Practical 3 Dr. Haider A. Haddad
[bookmark: _GoBack] Class3 CS &
SQL DML and DDL
SQL can be divided into two parts: The Data Manipulation Language (DML) and the Data Definition Language (DDL).
The DDL part of SQL permits database tables to be created or deleted. It also defines indexes (keys), specifies links between tables, and imposes constraints between tables.
The most important DDL statements in SQL are:
· CREATE DATABASE - creates a new database
· ALTER DATABASE - modifies a database
· CREATE TABLE - creates a new table
· ALTER TABLE - modifies a table
· DROP TABLE - deletes a table
· CREATE INDEX - creates an index (search key)
· DROP INDEX - deletes an index
The query and update commands form the DML part of SQL:
· SELECT - extracts data from a database
· UPDATE - updates data in a database
· DELETE - deletes data from a database
· INSERT INTO - inserts new data into a database
1- The SQL SELECT Statement
The SQL SELECT *

SELECT * FROM Persons	
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

SELECT LastName,FirstName FROM Persons
The result-set will look like this:
	LastName
	FirstName

	Hansen
	Ola

	Svendson
	Tove

	Pettersen
	Kari

The SQL SELECT DISTINCT Statement
In a table, some of the columns may contain duplicate values. This is not a problem, however, sometimes you will want to list only the different (distinct) values in a table.

The "Persons" table:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

Now we want to select only the distinct values from the column named "City" from the table above.

We use the following SELECT statement:
SELECT DISTINCT City FROM Persons
The result-set will look like this:
	City

	Sandnes

	Stavanger

Operators Allowed in the WHERE Clause
With the WHERE clause, the following operators can be used:
	Operator
	Description

	=
	Equal

	<>
	Not equal

	>
	Greater than

	<
	Less than

	>=
	Greater than or equal

	<=
	Less than or equal

	BETWEEN
	Between an inclusive range

	LIKE
	Search for a pattern

	IN
	To specify multiple possible values for a column

Combining AND & OR
We use the following SELECT statement:

SELECT * FROM Persons WHERE
LastName='Svendson'
AND (FirstName='Tove' OR FirstName='Ola')

The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

2- SQL INSERT INTO Example
We have the following "Persons" table:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

Now we want to insert a new row in the "Persons" table.
We use the following SQL statement:
INSERT INTO Persons
VALUES (4,'Nilsen', 'Johan', 'Bakken 2', 'Stavanger')
The "Persons" table will now look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

	4
	Nilsen
	Johan
	Bakken 2
	Stavanger

Insert Data Only in Specified Columns
It is also possible to only add data in specific columns.
The following SQL statement will add a new row, but only add data in the "P_Id", "LastName" and the "FirstName" columns:

INSERT INTO Persons (P_Id, LastName, FirstName)
VALUES (5, 'Tjessem', 'Jakob')

The "Persons" table will now look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

	4
	Nilsen
	Johan
	Bakken 2
	Stavanger

	5
	Jassem
	Jakob
	
	

3-The UPDATE Statement
The UPDATE statement is used to update existing records in a table.
UPDATE Persons
SET Address='Nissestien 67', City='Sandnes'
WHERE LastName='Tjessem' AND FirstName='Jakob'
The "Persons" table will now look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

	4
	Nilsen
	Johan
	Bakken 2
	Stavanger

	5
	Tjessem
	Jakob
	Nissestien 67
	Sandnes

SQL UPDATE Warning
Be careful when updating records. If we had omitted the WHERE clause in the example above, like this:

UPDATE Persons
SET Address='Nissestien 67', City='Sandnes'

The "Persons" table would have looked like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Nissestien 67
	Sandnes

	2
	Svendson
	Tove
	Nissestien 67
	Sandnes

	3
	Pettersen
	Kari
	Nissestien 67
	Sandnes

	4
	Nilsen
	Johan
	Nissestien 67
	Sandnes

	5
	Tjessem
	Jakob
	Nissestien 67
	Sandnes

4-The DELETE Statement
SQL DELETE Example
The "Persons" table:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

	4
	Nilsen
	Johan
	Bakken 2
	Stavanger

	5
	Tjessem
	Jakob
	Nissestien 67
	Sandnes

Now we want to delete the person "Tjessem, Jakob" in the "Persons" table.
We use the following SQL statement:
DELETE FROM Persons
WHERE LastName='Tjessem' AND FirstName='Jakob'
The "Persons" table will now look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

	4
	Nilsen
	Johan
	Bakken 2
	Stavanger

Delete All Rows
It is possible to delete all rows in a table without deleting the table. This means that the table structure, attributes, and indexes will be intact:
DELETE * FROM Persons
4- The TOP Clause
The "Persons" table:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

	4
	Nilsen
	Tom
	Vingvn 23
	Stavanger

Now we want to select only the two first records in the table above.
We use the following SELECT statement:
SELECT TOP 2 * FROM Persons
The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

SQL TOP PERCENT Example
The "Persons" table:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

	4
	Nilsen
	Tom
	Vingvn 23
	Stavanger

Now we want to select only 50% of the records in the table above.
We use the following SELECT statement:
SELECT TOP 50 PERCENT * FROM Persons
The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

5- The LIKE Operator
The LIKE operator is used to search for a specified pattern in a column.
SQL LIKE Syntax
SELECT column_name(s)
FROM table_name
WHERE column_name LIKE pattern
LIKE Operator Example
The "Persons" table:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

Now we want to select the persons living in a city that starts with "s" from the table above.
We use the following SELECT statement:
SELECT * FROM Persons
WHERE City LIKE 's%'

The "%" sign can be used to define wildcards (missing letters in the pattern) both before and after the pattern.
The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

Next, we want to select the persons living in a city that ends with an "s" from the "Persons" table.
We use the following SELECT statement:

SELECT * FROM Persons
WHERE City LIKE '%s'
The result-set will look like this:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

Next, we want to select the persons living in a city that contains the pattern "tav" from the "Persons" table.
We use the following SELECT statement:
SELECT * FROM Persons
WHERE City LIKE '%tav%'
The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

It is also possible to select the persons living in a city that does NOT contain the pattern "tav" from the "Persons" table, by using the NOT keyword.
We use the following SELECT statement:
SELECT * FROM Persons
WHERE City NOT LIKE '%tav%'
The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

SQL wildcards can be used when searching for data in a database.

