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Chapter 1 

MATLAB Graphics 

 
Graphical representation of data is an attractive method of showcasing numerical data 

that help in analyzing and representing quantitative data visually. A graph is a kind of a 

chart where data are plotted as variables across the coordinate. It became easy to analyze 

the extent of change of one variable based on the change of other variables. Graphical 

representation of data is done through different mediums such as lines, plots, diagrams, 

etc. Let us learn more about this interesting concept of graphical representation of data, 

the different types, and solve a few examples. 

MATLAB has many commands that can be used to create basic 2-D plots, overlay plots, 

specialized 2-D plots, 3-D plots, mesh, and surface plots. 

 

1.1 Basic 2-D Plots 
 

1.1.1 Graphing with plot 

       The plot command works on vectors of numerical data. The syntax is 
 

plot(x values, y values,‘style option’) 

 

where x values and y values are vectors containing the x- and y-coordinates of points 

on the graph. style option is an optional argument that specifies the color, line-style, and 

the point marker style. The style option in the plot command is a character string that 

consists of 1, 2, or 3 characters that specify the color and/or the line style. The different 

color, line-style and marker style options are summarized in Tables 

 

 

 

 

Line Style Description Resulting Line 

"-" Solid line 
 

"--" Dashed line 
 

":" Dotted line 
 

"-." Dash-dotted line 
 



Marker Description Resulting Marker 

"o" Circle 
 

"+" Plus sign 
 

"*" Asterisk 
 

"." Point 
 

"x" Cross 
 

"_" Horizontal line 
 

"|" Vertical line 
 

"square" Square 
 

"diamond" Diamond 
 

"^" Upward-pointing triangle 
 

"v" Downward-pointing triangle 
 

">" Right-pointing triangle 
 

"<" Left-pointing triangle 
 

"pentagram" Pentagram 
 

"hexagram" Hexagram 
 

 

 

Color Name Short Name RGB Triplet 

"red" "r" [1 0 0] 

"green" "g" [0 1 0] 

"blue" "b" [0 0 1] 

"cyan" "c" [0 1 1] 

"magenta" "m" [1 0 1] 

"yellow" "y" [1 1 0] 

"black" "k" [0 0 0] 

"white" "w" [1 1 1] 

 

 

 

 

 



Example 1.1: - To plot y=x2 on the interval from −1 to 2 

   
   X = -1:0.01:2;  
 plot(X, X.ˆ2)  

 

 

 

 

 

 

 

 

 

 

 

Example 1.2: - To plot y=sin x on the -interval from −π to π 

 
x=-pi:pi/10:pi; 

y=sin(x); 

plot(x,y,':bo') 

 

 

 

 

 

 

 

 

 

 

1.1.2 Adding various labels or making adjustments to plots 

 

1- axis:- Set axis ranges in a figure window 

 

    axis([xmin xmax ymin ymax]) 
 

sets the limits for the x- and y-axis of the current axes or can use 
 

axis('auto'): sets MATLAB default behavior to compute the current axes 

limits automatically, based on the minimum and maximum values of x, y. 
 

axis('square'): makes the current axes region square. 
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2- title:- Add title to current axes. 
 

      title('string') or title(fname) 
 

3- xlabel:- Add x-axis labels to plot and ylabel:- Add y-axis labels to plot. 

 
    xlabel(’somestring’)  

    ylabel(’somestring’) 

 

4- grid on:- Add grid lines to plot and grid off to turn off. 
 

5- legend:- Add figure legend to top-left corner of plot. 
      

    legend(’first’, ’second’, ’Location’) 
 

6- text:-Create text object in current axes. 
 

    text(x,y,'string') 

 

7- hold on:- Adding more things to a figure hold on means everything plotted from 

now on in that figure window is added to what’s already there. Hold off turns it 

off. 

 

Example 1.3: - draw the graph of 𝑦 = 𝑥2 − 𝑠𝑖𝑛𝑥 from −𝜋/2 𝑡𝑜 𝜋. 

