Dr. Hazha Z. Hussain

COMPLEX NUMBERS

1. SUMS AND PRODUCTS

Complex numbérs can be defined as ordered pairs (2, v) of real numbers that are 10
be interpreted as poants in the compler plane, with rectangular coordinates x and v,
just as real numbers x are thought of as points on the real line. When real numbers
x are displayed as points (x, ) on the real axis, it is clear that the set of complex
numbers includes the real numbers as a subset, Complex numbers of the form (0, ¥)
correspond to points on the v axis and are called pure imaginary numbers. The v axis
15, then, referred to as the imaginary axis,
It is customary to denote a complex number (x, ¥) by z, so that

(1) z=(x,y).

The real numbers x and ¥ ane, moreover, known as the real and imaginary parts of z,
mespectively; and we write

(2) Rez==x, Imz=y

Two comples numbers £y = (xy, ) and 72 = (x5, ¥2) are equal whenever they have

the samé real parts and the same imaginary parts, Thus the statement ;) = z; means
that 2, and z; comespond to the same point in the complex, or z, plane,
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The sum z; + z; and the product 7,2, of two complex fiumbers z, = (x;, v,) and
23 = (x7, ¥3) are defined as follows:

3 (xp ) + (xg, yo) = () + 23, ¥+ ¥,
{4) (g, wpMx, ¥a) = (s — ¥, ¥iXa + xp0).

Note: that the operations defined by eguations {2) and (4) become the vsual operations
of addition and multiplication when restricted to the real numbers:

I::It.. ﬂ} + f-ﬁzq GJ' — 1:11 -+ X1, G}-
(x 1, O3y, O) = (xxy, 0).

The complex number system is, therefore, a natural extension of the real number
Syshem.

Any complex number 7 = (x, v) can be written z = (x, () + (0, v), and it is easy
to see that (0, 1)(y, 0y = (0, ¥). Hence

2=(x, 00+ (0, I)(y, 0);

and, if we think of a real number as either x or (x, 0} and lef § denote the imaginery
nuneber {0, 1) (see Fig. 1), it is clear that™

(5} I=x+ !L‘
Also, with the convention 2 = 7z, 77 = 227, etc., we find that

it = (0, N0, 1) =(-1,0,

or
(6) if=-1
¥
*2=0x )
si=00, 1)

0l xuix0) *  FIGURE1

In view of expression (5), definitions (3) and (4) becorne
(7 (xp iy + (g 4 iah = (2 + x2) + 000 + W),
(8) (%1 + dyd(xy 4 ivad = (237 = ¥102) + 100 + x960).
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2. BASIC ALGEBRAIC PROPERTIES

Various properties of addition and multiplication of complex numbers are the same as
for real members, We list here the more basic of these algebraic properties and verify
some of them. Most of the others are verified in the exercises,

The commutative laws

(n Ht =L+ LIi=LI
and the associative laws
2y sy 42+ o=+ + b (Zza = nlian)

follow easily from the definitions in Sec. 1 of addition and multiplication of complex
numbers and the fact that real numbers obey these laws, For example, af 2, = {xy, ¥/}
and 73 = (X3, ¥2); then

ntn=x+nyn+n=M+ip+y=nty.
Verification of the rest of the above laws, as well as the distributive law
{3 2z + 2l =iz + IZa

is similar,

According to the commutative law for multiplication, 1y = yi. Hence one can
write 2= + vi instead of 3= x + 1. Also, because of the associative laws, a sum
21+ 23 + zaoraproduct 2,225 is well defined without parentheses, as is the case with
real numbers,

The additive identity 0 = (0, 0) and the multiplicative identity 1= (1, 1) for real
numbers carry over to the entire complex number systern. That is,

() s+ 0=z and z-1=z

for every complex number z. Furthermore, 0 and | are the only complex numbers with
such properties (see Exercise 9),
There is associated with each complex number £ = (x, ¥) an additive inverse

LS} =I =|:l._-x-__1"—]:
satisTying the eguation z + (—z) = 0. Moreover, there is only one additive inverse
for any given z, since the cquation (x, ¥) + (u, v} = (0, 0) implies that w = —x and

v= —y. Expression (3) can alse be wntten —z = —x — iy without ambiguity since

MODULI
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It is natural to associate any nonzers complex number 7 = x + iy with the directed line
segment, or vector, from the origin to the point (x, y) that represents {Sec. 1) in the
complex plane. In faci, we often refer to = as the point 2 or the vector z. In Fig. 2 the
numbers 7= x + fvand —2 + i are isplayed graphically as both points and radius
veEChOrs,

(x ¥}
.

