicit set operations are used in some versions of SQL—UNION, INTERSECT, and MINUS (for set difference). SQL Server 2008 allows the explicit use of the UNION and INTERSECT operations. Since the MINUS set operation is not directly available in SQL Server 2016, we will illustrate the MINUS operation by using the very common IN and NOT .. IN predicates, which enable us to accomplish the same result as using INTERSECT
and MINUS.
The format of a set statement in SQL Server is as follows:
First, we look at examples of the UNION operator , the following is the syntax for the general form of a UNION:
SELECT *
FROM TableA
UNION
SELECT *
FROM TableB

2- Unioning Constants or Variables
In SQL Server 2008, a group of SELECT statements can also be used to union constants or variables. You may want to use this technique to experiment with the UNION or other set operations. A union of number
sets is shown below:

SELECT col1=100, col2=200
UNION
SELECT col1=400, col2=500
UNION
SELECT col1=100*3, col2=200*3
UNION
SELECT 900, 400

This will produce:
col1 col2
------- -----------
100 200
300 600
400 500
900 400
(4 row(s) affected)
Note that the output here happens to be sorted by the first column.

3- Union Compatibility
For union compatibility, the three basic data types are numeric, string, and dates. All numeric columns are compatible with one another, all string columns are compatible with one another, and all date columns are compatible with one another. SQL will convert integers, floating-point numbers, and decimals into a numeric data type to make them compatible with one another. So, any numeric column (such as integers) can be unioned with any other numeric column (such as decimals). Likewise, any fixed-length character column and any variable-length character column will be converted to a character data type and take on the larger size of the character columns being unioned. Similarly, date columns will be combined to a date data type.

 Union compatibility can happen in several ways:
_ By union two tables
_ By taking two subsets from a table and combining them
_ By using two views from two tables with the columns chosen so that they are compatible.

Students
STNO SNAME MAJOR CLASS
------ -------------------- ----- ------
2 Lineas ENGL 1
3 Mary COSC 4
8 Brenda COSC 2
10 Richard ENGL 1
13 Kelly MATH 4
14 Lujack COSC 1
15 Reva MATH 2
17 Elainie COSC 1
19 Harley WEB 2
20 Donald ACCT 4
24 Chris ACCT 4
34 Lynette WEB 1
49 Susan ENGL 3
62 Monica MATH 3
70 Bill WEB NULL
121 Hillary COSC 1

(16 row(s) affected)

In SQL Server 2016, a binary union is performed with the UNION set operation. A UNION takes output from two (or more) queries .
Suppose we want to find the names of all students who are computer science (COSC) majors along with all students who are MATH majors from the Student table. We can write the following query that uses the UNION set operator:

SELECT sname
FROM Student
WHERE major= 'COSC'
While executing the query:
sname

Mary
Zelda
Brenda
Lujack
Elainie
Jake
Hillary
Brad
Alan
Jerry
(10 row(s) affected)
SELECT sname
FROM Student
WHERE major= 'MATH'
This part virtually produces the following seven rows of output:
sname

Mario
Kelly
Reva
Monica
Sadie
Stephanie
Jake
(7 row(s) affected)
SQL then combines the two virtual sets of results (the UNION operation),which includes throwing out any duplicates (an extra “Jake” in this case),leaving us with the following 16 rows of output:
sname

Alan
Brad
Brenda
Elainie
Hillary
Jake
Jerry
Kelly
Lujack
Mario
Mary
Monica
Reva
Sadie
Stephanie
Zelda
(16 row(s) affected)

4- Similar Columns in Unions
Earlier we discussed that for a union to be successful there has to be union compatibility—the two sets being unioned have to have similar columns.
So what does “similar columns” mean?
If we wrote the earlier UNION example like this:

SELECT major
FROM Student
WHERE major= 'COSC'
UNION
SELECT sname
FROM Student
WHERE major= 'MATH'
we would get an output, but would the output be valid? The answer is NO.
Why?. These are not similar columns (though the data types of the two columns are compatible).

· The UNION ALL Operation
UNION ALL works almost exactly like UNION but does not expunge duplicates
nor sort the results. UNION ALL is more efficient in execution because it does not have to deal with sorting and row removal
The following is the same query previously shown for UNION but using UNION ALL instead of UNION:

SELECT sname
FROM Student
WHERE major= 'COSC'
UNION ALL
SELECT sname
FROM Student
WHERE major= 'MATH'

This query results in 17 unsorted rows, including one duplicate, Jake (whereas
using UNION produced 16 rows with no duplicates):

sname

Mary
Zelda
Brenda
Lujack
Elainie
Jake
Hillary
Brad
Alan
Jerry
Mario
Kelly
Reva
Monica
Sadie
Stephanie
Jake
(17 row(s) affected)

This result set is not sorted and contains two occurrences of Jake.

