
Lecture Notes

 in

Computational Mathematics I

(MATLAB)

for

Second Class

of

Mathematics

Imad A. Aziz

Erbil

2022-2023

CHAPTER 1

INTRODUCTION to MATLAB

 1.1 INTRODUCTION

 MATLAB, which stands for MATrix LABoratory, is a state-of-the-art

mathematical software package, which is used extensively in both academia and

industry. It is an interactive program for numerical computation and data

visualization, which along with its programming capabilities provides a very useful

tool for almost all areas of science and engineering. Unlike other mathematical

packages, such as MAPLE or MATHEMATICA, MATLAB cannot perform

symbolic manipulations without the use of additional Toolboxes. It remains

however, one of the leading software packages for numerical computation

1.1.1 Starting MATLAB

However you start MATLAB, you will briefly see a window that displays the

MATLAB logo as well as some product information, and then a MATLAB Desktop

window will launch. That window will contain a title bar, a menu bar, a tool bar and

four embedded windows. The largest and most important window is the Command

Window on the middle, the Command History Window and the Workspace in right,

the Current Directory Browser in left. For now we concentrate on the Command

Window in order to get you started issuing MATLAB commands as quickly as

possible. At the top of the Command Window, you may see some general

information about MATLAB, perhaps some special instructions for getting started

or accessing help, but most important of all, you will see a command prompt (>>).

If the Command Window is “active,” its title bar will be dark, and the prompt will

be followed by a cursor (a blinking vertical line). That is the place where you will

enter your MATLAB commands. If the Command Window is not active, just click

in it anywhere. Figure 1.1 contains an example of a newly launched MATLAB

Desktop.

a. Command Window: - Use the Command Window to enter variables and to

run MATLAB functions and scripts. MATLAB displays the results. Press

the up arrow key ↑ to recall a statement you previously typed. Edit the

statement as needed, and then press Enter to run it.

b. Command History:-Statements you enter in the Command Window are

logged with a timestamp in the Command History. From the Command

History, you can view and search for previously run statements, as well as

copy and execute selected statements.

c. Workspace: - The workspace consists of the set of variables built up during

a session of using the MATLAB software and stored in memory. You add

variables to the workspace by using functions, running M-files, and loading

saved workspaces.

d. Current Directory Browser:-the files and subdirectories it contains are

listed in the Current Directory Browser.

Figure 1.1

1.1.2 Typing in Command Window

Abort

In order to abort a command in MATLAB, hold down the control key and press

c to generate a local abort with MATLAB.

The Semicolon (;)

If a semicolon (;) is typed at the end of a command the output of the command

is not displayed.

Typing %

When percent symbol (%) is typed in the beginning of a line, the line is

designated as a comment. When the enter key is pressed the line is not

executed.

The clc Command

Typing clc command and pressing enter cleans the command window. Once the

clc command is executed a clear window is displayed.

Help

MATLAB has a host of built-in functions. For a complete list, refer to

MATLAB users

guide or refer to the on line Help. To obtain help on a particular topic in the list,

e.g., inverse, type help inv.

1.1.3 Display Format

MATLAB has several different screen output formats for displaying numbers.

These formats can be found by typing the help command: help format in the

Command Window. A few of these formats are shown in Table

1.2 Arithmetic Operations

The symbols for arithmetic operations with scalars are summarized below in

Table

1.3 Elementary Math Built in Functions

MATLAB contains a number of functions for performing computations which

require the use of logarithms, elementary math functions, and trigonometric math

functions. List of these commonly used elementary MATLAB mathematical

built-in functions are given in Tables.

1.4 Variable Names

A variable is a name made of a letter or a combination of several letters and digits.

Variable names can be up to 63 (in MATLAB 7) characters long (31 characters

on MATLAB 6.0). MATLAB is case sensitive. For instance, XX, Xx, xX, and

xx are the names of four different variables. It should be noted here that not to

use the names of a built-in functions for a variable. For instance, avoid using: sin,

cos, exp, sqrt, ..., etc. Once a function name is used to define a variable, the

function cannot be used.

1.4.1 Predefined Variables

MATLAB includes a number of predefined variables. Some of the predefined

variables that are available to use in MATLAB programs are summarized in

Table

1.4.2 Command for Managing Variables

Table below lists commands that can be used to eliminate variables or to obtain

information about variables that have been created. The procedure is to enter the

command in the Command Window and the Enter key is to be pressed.