 

hold on 

title('The graph of y=x^2-sin(x)') 

axis([-pi pi -4 6]) 

x=-pi/2:pi/10:pi; 

y=x.^2-sin(x); 

grid on 

xlabel('x value') 

ylabel('y value') 

plot(x,y,'-rs') 

text(0,0,'origin') 

 



 
 

1.1.3 Plotting Multiple Curves 

 

Each time you execute a plotting command, MATLAB erases the old plot and draws a 

new one. If you want to overlay two or more plots, type hold on. This command 

instructs MATLAB to retain the old graphics and draw any new graphics on top of the 

old. It remains in effect until you type hold off. 

 

Example 1.4: - draw the graphs of 𝑦 = sech (𝑥) and 𝑦 = sin (𝑥) from -10 to 10. 
   

hold on 

title('The graph of y=sech(x) and y=sin(x)') 

axis('normal') 

x=-10:0.5:10; 

y1=sin(x); 

y2=sech(x); 

grid on 

xlabel('x value') 

ylabel('y value') 

plot(x,y1,'-ro') 
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plot(x,y2,':bd') 

legend('sin(x)','sech(x)',3) 
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1.1.4 Parametric Plots 

Sometimes x and y are both given 

as functions of some parameter. 

For example, the circle of radius 1 

centered at (0,0) can be expressed 

in parametric form as 

x = cos(2πt), y = sin(2πt) where t 

runs from 0 to 1. Though y is not 

expressed as a function of x, you 

can easily graph this curve with 

plot, as follows: 
 

T = 0:0.01:1; 

x=cos(2*pi*T); 

y=sin(2*pi*T); 

plot(x,y)  

axis square 

axis([-2 2 -2 2])  

 

1.3 Three-Dimensional Plots 

MATLAB has several routines for producing three-dimensional plots. 
 

1.3.1 Curves in Three-Dimensional Space 

For plotting curves in 3-space, the basic command is plot3. It works like plot, except 

that it takes three vectors instead of two, one for the x-coordinates, one for the y-

coordinates, and one for the z-coordinates. For example, we can plot a helix with 
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t = 0:pi/50:10*pi; 

y= sin(t); 

x= cos(t); 

z= t; 

plot3(x, y,z) 

grid on 

axis square 

 

 

 

 

 

1.3.2 Surfaces in Three-Dimensional Space 

 

There are two basic commands for plotting surfaces in 3-space: mesh and surf. The 

former produces a transparent “mesh” surface; the latter produces an opaque shaded 

one. There are two different ways of using each command, one for plotting surfaces in 

which the z coordinate is given as a function of x and y, and one for parametric 

surfaces in which x, y, and z are all given as functions of two other parameters. Let us 

illustrate the former with mesh and the latter with surf. 

To draw the surface of a function 𝑦 = 𝑓(𝑥 , 𝑦) needs to discretization the region. 

 

meshgrid :-Generate X and Y arrays for 3-D plots 

 
 

[X,Y] = meshgrid(x,y)  

 

transforms the domain specified by vectors x and y into arrays X and Y, which can be 

used to evaluate functions of two variables and three-dimensional mesh/surface plots. 

The rows of the output array X are copies of the vector x; columns of the output array 

Y are copies of the vector y. 

 

[X,Y] = meshgrid(x) is the same as [X,Y] = meshgrid(x,x). 
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>> [x y]=meshgrid(1:4,5:7) 

 
x = 

     1     2     3     4 

     1     2     3     4 

     1     2     3     4 

 

y = 

     5     5     5     5 

     6     6     6     6 

     7     7     7     7 

 

 
mesh(X,Y,Z) 
 

If X and Y are rectangular arrays containing the values of the x and y coordinates at 

each point of a rectangular grid, and if z is the value of a function evaluated at each of 

these points, mesh(X, Y, Z) will produce a three-dimensional perspective graph of the 

points. The same results can be obtained with mesh(x, y, z) can also be used. 

 

Example 1.5:- Draw  the “saddle surface” 𝑧 =  𝑥2 − 𝑦2 on region  −2 ≤ 𝑥,𝑦 ≤ 2 

 
 [X,Y] = meshgrid(-2:0.1:2, -2:0.1:2); 

 Z = X.^2 - Y.^2; 

 mesh(X, Y, Z) 

 

 

 
 

 

 

 

 

 

 

 

 

 

surf(X,Y,Z) 
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Produces a three-dimensional perspective drawing. Its use is usually o draw surfaces, 

as opposed to plotting functions, although the actual tasks are quite similar. The output 

of surf will be a shaded figure. 
 