· The IN and NOT .. IN Predicates
Although SQL Server 2008 does not have the MINUS (difference) operator
Parse , Here are some examples:

Set A = (dog, cat, bird, monkey)
Set B = (cat, monkey, deer)
A – B = (dog, bird)
B – A = (deer)

A INTERSECT B = (cat, monkey)
A UNION B = (dog, cat, deer, bird, monkey)

1- Using IN
The following is a simple example of an IN predicate with constants in a
SELECT statement:

SELECT sname, class
FROM Student
WHERE class IN (3,4)
In this example, “IN (3, 4)” is calleda subquery-set, where (3, 4) is the set in
which we are testing membership. This query says: “Find all student names
from the Student table where the class is in the set (3, 4).” It produces
the following 17 rows of output:

sname class
-------------------- ------
Mary 4
Kelly 4
Donald 4
Chris 4
Jake 4
Susan 3
Monica 3
Phoebe 3
Holly 4
Rachel 3
Jerry 4
Cramer 3
Harrison 4
Francis 4
Losmith 3
Gus 3
Benny 4
(17 row(s) affected)
The preceding query produces the same output as the following query:
SELECT sname, class
FROM Student
WHERE class = 3 OR class = 4

In this example, we have a table called suppliers with the following data:
	supplier_id
	supplier_name
	City
	State

	100
	Microsoft
	Redmond
	Washington

	200
	Google
	Mountain View
	California

	300
	Oracle
	Redwood City
	California

	400
	Kimberly-Clark
	Irving
	Texas

	500
	Tyson Foods
	Springdale
	Arkansas

	600
	SC Johnson
	Racine
	Wisconsin

	700
	Dole Food Company
	Westlake Village
	California

	800
	Flowers Foods
	Thomasville
	Georgia

	900
	Electronic Arts
	Redwood City
	California

1- Using the IN Condition with Character Values
SELECT *
FROM suppliers
WHERE supplier_name = 'Microsoft'
OR supplier_name = 'Oracle'
OR supplier_name = 'Flowers Foods';

Using IN statement
SELECT *
FROM suppliers
WHERE supplier_name IN ('Microsoft', 'Oracle', 'Flowers Foods');
	supplier_id
	supplier_name
	City
	State

	100
	Microsoft
	Redmond
	Washington

	300
	Oracle
	Redwood City
	California

	800
	Flowers Foods
	Thomasville
	Georgia

Output

2- Using the IN Condition with Numeric Values
SELECT *
FROM supplier
WHERE customer_id IN (100, 300, 800);
3- Using the IN Condition with the NOT Operator
SELECT *
FROM supplier
WHERE product_name NOT IN ('Microsoft', 'Oracle', 'Flowers Foods');

2- Using IN As a Subquery
We can expand the IN predicate’s sub query set part to be an actual query.
For example, consider the following query that gives us the names of students
who have a grade of “A”:

SELECT Student.sname
FROM Student S
WHERE Student.stno IN(SELECT g.student_number
FROM Grade_report g
WHERE g.grade = 'A')
Go
Student table

STNO SNAME MAJOR CLASS
------ -------------------- ----- ------
2 Lineas ENGL 1
3 Mary COSC 4
8 Brenda COSC 2
10 Richard ENGL 1
13 Kelly MATH 4
14 Lujack COSC 1
15 Reva MATH 2
Grade-Rep table
student_number grade
------ -------- -----
2 A
3 A
8 A
10 B
13 B
14 C
15 A

Result

sname	

Lineas
Mary
Brenda
Reva

The preceding query produces the following 14 rows of output:
Note the following about this query:
_ “WHERE Student.stno” references the stno column in the Student table.
_ “g.student number” is the student number column in the Grade report table.
_ stno in the Student table and student number in the Grade report table have the same domain.

To make this command behave like a set operator (as if it were an INTERSECT operator), you can add the qualifier DISTINCT to the result set as follows:

SELECT DISTINCT (Student.sname)
FROM Student
WHERE Student.stno IN
(SELECT DISTINCT (g.student_number)
FROM Grade_report g
WHERE g.grade = 'A')
go

This produces the following 14 rows of output:
sname

Brenda
Cedric
Donald
Holly
Jerry
Jessica
Lineas
Lujack
Lynette
Mary
Richard
Sadie
Steve
Susan

(14 row(s) affected)
Here, SQL Server 2008 sorts the results for you and does not return duplicates.