1.5 Complex Numbers

Complex numbers consist of two separate parts: a real part and an imaginary part.

The basic imaginary unit is equal to the square root of -1. This is represented in

MATLAB by either of two letters: i or j.

1.5.1 Creating Complex Numbers

The following statement shows one way of creating a complex value in MATLAB.

The variable x is assigned a complex number with a real part of 2 and an imaginary

part of 3:

x = 2 + 3i;

Another way to create a complex number is using the complex function. This

function combines two numeric inputs into a complex output, making the first

input real and the second imaginary:

x = 4;

y = -1;

z = complex(x, y)

z =

 4.0000 -1.0000i

jar:file:///C:/Program%20Files/MATLAB/R2010a/help/techdoc/help.jar%21/ref/complex.html

1.5.2 Arithmetic operations with complex numbers

1.5.3 Complex number functions

CHAPTER 2

VECTORS AND MATRICES

2.1 Arrays

An array is a list of numbers arranged in rows and/or columns. A one-dimensional

array is a row or a column of numbers and a two-dimensional array has a set of

numbers arranged in rows and columns. An array operation is performed element-

by-element.

2.1.1 Row Vector

A vector is a row or column of elements.

In a row vector the elements are entered with a space or a comma between the

elements inside the square brackets. For example,

x = [7 – 1 2 – 5 8]

2.1.2 Column Vector

In a column vector the elements are entered with a semicolon between the elements

inside the square brackets. For example,

x = [7 ; – 1 ; 2 ; – 5 ; 8]

2.2 Matrix

A matrix is a two-dimensional array which has numbers in rows and columns. A

matrix

is entered row-wise with consecutive elements of a row separated by a space or a

comma, and

the rows separated by semicolons or carriage returns. The entire matrix is enclosed

within

square brackets. The elements of the matrix may be real numbers or complex

numbers. For

example to enter the matrix,

The MATLAB input command is

A = [1 3 – 4 ; 0 – 2 8]

Similarly, for complex number elements of a matrix B

The MATLAB input command is

B = [– 5 * x log(2 * x) + 7 * sin (3 * y) ; 3i 5 – 13i]

2.3 Addressing Arrays

A colon can be used in MATLAB to address a range of elements in a vector or a

matrix.

2.3.1 Colon for a vector

Va(:) – refers to all the elements of the vector Va (either a row or a column vector).

Va(m : n) – refers to elements m through n of the vector Va.

For instance

>> V = [2 5 – 1 11 8 4 7 – 3 11]

>> u = V(2 : 8)

u = 5 – 1 11 8 4 7 – 3 11

2.3.2 Colon for a matrix

Table below gives the use of a colon in addressing arrays in a matrix.

2.3.3 Deleting Elements

An element, or a range of elements, of an existing variable can be deleted by

reassigning

blanks to these elements. This is done simply by the use of square brackets with

nothing typed in between them.

2.3.4 Adding Elements to a Vector or a Matrix

A variable that exists as a vector, or a matrix, can be changed by adding elements

to it.

Addition of elements is done by assigning values of the additional elements, or by

appending existing variables. Rows and/or columns can be added to an existing

matrix by assigning values to the new rows or columns.

2.4 Element-by-element operations

Element-by-element operations can only be done with arrays of the same size.

Elementby- element multiplication, division, and exponentiation of two vectors or

matrices is entered in MATLAB by typing a period in front of the arithmetic

operator. Table below lists these operations

2.5 Identity, Ones and Zeros Matrix

The function eye(m,n), ones(m,n) , zeros(m,n) returns an m-by-n rectangular

identity ,all elements ones, all elements zero matrix and eye(n) returns an n-by-n

square identity matrix and same for others.

2.6 Built-in Functions for Arrays

Table below lists some of the many built-in functions available in MATLAB for

analyzing

arrays.

a. Transpose

 In MATLAB, the transpose of the matrix A is denoted by A'

b. Diagonal of matrix

diag (A) :-When A is a matrix, creates a vector from the diagonal elements of A.

diag (v) When v is a vector, creates a square matrix with the elements of v in the

diagonal.

Also we have tril or triu functions to find lower or upper triangular of matrix.

c.

