Q1) Show that:
(a) $\lim _{z \rightarrow z_{0}} \operatorname{Re} z=\operatorname{Re} z_{0}$;
(b) $\lim _{z \rightarrow z_{0}} \bar{z}=\overline{z_{0}}$;
(c) $\lim _{z \rightarrow 0} \frac{\bar{z}^{2}}{z}=0$.

Q2) Show that:
(a) $\lim _{z \rightarrow z_{0}}(a z+b)=a z_{0}+b$;
(b) $\lim _{z \rightarrow z_{0}}\left(z^{2}+c\right)=z_{0}^{2}+c$;
(c) $\lim _{z \rightarrow 1-i}[x+i(2 x+y)]=1+i(z=x+i y)$.

Q3) Show that:
(a) $\lim _{z \rightarrow z_{0}} \frac{1}{z^{n}}\left(z_{0} \neq 0\right)$;
(b) $\lim _{z \rightarrow i} \frac{i z^{3}-1}{z+i}$;
(c) $\lim _{z \rightarrow z_{0}} \frac{P(z)}{Q(z)}$.

Q4) Show that:

$$
\lim _{z \rightarrow z_{0}} z^{n}=z_{0}^{n}
$$

when n is a positive integer $(n=1,2, \ldots)$.