6- SQL Wildcards
SQL wildcards can substitute for one or more characters when searching for data in a database.
SQL wildcards must be used with the SQL LIKE operator.
With SQL, the following wildcards can be used:

	Wildcard
	Description

	%
	A substitute for zero or more characters

	_
	A substitute for exactly one character

	[charlist]
	Any single character in charlist

	[^charlist]
or
[!charlist]
	Any single character not in charlist

SQL Wildcard Examples
We have the following "Persons" table:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

Using the % Wildcard
Now we want to select the persons living in a city that starts with "sa" from the "Persons" table.
We use the following SELECT statement:

SELECT * FROM Persons
WHERE City LIKE 'sa%'
The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

Next, we want to select the persons living in a city that contains the pattern "nes" from the "Persons" table.
We use the following SELECT statement:
SELECT * FROM Persons
WHERE City LIKE '%nes%'
The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

Using the _ Wildcard
Now we want to select the persons with a first name that starts with any character, followed by "la" from the "Persons" table.
We use the following SELECT statement:
SELECT * FROM Persons
WHERE FirstName LIKE '_la'
The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

Next, we want to select the persons with a last name that starts with "S", followed by any character, followed by "end", followed by any character, followed by "on" from the "Persons" table.
We use the following SELECT statement:
SELECT * FROM Persons
WHERE LastName LIKE 'S_end_on'
The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

Using the [charlist] Wildcard
Now we want to select the persons with a last name that starts with "b" or "s" or "p" from the "Persons" table.
We use the following SELECT statement:

SELECT * FROM Persons
WHERE LastName LIKE '[bsp]%'
The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	2
	Svendson
	Tove
	Borgvn 23
	Sandnes

	3
	Pettersen
	Kari
	Storgt 20
	Stavanger

Next, we want to select the persons with a last name that do not start with "b" or "s" or "p" from the "Persons" table.
We use the following SELECT statement:

SELECT * FROM Persons
WHERE LastName LIKE '[!bsp]%'
The result-set will look like this:
	P_Id
	LastName
	FirstName
	Address
	City

	1
	Hansen
	Ola
	Timoteivn 10
	Sandnes

7- The COUNT() function returns the number of rows that matches a specified criteria.
We have the following "Orders" table:
	O_Id
	OrderDate
	OrderPrice
	Customer

	1
	2008/11/12
	1000
	Hansen

	2
	2008/10/23
	1600
	Nilsen

	3
	2008/09/02
	700
	Hansen

	4
	2008/09/03
	300
	Hansen

	5
	2008/08/30
	2000
	Jensen

	6
	2008/10/04
	100
	Nilsen

Now we want to count the number of orders from "Customer Nilsen".
We use the following SQL statement:
SELECT COUNT(Customer) AS CustomerNilsen FROM Orders
WHERE Customer='Nilsen'
The result of the SQL statement above will be 2, because the customer Nilsen has made 2 orders in total:
	CustomerNilsen

	2

SQL COUNT(*) Example
If we omit the WHERE clause, like this:
SELECT COUNT(*) AS NumberOfOrders FROM Orders
The result-set will look like this:
	NumberOfOrders

	6

which is the total number of rows in the table.

SQL COUNT(DISTINCT column_name) Example
Now we want to count the number of unique customers in the "Orders" table.
We use the following SQL statement:
SELECT COUNT(DISTINCT Customer) AS NumberOfCustomers FROM Orders
The result-set will look like this:
	NumberOfCustomers

	3

which is the number of unique customers (Hansen, Nilsen, and Jensen) in the "Orders" table.

8-The FIRST() and Last() Function
The FIRST() function returns the first value of the selected column.

SQL FIRST() Example
We have the following "Orders" table:
	O_Id
	OrderDate
	OrderPrice
	Customer

	1
	2008/11/12
	1000
	Hansen

	2
	2008/10/23
	1600
	Nilsen

	3
	2008/09/02
	700
	Hansen

	4
	2008/09/03
	300
	Hansen

	5
	2008/08/30
	2000
	Jensen

	6
	2008/10/04
	100
	Nilsen

Now we want to find the first value of the "OrderPrice" column.
We use the following SQL statement:
SELECT FIRST(OrderPrice) AS FirstOrderPrice FROM Orders
	FirstOrderPrice

	1000

The LAST() Function
We have the following "Orders" table:
	O_Id
	OrderDate
	OrderPrice
	Customer

	1
	2008/11/12
	1000
	Hansen

	2
	2008/10/23
	1600
	Nilsen

	3
	2008/09/02
	700
	Hansen

	4
	2008/09/03
	300
	Hansen

	5
	2008/08/30
	2000
	Jensen

	6
	2008/10/04
	100
	Nilsen

Now we want to find the last value of the "OrderPrice" column.
We use the following SQL statement:
SELECT LAST(OrderPrice) AS LastOrderPrice FROM Orders
	LastOrderPrice

	100

1