2.7 Matrix dimension functions

 length(A): - Length of vector or largest array dimension.

 size(A): - returns the sizes of each dimension of array.

 ndims(A): - Number of array dimensions.

 reshape (A, m, n): - Rearrange a matrix A that has r rows and s columns to

have m rows and n columns. r times s must be equal to m times n.

Example: - Let

 𝐴 = (
2 5 0 7
3 4 − 1 4

)

Then

>> length(A)

ans =

 4

>> size(A)

ans =

 2 4

>> ndims(A)

ans =

 2

>> reshape(A,4,2)

ans =

 2 0

 3 -1

 5 7

 4 4

2.8 Relational and Logical Operators

A relational operator compares two numbers by finding whether a comparison

statement is true (1) or false (0). A logical operator examines true/false statements

and produces a result which is true or false according to the specific operator.

Relational operators Table

Logical operators Table

Example:-

>> 3>2

ans =

 1

>> 3<2

ans =

 0

>> k=3

k =

 3

>> k<9

a =

 1 0 2 -3

b =

 2 0 -1 5

>> b>a

ans =

 1 0 0 1

>> b~=1

ans =

 1 1 1 1

k = -3

>> k>0 | k<0

ans =

 1

>> k>0 & k<0

ans =

 0

>> k<0

ans =

 1

a =

 1 0 2 -3

b =

 2 0 -1 5

>> a|b

ans =

 1 0 1 1

>> a&b

ans =

 1 0 1 1

ans =

 1

>> a>0

ans =

 1 0 1 0

>> ~(k<0)

ans =

 0

>> ~a

ans =

 0 1 0 0

Additional logical built-in functions Table

CHAPTER 3

PROGRAMMING IN MATLAB

3.1 M-files: Scripts and functions

To take advantage of MATLAB’s full capabilities, we need to know how to

construct long (and sometimes complex) sequences of statements. This can be done

by writing the commands in a file and calling it from within MATLAB. Such files

are called “m-files” because they must have the filename extension “.m”. This

extension is required in order for these files to be interpreted by MATLAB.

There are two types of m-files: script files and function files.

Script files contain a sequence of usual MATLAB commands, that are executed (in

order) once the script is called within MATLAB. For example, if such a file has the

name compute .m , then typing the command compute at the MATLAB prompt will

cause the statements in that file to be executed. Script files can be very useful when

entering data into a matrix.

Example:- Create the script file then write a program to find the roots of equation

2x2 -3x+1=0.

Sol:
% This Program written to Find the Roots of Equation 2x^2-

3x+1=0%

 a=2; b=-3; c=1;

 x1=(-b+sqrt(b^2-4*a*c))/2

 x2=(-b-sqrt(b^2-4*a*c))/2

3.2 Input and output command

a. Disp(X)

disp(X) displays an array, without printing the array name. If X contains a text

string, the string is displayed. Another way to display an array on the screen

is to type its name, but this prints a leading "X=," which is not always

desirable. Note that disp does not display empty arrays.

 >> disp('string expression');

 string expression

 >> A=[3,2;2,3];

 disp(A);

 3 2

 2 3

b. Input

The input function can be used for requesting user input. For example,

 r=input('value for r: ');

 displays value for r:

 to the screen and waits for the user to enter an expression which is then

assigned to r.

c. fprintf

The fprintf command displays output (text and data) on the screen or saves it

to a file. The output can be formatted using this command.

fprintf (format,A,...) writes to standard output—the screen. The format string

specifies notation, alignment, significant digits, field width, and other aspects

of output format. It can contain ordinary alphanumeric characters; along with

escape characters, conversion specifiers, and other characters, organized as

shown below:

For more information, see “Tables” and “References”

Example:-

 >> x = 2; y = sqrt(x);

 >> fprintf('The squrt root of %g is %9.4f\n',x,y)

 The squrt root of 2 is 1.4142

Example:-

>> x = 1:4; y = sqrt(x);

>> fprintf('The squrt root of %d is %4.2f\n',[x;y])

The squrt root of 1 is 1.00

The squrt root of 2 is 1.41

The squrt root of 3 is 1.73

The squrt root of 4 is 2.00

3.3 Conditional Execution

3.3.1 Conditional Execution or Branching:

As the result of a comparison, or another logical (true/false) test, selected blocks of

program code are executed or skipped. Conditional execution is implemented with

if, if...else, and if...elseif constructs, or with a switch construct.