[X,Y] = meshgrid(-2:0.1:2, -2:0.1:2); 

Z = X.^2 - Y.^2; 

surf(X, Y, Z) 

 
 

 

 

 

 

 

 

 

 

 

 

Exercises  

1- Write a program to draw the graph of 𝑓(𝑥) = {
𝑥2 + 1 𝑖𝑓  𝑥 ≥ 2
1 𝑖𝑓    0 ≤ 𝑥 < 2

|𝑥 − 3| 𝑥 < 0

 . 

2- Write a program to draw the graph of 𝑓(𝑥) = ln (𝑥2 − 4) on interval [-10, 10]. 

3- Write a program to draw the graph of 𝑓(𝑥) = √𝑥 − 2 + √1 − 𝑥2 on interval [-

10, 10]. 

4- Write a program to input a polynomial then draw its graph and plot its max. 

and min. points if exist on his graph.  

5-  Write a program to draw the surface of 𝑓(𝑥, 𝑦) = ln(x2 − y2) + √xy − 1 on 

region 𝐶 = {(𝑥, 𝑦) ∈ ℝ2;  −2 ≤ 𝑥 ≤ 2 𝑎𝑛𝑑 − 1 ≤ 𝑦 ≤ 1} 
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6- Write a program to draw the surface of 𝑓(𝑥, 𝑦) = yex2+y2
 on region 𝐶 =

{(𝑥, 𝑦) ∈ ℝ2;  𝑥2 + 𝑦2 ≤ 4} 

7- Write a program to draw the surface of  𝑓(𝑥, 𝑦) = x sin (y) + y cos (x ) on region 

𝐶 = {(𝑥, 𝑦) ∈ ℝ2; 1 ≤ 𝑥2 + 𝑦2 ≤ 4} 

8- Write a program to draw the surface of 𝑓(𝑥, 𝑦) = x2 + y2 − 6 on region 𝐶 =

{(𝑥, 𝑦) ∈ ℝ2; 𝑥 ∈ [−4, −2 ]⋃[ 2 , 4 ] 𝑎𝑛𝑑 𝑦 ∈ [−4, −2]⋃[ 2 , 4 ] } 

9- Write a program to draw the surface of 𝑓(𝑥, 𝑦) = x2 + y2 − 6 on region 𝐶 =

{(𝑥, 𝑦) ∈ ℝ2; (𝑥, 𝑦) ∈ Δ𝐴𝐵𝐶 ∶ 𝐴 = (1 , 1), 𝐵 = (6 , 2 ), 𝐶 = (3 , 5) } 

10-Write a program to draw the surface of 𝑓(𝑥, 𝑦) = x2 − y2 on region 𝐶 =

{(𝑥, 𝑦) ∈ ℝ2;  −2 ≤ 𝑥 ≤ 2 𝑎𝑛𝑑 − 1 ≤ 𝑦 ≤ 1 𝑎𝑛𝑑 𝑥2 + 𝑦2 − 𝑥𝑦 ≥ 1} 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



Chapter 2 

Polynomials 

 
A polynomial is a function of a single variable that can be expressed in the following 

form: 

𝑓(𝑥)  =  𝑎0𝑥𝑛  +  𝑎1𝑥𝑛−1  +  𝑎2𝑥𝑛−2 + … + 𝑎𝑛–1𝑥1  +  𝑎𝑛 

 

where the variable is x and the coefficients of the polynomial are represented by the 

values a0, a1, … and so on. The degree of a polynomial is equal to the largest value used 

as an exponent.  

 

2.1 Input Polynomial 

A vector represents a polynomial in MATLAB. When entering the data in MATLAB, 

simply enter each coefficient of the polynomial into the vector in descending order. 

 

 Example 2.1:-  consider the polynomial  𝑝(𝑠) = 5𝑠5  +  7𝑠4  +  2𝑠2 –  6𝑠 +  10 

 

To enter this into MATLAB, we enter this as a vector as 

 

>> p = [5 7 0 2 – 6 10] 

p = 

     5 7 0 2 – 6 10 

It is necessary to enter the coefficients of all the terms. 