FIGURE 2

According to the definition of the sum of two complex numbers 2;=x; +1¥,
and 23 = 13+ f¥3. the number 7 + ; corresponds to the point (x) + 13, ¥) + ¥2). It
also corresponds to a vector with those coordinates as its components. Hence 2| + 22
may be obtained vectorially as shown in Fig. 3. The difference z; — 23 =2, + (—zz)
corresponds 1o the sum of the vectors for 7 and —z, (Fig. 4).

=] FIGURE 3

Although the product of two complex numbers z; and z; is itself a complex
number represented by @ vector, that vector hes in the same plane as the vectors for g,
and 15, Evidently, then, this product is neither the scalar nor the vector product used
in ordinary vector anal ysis.

The vector interpretation of complex numbers is especially helpful in extending
the concept of absolute values of real numbers to the complex plane. The madulus.
or absolute value, of u complex number z = & + i is defined a5 the nonnegative real
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(. 90

FIGURE 4

number 4/ x2 + v and is denoted by 2|z that is,

(1) lz] = 'x2 + ¥2.

Geometrically, the number |z| is the distance between the point (x, y) and the origin,
or the length of the vector representing 2. It reduces to the usual absolute value in the
real number system when y = 0. Note that, while the ineguality 21 < 7 5 meaningless
unless both 2, and 2, are real, the statement |2,| < |z3| means that the point 2, is closer
to the origin than the point 23 is.

EXAMPLE 1. Since |— 3+ 2il = +/13 and |1 + 4i| = /17, the point =3 + 2i is
closer to the origin than 1+ 4i is.

The distance between two points 7 = ry +iyyand 7, = x3 + iy is|2; — 23| This
is clear from Fig. 4, since |zj = 21| is the length of the vector representing 2 — 2z and,
by translating the radius vector z; — 2. one can interpret z) — z3 as the directed line
segment from the point (x3, y2) to the point Cxy, ¥y). Aliernatively, it follows from the
expression

51— =l —x) +ily - ¥)
anid definition (1) that

|2y — 22l = /ey~ x2)? + (g — ¥2)%

The complex numbers z corresponding to the points lying on the eirele with center
ziy dnd radius R thus satisfy the equation |z — zp| = R, and conversely. We refer 1o this
set of points simply as the circle [z — 2l = R,

EXAMPLE 2. The equation |z — | + 3i| =2 represents the circle whose center is
zg = (1, —3) and whose radius is R = 2.

It also follows from definition (1) that the real numbers |z, Rez =a,andImg =y
are related by the equation

(2) lz]* = (Re 2)* + (Im z)7.
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Thus
i3) Re:<|Rezl<|z] and Im:=|Imz|<|z].

We turn now to the triangle ineguality, which provides an uppar bound for the
modulus of the sum of two complex nembers ¢ and 25

(4) Iz + 23l = lal +izal.

This important inequality is geometrically evident in Fig. 3. sinee it is merely a
statement that the length of one side of a triangle is less than or equal to the sum
of the lengths of the other two sides. We can also see from Fig. 3 that inequality (4)
ix actually an equality when 0, zy, and z; are collinear. Another, strictly algebraic,
derivation is given in Exercise 16, Sec. 5.