There are three types of if constructs

1. Plain if

2. if...else

3. if...elseif

if Constructs

Syntax:
 if expression

 block of statements

 end

The block of statements is executed only if the expression is true.

Example:

 if a < 0

 disp(’a is negative’);

 end

One-line format uses comma after if expression

if a < 0, disp(’a is negative’); end

if. . . else

Multiple choices are allowed with if. . . else and if. . . elseif constructs

if x < 0

 error(’x is negative; sqrt(x) is imaginary’);

else

 r = sqrt(x);

end

if. . . elseif

It’s a good idea to include a default else to catch cases that don’t match preceding

if and elseif blocks

if x > 0

 disp(’x is positive’);

elseif x < 0

 disp(’x is negative’);

else

 disp(’x is exactly zero’);

end

3.3.2 The switch Construct

A switch construct is useful when a test value can take on discrete values that are

either integers or strings.

Syntax:

switch expression

 case value1,

 block of statements

 case value2,

 block of statements

 ...

 otherwise,

 block of statements

end

Example:

color = ’...’; % color is a string

switch color

 case ’red’

 disp(’Color is red’);

 case ’blue’

 disp(’Color is blue’);

 case ’green’

 disp(’Color is green’);

 otherwise

 disp(’Color is not red, blue, or green’);

end

3.4 Repetition or Looping

A sequence of calculations is repeated until either

1. All elements in a vector or matrix have been processed

or

2. The calculations have produced a result that meets a predetermined termination

criterion

Looping is achieved with for loops and while loops.

3.4.1 for loops

for loops are most often used when each element in a vector or matrix is to be

processed.

Syntax:
 for index = expression

 block of statements

 end

Example: Sum of elements in a vector

 x = 1:5; % create a row vector

 sumx = 0; % initialize the sum

 for k = 1:length(x)

 sumx = sumx + x(k);

 end

3.4.2 for loop variations

Example: A loop with an index incremented by two

 for k = 1:2:n

 ...

 end

Example: A loop with an index that counts down

 for k = n:-1:1

 ...

 end

Example: A loop with non-integer increments

 for x = 0:pi/15:pi

 fprintf(’%8.2f %8.5f\n’,x,sin(x));

 end

Note: In the last example, x is a scalar inside the loop. Each time through the loop,

x is set equal to one of the columns of 0:pi/15:pi.

3.4.3 while loops

while loops are most often used when an iteration is repeated until some

termination criterion is met.

Syntax:

 while expression

 block of statements

 end

The block of statements is executed as long as expression is true.

Example: Here is a simple example of a script M-file that uses while to

numerically sum the infinite series 1/14 + 1/24 + 1/34 +· · ·, stopping only when the

terms become so small (compared to the machine precision) that the numerical

sum stops changing:

 n = 1; oldsum = -1; newsum = 0;

 while newsum > oldsum

 oldsum = newsum;

 newsum = newsum + nˆ(-4);

 n = n + 1;

 end

 newsum

Note:-It is (almost) always a good idea to put a limit on the number of iterations to

be performed by a while loop.

An improvement on the preceding loop,

 n = 1; oldsum = -1; newsum = 0;

 maxit = 25; it = 0;

 while newsum > oldsum & it<maxit

 oldsum = newsum;

 newsum = newsum + nˆ(-4);

 n = n + 1;

 it = it + 1;

 end

 newsum

CHAPTER 4

FUNCTIONS

4.1 Function files

on the other hand, play the role of user defined commands that often have input and

output. You can create your own commands for specific problems this way, which

will have the same status as other MATLAB commands. Let us give a simple

example. The text below is saved in a file called log3.m and it is used to calculate

the base 3 logarithm of a positive number. The text file can be created in a variety

of ways, for example using the built-in MATLAB editor through the command edit

(that is available with MATLAB 5.0 and above), or your favorite (external) text

editor (e.g. Notepad or Wordpad in Microsoft Windows). You must make sure that

the filename has the extension “.m” !

function [a] = log3(x)

a = log(abs(x))./log(3);

end

» log3(5)

ans =

 1.4650

Syntax:
The first line of a function m-file has the form:

 function [outArgs] = funName(inArgs)

outArgs are enclosed in []
• outArgs is a comma-separated list of variable names

• [] is optional if there is only one parameter

• functions with no outArgs are legal

inArgs are enclosed in ()
• inArgs is a comma-separated list of variable names

• functions with no inArgs are legal

Example:- Write the function to find Fibonnaci sequence.

