Chapter Two Three Phase Induction Motor Operation

- The principle of IM operation depends on current carrying conductor are present within magnetic field.
- The conductors experience a force which causes them to exert torque on the shaft. In three phases IM, the magnetic field set-up is rotating in nature and hence called the rotating magnetic field.
- The current to the rotor system is supplied by electromagnetic induction. Hence, the motor gets its name, induction motor.

Three Phase Induction Motor Operation

Rotating Magnetic Field

$n_s = \frac{120f}{5}$								
	B			P				
Р	2	4	6	8	10	12	16	24
n _s (rpm)	3000	1500	1000	750	600	500	375	250

The resultant flux due to three phases:

$$\phi_{A} = \phi_{m} \sin \omega t$$

$$\phi_{B} = \phi_{m} \sin(\omega t - 120^{\circ})$$

$$\phi_{C} = \phi_{m} \sin(\omega t - 240^{\circ})$$

At wt=0,

$$\phi_{A} = 0$$

$$\phi_{B} = -\frac{\sqrt{3}}{2} \phi_{m}$$

$$\phi_{C} = \frac{\sqrt{3}}{2} \phi_{m}$$

$$\phi_r = \frac{\sqrt{3}}{2} \phi_m \cos 30 + \frac{\sqrt{3}}{2} \phi_m \cos 30 = \frac{3}{2} \varphi_m$$

<u>H.W:</u> Show that $\phi_r = 1.5\phi_m$ for the following angles 90°, 120°.

Mathematical proof:

When a uniformly distributed windings is excited from the three phase AC supply, the instantaneous mmf wave are according displaced by 120⁰ electrical degree in space. But each phase is excited by an alternating current varies in magnitude sinusoidal with time. Under balance three phase condition the instantaneous currents are:

$$i_{a} = I_{\max} \sin(\omega t)$$

$$i_{b} = I_{\max} \sin(\omega t - 120^{\circ})$$

$$i_{c} = I_{\max} \sin(\omega t - 240^{\circ}),$$

Where I_{max} is the max imum value of the current.

$$\phi = \phi_{\max} \sin(\omega t) \sin(\theta)$$

$$\phi_{A} = \phi_{\max} \sin(\omega t) \sin(\theta) \qquad phaseA$$

$$\phi_{B} = \phi_{\max} \sin(\omega t - 120^{0}) \sin(\theta - 120^{0}) \qquad phaseB$$

$$\phi_{C} = \phi_{\max} \sin(\omega t - 240^{0}) \sin(\theta - 240^{0}) \qquad phaseC$$

$$\phi_{r} = \phi_{A} + \phi_{B} + \phi_{C}$$

$$= \phi_{\max} [\sin(\omega t) \sin(\theta) + \sin(\omega t - 120^{0}) \sin(\theta - 120^{0}) + \sin(\omega t - 240^{0}) \sin(\theta - 240^{0})]$$

$$U \sin g \ the \ common \ trigonometriac \ formula:$$

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\therefore \qquad \phi_{r} = \frac{3}{2} \phi_{\max} \cos(\omega t - \theta)$$

Conclusion: The resultant flux is of constant value which is 1.5 times the maximum value of the flux due to any phase.

Direction of Rotating Field

Clock wise direction rotating field VA-VB-VC

Anti-clock wise direction rotating field VB-VA-VC

The Speed of Rotating Field

The speed of rotating field is measured by rpm(revolution per minute) or in SI unit in rad/sec.

 2π =one revolution, each pair of poles produces one revolution.

$$\omega_{s} = 2\pi n_{s} = 2\pi \frac{2f}{p} = \frac{4\pi f}{p}$$
$$n_{s} = \frac{120f}{p}, \quad \therefore \quad \frac{\omega_{s}}{n_{s}} = \frac{\pi}{30}$$
$$\omega_{s} = \frac{\pi}{20}n_{s}$$

3()

Principle of Operation:

Therefore speed of rotor field in space = speed of field relative to rotor + speed of rotor relative to space = $sn_s + n_s(1-s) = n_s$

The slip

Example:

A 208V, 10hp, 4-pole, 50HZ, y-connected IM has the full load slip of 5%. Find:1- The synchronous speed(n_s), 2- The rotor speed(n) at full load, 3-The rotor frequency f_r , and 4- The shaft torque at rated load.