An immediate consequence of the trangle inequality is the fact that

(5) lzy + 221 = 1z — 1z2ll.
To derive inequality (5), we write
|2yl = Izy + 220 + (=23)| = 7y =+ 22| + | — 22l
which means that
(6} 2y = 28l = |24) — |22l

This is inequality (5) when |2 = 122} If |z4] < |23, we need only interchange z, and
g7 in inequality (6) to get

|2y # 22l 2 = (lzyl — lzalks

which is the desired result. Inequality (5) tells us, of course, that the length of one side
of a triangle is greater than or equal to the difference of the lengths of the other two
sides. :

Because | = 73| = |z3|, onc can replace z; by —z3 in inequalities (4) and (3) o
summarize these results in o particularly useful form:

(7} 12y £ zal = 7yl + |zl
(B} lz1 £ 22l = [1z4] — |22l
EXAMPLE 3. If a point 7 lies on the unit circle || = 1 about the ongin, then
z=2=lzl+2=13
and
lz =2 zllzl-2I=1
The triangle inequality (4) can be generalized by means of mathematical induc-
tion to sums invelving any finite number of terms:
9 |E|"‘:2+"'+EM|E|31I+!;2’+"'+];H (p=2,3 ...).

To give details of the induction proof herc. we note that when n = 2, inequality (9) 15
just inequality (4). Furthenmore, if inequality (9) is assumed fo be valid when n = m.
it must also hold when # = m + | since, by inequality (4),

zi+ 24+ o)+ Tmet Sl + 22+ F 2l + 2mal
Ell|11!+3.23|+--*+!2m|}+|2m+[|-

COMPLEX CONJUGATES
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The complex confugate, or simply the comjugate, of a complex number z = x <+ iy is
defined as the complex number x — iy and is denoted by z; that is,

(1) T=x—iv.

The number T is represented by the point (x, —y), which is the reflection in the real
axis of the point (r, v) representing z (Fig. 5). Note that

T=z and [Z =]zl

for all z.
If 1 =x+ Ly and Iz =xX3+ E_}'-:.. then

It =xp+x)—ily + val = {xp —dv) + Lep = ixa).
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So the conjugate of the sum is the sum of the conjugates:

(2) 2:1‘.‘.‘3=E_+ﬁ.

I like manner, it is easy o show that

(3 1 =1=7=T1s,

) Z122 =171 21,

and

(5) (i) =3I (.
Iz 2

The sum z + = of a complex number z = x + iy and it conjugate T =x — iy i8
the real number 2, and the difference £ — £ is the pure imaginary number 2iy. Hence

I+ 2—3

i) H o dm =
(6) Re 2

An important identity relating the conjugate of a complex numberz =x + iy o
its modulus is

(7 2w =z},

where each side is equal tox* + v*. It suggests the method for determining a quotient
zy/25 that begins with expression (3), Sec. 3. That method is, of course, based on
multiplying both the numerator and the denominator of z;/z5 by I3, so that the
denominator becomes the real number |z5|°,

EXAMPLE 1.  Asan illostration,

S143 (—1430Q40) =545 _ =545

= = B =—141i.
2—i (2— 2 47) 12 =il= 5

See also the example near the end of Sec. 3.
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Identity (7} is especially useful in obtaining properties of moduli frem properties
of conjugates noted above, We mention that

(&) [2322] = |21l z2]

and

(1) al il (zp #0).
| 22l

Property (8) can be established by writing
21221 = (2022) @T2) = (2122 (@ ) = (1, TNTD) = 121222 = (2122l
and recalling that a modulus is never negative, Property (9) can be verified in a similar

way.

EXAMPLE 2. Property (8) tells us that |z%| = |z|* and |z7] = |z|. Hence if z is a
point inside the circle centered at the origin with radius 2, so that |z| < 2, it follows
from the generalized form (9) of the triangle inequality in Sec. 4 that

P +32 =224+ 1 = 2P+ 3z + 20z + 1 =< 25.
EXPONENTIAL FORM
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Let r and & be polar coordinates of the point (x, v) that cormesponds to a nonzero
complex number z = x + iy. Since x = r cos§ and y = r sin &, the number z can be
written in polar form as

(1) s=ricosd + i sin 6).