function f = Fib1(n)

F=zeros(1,n+1);

F(2) = 1;

for i = 3:n+1

F(i) = F(i-1) + F(i-2);

End

End

Example:- Write the function to find area and perimeter of triangle.

function [A s] = area(a,b,c)

s = (a+b+c)/2;

A = sqrt(s*(s-a)*(s-b)*(s-c));

End

4.2 Loop and Function Cotroal

a. return

return is used to force an exit from a function. This can have the effect of escaping

from a loop. Any statements following the loop that are in the function body are

skipped.

b. break

break is used to escape from an enclosing while or for loop. Execution continues at

the end of the enclosing loop construct.

Example: - write a function to check that the input number is prime or not.

function [p] = prim(x)

p=0;

for i=2:x-1

 if rem(x,i)==0

 p=1;

 return

 end

end

end

in above example we have only one element input but if we write program to work

with array of element as an input we must write the program as follow

function p = prim(a)

p=zero(size(a));

for i=1:length(a)

 for j=2:a(i)-1

 if rem(a(i),j)==0

 p(i)=1;

 Break

 end

 end

end

end

c. continue

The continue statement passes control to the next iteration of the for loop or while

loop in which it appears, skipping any remaining statements in the body of the

loop. In nested loops, continue passes control to the next iteration of the for loop or

while loop enclosing it.

Example:- find the s where

𝑠 = ∑
1

𝑖 − 3

𝑛

𝑖=0
𝑖≠3

n=input('n=')

s=0;

for i=0:n

 if i==3, continue, end

 s=s+1/(i-3);

end

s

d. error (‘text’)

Terminates execution and displays the message contained in text on the screen.

Example: - Write the function to replace the last row with last column of input

matrix.

 function b = lr2lc(a)

 [n m]=size(a);

 if n~=m

 error('The matrix must be square')

 else

 b=a;

 b(n,:)=a(:,m);

 b(:,m)=a(n,:);

 end

 end

CHAPTER 5

STRINGS

5.1 Character Strings

While Matlab is primarily intended for number crunching, there are times when it is

desirable to manipulate text, as is needed in placing labels and titles on plots. In

Matlab, text is referred to as character strings or simply strings.

5.1.1 String Construction

Character strings in Matlab are special numerical arrays of ASCII values that are

displayed as their character string representation. For example:

>> text = ’This is a character string’

 text =

 This is a character string

>> size(text)

 ans =

 1 26

>> whos

 Name Size Bytes Class

 ans 1x2 16 double array

 text 1x26 52 char array

Grand total is 28 elements using 68 bytes

5.1.2 ASCII Codes

Each character in a string is one element in an array that requires two bytes per

character for storage, using the ASCII code. This differs from the eight bytes per

element required for numerical or double arrays. The ASCII codes for the letters 'A'

to 'Z' are the consecutive integers from 65 to 90, while the codes for 'a' to 'z' are 97

to 122. The function abs returns the ASCII codes for a string.

>> text = ’This is a character string’

text =

 This is a character string

>> d = abs(text)

 d =

 Columns 1 through 12

 84 104 105 115 32 105 115 32 97 32 99

104

 Columns 13 through 24

 97 114 97 99 116 101 114 32 115 116 114

105

 Columns 25 through 26

 110 103

The function char performs the inverse transformation, from ASCII codes to a

string:

>> char(d)

ans =

 is a character string

The relationship between strings and their ASCII codes allow you to do the

following:

>> alpha = abs(’a’):abs(’z’);

>> disp(char(alpha))

 Abcdefghijklmnopqrstuvwxyz

5.2 Strings are Arrays

Since strings are arrays, they can be manipulated with array manipulation tools:

>> text = ’This is a character string’;

>> u = text(11:19)

u =

 character

As with matrices, character strings can have multiple rows, but each row must have

an equal number of columns. Therefore, blanks are explicitly required to make all

rows the same length.

For example:

>> v = [’Character strings having more than’

 ’one row must have the same number ’

 ’of columns - just like matrices ’]

v =

 Character strings having more than

 one row must have the same number

 of columns - just like matrices

>> size(v)

 ans =

 3 34

5.3 Concatenation of Strings

Because strings are arrays, they may be concatenated (joined) with square brackets.