Solution:

1-

$$n_s = \frac{120f}{p} = \frac{120 \bullet 50}{4} = 1500rpm = 25rps = 157rad / sec$$

2- The roor speed of the motor is given by:

$$n=n_s(1-S)=1500(1-0.05)=1425rpm=23.75rps=149.22rad/sec$$

 $3-f_r=Sf=0.05*50=2.5Hz$

4-The relation between rotor speed and developed output torque is given by;

$$T_{output} = \frac{P_{out}}{\omega_r}$$

$$P_{out} = 2\pi n T_{output}, \implies 10 \times 746 = 2\pi \times 23.75 \times T_{output}$$

$$T_{output} = 50 N.m$$

Example:

Determine the number of poles, the slip, and the frequency of the rotor currents at rated load for three-phase, induction motors rated at:. 2200 V, 60 Hz, 588 r/min.

Solution:

We use $P = 120f/n_s$, to obtain P, using n_r , the rotor speed given to obtain the slip. 12.245=120*60/588But P should be an even number. Therefore, take P = 12.

Hence $n_s = 600 \text{ rpm}$

The slip is thus given by, $S = (n_s-n)/n = (600-588)/588 = 0.02$ The rotor frequency is $f_r = sf_s = 0.02 \times 60 = 1.2$ Hz

The Rotor emf, Current, Frequency and Torque:

If E_2 = emf induced in rotor conductor /phase at any slip E_2 =s E_o

$$|Z_{2o}| = \sqrt{R_2^2 + X_{2o}^2}$$

$$\theta_2 = \tan \frac{X_{2o}}{R_2}$$

$$\cos \varphi = \frac{R_2}{\sqrt{R_2^2 + X_{2o}^2}} = \frac{R_2}{|Z_{2o}|}$$

$$I_2 = \frac{E_{2o}}{Z_{2o}} = \frac{E_{2o}}{\sqrt{R_2^2 + X_{2o}^2}}$$

At running condition(any speed) (S<1)

AT

$$X_{2} = 2\pi f SL_{2} = SX_{2o},$$

$$E_{2} = SE_{o}, f_{r} = S f$$

$$\therefore I_{2} = \frac{SE_{o}}{\sqrt{R_{2}^{2} + (SX_{2o})^{2}}}$$

$$\cos\varphi_{2} = \frac{R_{2}}{\sqrt{R_{2}^{2} + (SX_{2o})^{2}}}$$

$$T_{e} = K_{t} \times \phi \times \frac{SE_{o}}{\sqrt{R_{2}^{2} + (SX_{2o})^{2}}} \times \frac{R_{2}}{\sqrt{R_{2}^{2} + (SX_{2o})^{2}}}$$

Example:

A three phase IM, 415V, Y-connected , slip ring induction motor has stator to rotor turn ratio as 6. The rotor resistance and standstill reactance per phase are 0.06Ω and 0.3Ω respectively. Find the rotor power factor and current at standstill.

Solution: S=1, R₂=0,06 Ω , X₂=0.3 Ω , V₁₋₁=415V,

V/phase =
$$415/\sqrt{3} = 239.6$$
V, N_s/N_r=6,

 E_2 / phase =239.6*1/6=39.93V

 $Z_2\!\!=\!\!0.06\!\!+\!\!j0.3\!\!=\!\!0.306 \angle 78.7^0\Omega$

 $I_2 = (39.93 \angle 0^0) / 0.306 \angle 78.69^0 = 130.5 \angle -78.7^0 A$

 $\cos\phi_2 = \cos 78.7 = 0.196$ lagging.

