1. What is the general form of second order non-linear partial differential equations (x and y being independent variables and z being a dependent variable)?

a)
$$F(x, y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial y^2}, \frac{\partial^2 z}{\partial x \partial y}) = 0$$

b) $F(x, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial y^2}, \frac{\partial^2 z}{\partial x \partial y}) = 0$
c) $F(y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}) = 0$
d) $F(x, y) = 0$

2. What is the reason behind the non-existence of any real function which satisfies the differential equation, $(y')_2 + 1 = 0$?

a) Because for any real function, the left-hand side of the equation will be less than, or equal to one and thus cannot be zero

b) Because for any real function, the left-hand side of the equation becomes zero

c) Because for any real function, the left-hand side of the equation will be greater than, or equal to one and thus cannot be zero

d) Because for any real function, the left-hand side of the equation becomes infinity

3. Which of the following is the condition for a second order partial differential equation to be hyperbolic?

a) $b_2 - ac < 0$

b)
$$b^2 - ac = 0$$

c) $b^2 - ac > 0$
d) $b^2 - ac = < 0$

- 4. First order partial differential equations arise in the calculus of variations.
 - a) True

b) False

- 5. Which of the following is an example for first order linear partial differential equation?
 - a) Lagrange's Partial Differential Equation
 - b) Clairaut's Partial Differential Equation
 - c) One-dimensional Wave Equation
 - d) One-dimensional Heat Equation

06. Find the complete integral of
$$p + q = pq$$
.Ans: $z = ax + \left(\frac{a}{a-1}\right)y + c$ 07. Find the complete integral of $z = px + qy + \sqrt{pq}$.Ans: $z = ax + by + \sqrt{ab}$.08. Find the complete integral of $pq = xy$.Ans: $z = ax + by + \sqrt{ab}$.09. Find the complete integral of $p + q = x + y$.Ans: $z = a\frac{x^2}{2} + \frac{1}{2}\frac{y^2}{2} + c$.10. Find the complete integral of $(z - px - qy)(p + q) = 1$.Ans: $z = \frac{(a + x)^2}{2} + \frac{(y - a)^2}{2} + c$.11. Find the complete integral of $\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$.Ans: $z = ax + by + \frac{1}{a + b}$.12. Find the solution of $px^2 + qy^2 = z^2$.Ans: $\phi \left[\frac{1}{y} - \frac{1}{x}, \frac{1}{z} - \frac{1}{y}\right] = 0$ 13. Find the general solution of $\frac{\partial^2 z}{\partial x^2} = 0$.Ans: $z = -\sin y + yf(x) + g(y)$.14. Solve $\frac{\partial^2 z}{\partial y^2} = \sin y$.Ans: $z = -\sin y + yf(x) + g(x)$.

Problem Related to Homogeneous Linear PDE

01. Find the particular integral of the equation $[D^2 + 2DD' + D]$	$P^{2}]z = e^{x-y}$. Ans: $P.I = \frac{x^{2}}{2}e^{x-y}$
02. Solve $[D^2 - 3DD' + 2D'^2]z = 0.$	Ans: $z = f_1(y+x) + f_2(y+2x)$.
03. Solve $[2D^2 + 5DD' + 2D'^2]z = 0.$	Ans: $z = f_1\left(y - \frac{1}{2}x\right) + f_2(y - 2x).$
04. Solve $[D^2 - 2DD' + D'^2]z = 0.$	Ans: $z = f_1(y+x) + xf_2(y+x)$.
05. Solve $[D^2 - 7DD' + 6D'^2]z = 0.$	Ans: $z = f_1(y + x) + f_2(y + 6x)$.
06. Solve $[D - D']^3 z = 0.$	Ans: $z = f_1(y+x) + x f_2(y+x) + x^2 f_3(y+x)$
07. Solve $(D-1)[D-D'+1]z = 0$.	Ans: $z = e^x f_1(y) + e^{-x} f_2(y+x).$

Problem Related to Lagrange's Linear PDE [Method of Multipliers]

01. Solve
$$x(y^{2} + z)p - y(x^{2} + z)q = z(x^{2} - y^{2})$$
,
02. Solve $x(y^{2} + z)p + y(x^{2} + z)q = z(x^{2} - y^{2})$,
03. Solve $x^{2}(y - z)p + y^{2}(z - x)q = z^{2}(x - y)$,
04. Solve $x(y - z)p + y(z - x)q = z(x - y)$,
05. Solve $(mz - ny)p + (nx - lz)q = ly - mx$.
06. Solve $(3z - 4y)p + (4x - 2z)q = 2y - 3x$.
07. Solve $x(z^{2} - y^{2})p + y(x^{2} - z^{2})q = z(y^{2} - x^{2})$.
08. Solve $(x^{2} + y^{2} + yz)p + y(x^{2} + y^{2} - xz)q = z(x + y)$.

Ans:
$$\phi(x^2 + y^2 - 2z, xyz) = 0.$$

Ans: $\phi(x^2 - y^2 - 2z, \frac{xz}{y}) = 0.$
Ans: $\phi(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}, xyz) = 0.$
Ans: $\phi(x + y + z, xyz) = 0.$
Ans: $\phi(lx + my + nz, x^2 + y^2 + z^2) = 0.$
Ans: $\phi(2x + 3y + 4z, x^2 + y^2 + z^2) = 0.$
Ans: $\phi(xyz, x^2 + y^2 + z^2) = 0.$
Ans: $\phi(xyz, x^2 + y^2 + z^2) = 0.$
Ans: $\phi(xyz, x^2 + y^2 + z^2) = 0.$

Problem Related to Eliminating Arbitrary Functions and Constant

01. Form the PDE from $z = f(2x - 6y)$	Ans: $3p - q = 0$
02. Form the PDE from $z = ax^3 + by^3$	Ans: $px + qy = 3z$
03. Form the PDE from $z^2 \cot^2 \partial = (x-a)^2 + (y-b)^2$	Ans: $p^2 + q^2 = \tan^2 \partial$.
04. Form the PDE by eliminating f from $z = f(y/x)$.	Ans: $px + qy = 0$
05. Form the PDE by eliminating f from $z^2 - xy = f(x/z)$.	Ans: $x^2 p + q(2z^2 - xy) = zx$.
06. Eliminate the function f from $z = f(x^2 + y^2)$.	Ans: $py = qx$
07. Form the partial differential equation from $(x-a)^2 + (y-b)^2 + z^2 = 1$.	Ans: $p^2 + q^2 + 1 = \frac{1}{z^2}$.
08. Form the partial differential equation from $(x + a)^2 + (y + b)^2 = z$.	Ans: $p^2 + q^2 = 4z$
09. Form the partial differential equation from $(x^2 + a^2)(y^2 + b^2) = z$.	Ans: $pq = 4xyz$.
10. Find the PDE of all spheres whose canters lie on the z-axis.	Ans: $py - qx = 0$.
11. Find the PDE of all planes having equal intercepts on the 'x' and 'y' axis.	Ans: $p = q$