For example:

>> today = ’May’;

>> today = [today, ’ 18’]

 today =

 May 18

5.4 String Conversions

num2str(x) :- Converts the matrix x into a string representation with about 4 digits

and an exponent if required.

The num2str function can be used to convert numerical results into strings for use

in formatting displayed results with disp. For example;

a=input('a=');

for i=1:length(a);

 if isprime(a(i))

 disp([num2str(a(i)) ' is prime'])

 else

 disp([num2str(a(i)) ' is not prime'])

 end

end

 run

 a=[2 8 5]

 2 is prime

 8 is not prime

 5 is prime

str2num(s) :- converts the string s which is an ASCII character representation of a

numeric value, to numeric representation. str2num also converts string matrices to

numeric matrices. If the input string does not represent a valid number or matrix,

str2num(s) returns the empty matrix. For example;

 s='423' » str2num(s)=423

 s='3 0 2 5' » a=str2num(s)

 a= 3 0 2 5 is matrix

 str2num('2 4; 6 8')

 ans =

 2 4

 6 8

5.5 String Functions

blanks(n) :-Returns a string of n blanks. Used with disp, eg.

disp ([’xxx’ blanks(10) ’yyy’]).

 xxx yyy

disp(blanks(n)') moves the cursor down n lines.

deblank(s):- Removes trailing blanks from string s.

strtrim(s):- returns a copy of string s with all leading and trailing white-space

characters removed.

 str=' AB CD '

 deblank(str)= ' AB CD'

 strtrim(str)='AB CD'

findstr(s1, s2) :- Find one string within another. Returns the starting indices of any

occurrences of the shorter of the two strings in the longer.

s = 'Find the starting indices of the shorter string';

findstr(s, 'the')

ans =

 6 30

findstr('the', s)

ans =

 6 30

 strcmp(s1, s2) :- Returns 1 if strings s1 and s2 are identical and 0 otherwise.

 strcmp('Yes', 'No')

 ans =

 0

 strcmp('Yes', 'Yes')

 ans =

 1

strncmp(s1, s2, n) :- Returns 1 if the first n characters of the strings s1 and s2 are

identical and 0 otherwise.

strmatch(str, strs) :- Searches through the rows of the character array of strings

strs to find strings that begin with string str, returning the matching row indices.

strrep(s1, s2, s3):- Replaces all occurrences of the string s2 in string s1 with the

string s3. The new string is returned.

lower(s) :- Converts any uppercase characters in string s to the corresponding

lowercase character and leaves all other characters unchanged.

upper(s):- Converts any lower case characters in s to the corresponding upper

case character and leaves all other characters unchanged.

eval(s):- Execute the string s as a Matlab expression or statement.

Example:- write a program to draw the graph of input function.

f = input(’Enter function (of x) to be plotted: ’,

’s’);

x = 0:0.01:10;

y= eval(f);

plot(x,y),grid

Here’s how the command line looks after you enter the function:

>> Enter function (of x) to be plotted:

 exp(-0.5*x) .* sin(x)

Example:- You can concatenate strings to create a complete expression for input

to eval. This code shows how eval can create 10 variables named P1, P2, ...P10,

and set each of them to a different value.

for i=1:10

 eval(['P',int2str(i),'= i.^2'])

 end

	a. Command Window: - Use the Command Window to enter variables and to run MATLAB functions and scripts. MATLAB displays the results. Press the up arrow key ↑ to recall a statement you previously typed. Edit the statement as needed, and then press Ente...
	b. Command History:-Statements you enter in the Command Window are logged with a timestamp in the Command History. From the Command History, you can view and search for previously run statements, as well as copy and execute selected statements.
	c. Workspace: - The workspace consists of the set of variables built up during a session of using the MATLAB software and stored in memory. You add variables to the workspace by using functions, running M-files, and loading saved workspaces.
	d. Current Directory Browser:-the files and subdirectories it contains are listed in the Current Directory Browser.
	1.1.2 Typing in Command Window
	1.2 Arithmetic Operations
	1.3 Elementary Math Built in Functions
	1.4 Variable Names
	1.4.1 Predefined Variables
	1.4.2 Command for Managing Variables
	1.5 Complex Numbers
	1.5.1 Creating Complex Numbers

	 length(A): - Length of vector or largest array dimension.
	 size(A): - returns the sizes of each dimension of array.
	 ndims(A): - Number of array dimensions.

