Q1) Show that each of the following functions is entire:
(a) $f(z)=3 x+y+i(3 y-x)$;
(b) $f(z)=\sin x \cosh y+i \cos x \sinh y$;
(c) $f(z)=e^{-y} \sin x-i e^{-y} \cos x$;
(d) $f(z)=\left(z^{2}-2\right) e^{-x} e^{-i y}$.

Q2) Show that each of these functions is nowhere analytic:
(a) $f(z)=x y+i y ;$
(b) $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$;
(c) $f(z)=e^{y} e^{i x}$.

Q3) Determine the singular points of the following functions:
(a) $f(z)=\frac{2 z+1}{z\left(z^{2}+1\right)}$;
(b) $f(z)=\frac{z^{3}+i}{z^{2}-3 z+2}$;
(c) $f(z)=\frac{z^{2}+1}{(z+2)\left(z^{2}+2 z+2\right)}$.

Q4)
Show that $u(x, y)$ is harmonic in some domain and find a harmonic conjugate $v(x, y)$ when
(a) $u(x, y)=2 x(1-y)$;
(b) $u(x, y)=2 x-x^{3}+3 x y^{2}$;
(c) $u(x, y)=\sinh x \sin y$;
(d) $u(x, y)=y /\left(x^{2}+y^{2}\right)$.