 

2.2 Polynomial multiplication and division 

MATLAB contains functions that perform polynomial multiplication and division, 

which are listed below: 

 

conv(p, q) 

Let 𝑝(𝑥) and 𝑞(𝑥) be two polynomial of degree n and m respectively, to find  

 ℎ(𝑥) = 𝑝(𝑥) ∗ 𝑞(𝑥) using h=conv(p, q) computes a coefficient vector that contains 

the coefficients of the product of polynomials represented by the coefficients in p and 

q. The vectors p and q do not have to be the same size. 

 

Example 2.2:- consider the polynomials 



 𝑝(𝑥) = 𝑥4 − 4𝑥2 + 2𝑥 + 1 and 𝑞(𝑥) = 𝑥 + 2  

then to find ℎ(𝑥) = 𝑝(𝑥) ∗ 𝑞(𝑥) write Matlab code as follows 

 

p=[1 0 -4 2 1]; 

q=[1 2]; 

h=conv(p,q) 

 

result is  

h = 

     1     2    -4    -6     5     2 

or 

ℎ(𝑥) = 𝑥5 + 2𝑥4 − 4𝑥3 − 6𝑥2 + 5𝑥 + 1 

 

deconv(p, q) 

Let 𝑝(𝑥) and 𝑞(𝑥) be two polynomial of degree n and m respectively, to find  

 ℎ(𝑥) = 𝑝(𝑥)/𝑞(𝑥) using [h, r]=deconv(p, q) 

Returns two vectors. The first vector contains the coefficients of the quotient and the 

second vector contains the coefficients of the remainder polynomial. 

 

Example 2.3: - consider the polynomials  

𝑝(𝑥) = 𝑥4 − 4𝑥2 + 2𝑥 + 1 and 𝑞(𝑥) = 𝑥2 + 2  

then to find ℎ(𝑥) = 𝑝(𝑥)/𝑞(𝑥) write Matlab code as follows 

 
p=[1 0 -4 2 1]; 

q=[1 0 2]; 

[h,r]=deconv(p,q) 

 

result is 

h = 

     1     0    -6 

r = 

     0     0     0     2    13 

or  

ℎ(𝑥) = 𝑥2 − 6 and 𝑟(𝑥) = 2𝑥 + 13 

 

 

2.3 Polynomial Algebraic 



 

roots(p)  

Let 𝑝(𝑥) is a polynomial the MATLAB function for determining the roots of a 

polynomial is the roots function. r=roots(p) determines the roots of the polynomial 

represented by the coefficient vector p. The roots function returns a column vector 

containing the roots of the polynomial, the number of roots is equal to the degree of 

the polynomial.  

 

Example 2.4: - consider the polynomial  𝑝(𝑥) = 𝑥4 − 4𝑥2 + 2𝑥 + 1 then to find the 

roots of p write Matlab code as follows 

 

p=[1 0 -4 2 1]; 

r=roots(p) 

 

result is 

r = 

   -2.1701 

    1.4812 

    1.0000 

   -0.3111 

 

are four real roots of polynomial p. 

 

poly(r)  

When the roots of a polynomial are known, the coefficients of the polynomial are 

determined when all the linear terms are multiplied, we can use the poly function 

p=poly(r) Determines the coefficients of the polynomial whose roots are contained in 

the vector r. The output of the function is a row vector containing the polynomial 

coefficients. 

 

Example 2.5: - consider the polynomial  𝑟 = [1 2  0 − 4] ,then to find the 𝑝(𝑥) with 

roots r, write Matlab code as follows 

 

r=[1 2 0 -4]; 

p=poly(r) 

 

result is 



p = 

     1     1   -10     8     0 

or 

𝑝(𝑥) = 𝑥4 + 𝑥3 − 10𝑥2 + 8𝑥 

 

polyval (p, x) 

The value of a polynomial can be computed using the polyval function 

y=polyval(p, x) it evaluates a polynomial with coefficients p for the values in x. The 

result is a matrix the same size of x. 