Here we would have to use an IN with a sub query as discussed earlier:

SELECT s.stno, s.sname
FROM Student AS s
WHERE (s.stno IN
(SELECT pno
FROM Dependent AS d))
go
This gives us the following 19 rows of output:S
stno sname
------ ------
2 Lineas
10 Richard
14 Lujack
17 Elainie
20 Donald
34 Lynette
62 Monica
123 Holly
126 Jessica
128 Brad
132 George
142 Jerry
143 Cramer
144 Fraiser
145 Harrison
146 Francis
147 Smithly
153 Genevieve
158 Thornton
(19 row(s) affected)

3- Using NOT .. IN
If you use the NOT .. IN predicate in your query, your query may perform poorly on large tables. The reason is that when NOT .. IN is used, no indexing can be used, because the NOT .. IN part of the query has to test the set with all values to find out what is not in the set. For smaller tables, no difference in performance will likely be detected. Nonetheless, we discuss how to use the NOT .. IN predicate in this section to understand the logical negative of the IN predicate, which will help to complete your overall understanding of the SQL language. Instead of using NOT .. IN, it is often preferable from a performance standpoint on large tables to use NOT EXISTS or outer join techniques.
Sometimes the NOT .. IN predicate may seem to more easily describe the desired outcome or may be used for a set difference. For an example, consider the following query:
SELECT sname, class
FROM Student
WHERE class IN (1, 3, 4)
go
This produces the following 28 rows of output:
sname class
-------------------- ------
Lineas 1
Mary 4
Richard 1
Kelly 4
Lujack 1
Elainie 1
Donald 4
Chris 4
Jake 4
Lynette 1
Susan 3
Monica 3
Hillary 1
Phoebe 3
Holly 4
Steve 1
Brad 1
Rachel 3
George 1
Jerry 4
Cramer 3
Fraiser 1
Harrison 4
Francis 4
Losmith 3
Lindsay 1
Gus 3
Benny 4
(28 row(s) affected Compare the preceding query with the following query:

SELECT sname, class
FROM Student
WHERE class NOT IN (2)
GO
sname class
-------------------- ------
Lineas 1
Mary 4
Richard 1
Kelly 4
Lujack 1
Elainie 1
Donald 4
Chris 4
Jake 4
Lynette 1
Susan 3
Monica 3
Hillary 1
Phoebe 3
Holly 4
Steve 1
Brad 1
 Rachel 3
 (28 row(s) affected)
As another example, suppose you want the names of students who are not computer science (COSC) or math (MATH) majors. The query would be:

SELECT sname, major
FROM Student
WHERE major NOT IN ('COSC', 'MATH')

This produces the following output (28 rows):
sname major
-------------------- -----
Lineas ENGL
Ken WEB
Romona ENGL
Richard ENGL
Harley WEB	
Donald ACCT
Chris ACCT
Lynette WEB
Susan ENGL
Bill WEB
Phoebe ENGL
Holly WEB
Jessica WEB
Steve ENGL
Cedric ENGL
Rachel ENGL
George WEB
Cramer ENGL
Fraiser WEB
Harrison ACCT
Francis ACCT
Smithly ENGL
Sebastian ACCT
Losmith CHEM
Genevieve UNKN
Lindsay UNKN
Gus ART
Benny CHEM
(28 row(s) affected)

4- The Difference Operation
Because SQL Server 2008 does not support the MINUS predicate, we will
show the set difference operation using a NOT.. IN predicate with twoexamples.
Suppose set A is the set of students in classes 2, 3, or 4 and set B is the set
of students in class = 2. We could use the NOT .. IN predicate to remove the students in set B from set A (a difference operation) by typing the following query:

SELECT sname, class
FROM Student
WHERE class IN (2, 3, 4)
AND NOT class IN (2)
This produces the following output (17 rows):
sname class
-------------------- ------
Mary 4
Kelly 4
Donald 4
Chris 4
Jake 4
Susan 3
Monica 3
Phoebe 3	
Holly 4
Rachel 3
Jerry 4
Cramer 3
Harrison 4
Francis 4
Losmith 3
Gus 3
Benny 4
(17 row(s) affected)
[bookmark: _GoBack]Example 7.2
10