If z = 0. the coordinate @ is undefined; and so it is always understood that z # 0
whenever arg z is discussed.

In complex analysis, the real number r is not allowed to be negative and is the
length of the radius vector for z; that is, r = |z|. The real number & represents the angle,
measured in radians, that 7 makes with the positive real axis when z is interpreted as
a radius vector (Fig. 6). As in calculus, & has an infinite number of possible values,
including negative ones, that differ by integral multiples of 2. Those values can be
determined from the equation tan § = ¥/x, where the quadrant containing the point
corresponding to z must be specified. Each value of 8 is called an argument of z, and
the set of all such values is dencted by arg 2. The principal value of arg z, denoted by
Arg z, is that unique value & such that —w < @ =< &, Note that

{2 .ﬁIgz:hI‘Ez-l—Zﬂ?r n=0,£l, 432, . :!

Also, when z is a negative real number, Arg z has value 7, not —.

FIGURE &

EXAMPLE 1. The complex number —1 — i, which lies in the third quadrant, has
principal argument —3mx /4, That iz,

Arg{—l-—i}:—:%r.

It must be emphasized that, because of the restriction —7 < @ < 7 of the principal
argument &, it is not true that Arg{—1 — i) = 57/4.
According to equation (2),

argl{—l-f)=-—37ﬂ+2n:r in=0,x1,£2,...).
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Note that the lerm Arg 7 on the right-hand side of equation (2) can be replaced by any
particular value of arg z and that one can write, for instance,

Hrg{—i—r'}stn-l-EH?r in=0,£1,£2,.. .},

The symbol ¢, or exp(i#), is defined by means of Euler’s formula as
(3} e =cosf+isind,

where # is to be measured in radians. It enables vs to write the polar form (1) mone
compactly in exponential form as

(4) z=re.

The choice of the symbol ¢ will be fully motivated later on in Sec. 28. Its use in Sec.
7 will, however, suggest that it is a natural choice.

EXAMPLE 2. The nurnber —1 = in Example 1 has exponential form
3
{3) —'I—i'=v’§ﬁxp[f(——x):|.
4
With the agreement that e~ = ¢/""") this can also be written —1 —i = /2 /%,

Expression () is, of course, only one of an infinite number of possibilities for the
exponential form of —1— 1

(&) —l—i= '-.Eexp [i(—% -;—Imr)jl (=) 21, &0 00)
Note how expression (4) with r = 1 tells us that the numbers ¥ lie on the circle

centered at the origin with radivs unity, as shown in Fig. 7. Values of ' are, then,
immediate from that figare, without reference 1o Euler’s lormula. [t is, for instance,

FIGURE 7
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geometrically obvious that

-inj2 - —idm =]

=] e —i, and e

Naote, too, that the equation
(7) =R (0=6<2m)

is a parametric representation of the circle [z| = R, centered at the origin with radius
R. As the parameter  increases from # = 0 to # = 2, the point z starts from the
positive real axis and traverses the circle once in the counterclockwise direction. More
generally, the circle |z — zp| = R, whose center is z and whose radius is R, has the
parametric representation

(8) 1=zp+ Re®  (0=6 =2m).

This can be seen vectorially (Fig. B) by noting that a point z traversing the circle
Iz — zgl = R once in the counterclockwise direction corresponds to the sum of the
fixed vector z; and a vector of length R whose angle of inclination # vanes from 8§ = 0
Wh=2r.

]
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7. PRODUCTS AND QUOTIENTS IN EXPONENTIAL FORM

Simple trigonometry tells us that ¢® has the familiar additive property of the exponen-
tial function in calculus:

e/ = (cos By + i sin 8))(cos B, + i sin B;)
= (cos @, cos f, — sin @) sin &) + [ (sin #; cos &y + cos &y sin 6,)
= cas(fy + B;) + i sin(f, + 6y) = ' A1F)
Thus, if z; = rye"™ and z; = rpe'®, the product 2,2, has exponential form

(1 2123 = ryraetiel® = pyrge! 18
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