 

Example 2.6: - consider the polynomial  𝑝(𝑥) = 𝑥4 − 4𝑥2 + 2𝑥 + 1 and x=2, then to 

find the 𝑝(2) write Matlab code as follows 

 

p=[1 0 -4 2 1]; 

x=2; 

y=polyval(p,x) 

 

result is 

y = 

     5 

 

2.4 Polynomial Calculus 

 

polyder(p) 

Let 𝑝(𝑥) is a polynomial the MATLAB function for determining the derivative of 

𝑝(𝑥) is q=polyder(p) returns the derivative of the polynomial represented by the 

coefficients in p, 

𝑞(𝑥) =
𝑑

𝑑𝑥
𝑝(𝑥) . 

e 

h = polyder(p,q) returns the derivative of the product of the polynomials p and q, 

ℎ(𝑥) =
𝑑

𝑑𝑥
[𝑝(𝑥) ∗ 𝑞(𝑥)] . 

le 

[h,r] = polyder(p,q) returns the derivative of the quotient of the polynomials p and q, 
ℎ(𝑥)

𝑟(𝑥)
=

𝑑

𝑑𝑥

𝑝(𝑥)

𝑞(𝑥)
 

file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23busqmq2-2
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23outputarg_k
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23inputarg_ab
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23busqmq2-3
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23outputarg_q
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23outputarg_d
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23inputarg_ab


Example 2.7: - consider the polynomial  𝑝(𝑥) = 𝑥4 − 4𝑥2 + 2𝑥 + 1, then to find the 

derivative of p write Matlab code as follows 

 
p=[1 0 -4 2 1]; 

q=polyder(p) 

 

result is 

q = 

     4     0    -8     2 

or  

𝑞(𝑥) = 4𝑥3 − 8𝑥 + 2 

 

 

polyint 

Let 𝑝(𝑥) is a polynomial the MATLAB function for determining the integration of 

𝑝(𝑥) is q = polyint(p,k) returns the integral of the polynomial represented by the 

coefficients in p using a constant of integration k. q = polyint(p) assumes a constant of 

integration k = 0. 

 

Example 2.8: - consider the polynomial  𝑝(𝑥) = 4𝑥3 − 3𝑥2 + 8𝑥 + 1, then to find 

the integration of p write Matlab code as follows 

 

p=[4 -3 8 1]; 

q=polyint(p) 

 

result is 

q = 

     1    -1     4     1     0 

or  

𝑞(𝑥) = 𝑥4 − 𝑥3 − 4𝑥2 + 𝑥 
 

 

Exercises  

1- Write a program to find the tangent line of polynomial 𝑝(𝑥) at the point 𝑥0 then 

draw the graph of polynomial ant its tangent line. 

2- Write a program to find all local maximum and minimum pints of polynomial 

𝑝(𝑥) then draw polynomial and (max., min.) points.  

3- Write a program to find the area under polynomial 𝑝(𝑥) if its bounded. 

file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyint.html%23outputarg_q
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyint.html%23inputarg_p
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyint.html%23inputarg_k


4- Write a program to find the area under polynomial 𝑝(𝑥) on interval [𝑎, 𝑏]. 

5- Write a function to add two polynomial 𝑝(𝑥) and 𝑞(𝑥). 

6- Write a function to subtract two polynomial 𝑝(𝑥) and 𝑞(𝑥). 

7- Write a program to find the area between two polynomials 𝑝(𝑥) and 𝑞(𝑥) if its 

bounded. 

 

 

 

 

 

 

Chapter 3 

Symbolic Processing 

 
We have focused on the use of Matlab to perform numerical operations, involving 

numerical data represented by double precision floating point numbers. We also given 

some consideration to the manipulation of text, represented by character strings. In this 

section, we introduce the use of Matlab to perform symbolic processing to manipulate 

mathematical expressions, in much the way that we do with pencil and paper.  

The objective of symbolic processing is to obtain what are known as closed form 

solutions, expressions that don’t need to be iterated or updated in order to obtain 

answers. An understanding of these solutions often provides better physical and 

mathematical insight into the problem under investigation. 

 

2.1 Declaring Symbolic Variables and Constants 

To enable symbolic processing, the variables and constants involved must first be 

declared as symbolic objects. 

 

Syms var1,var2,…… 

 

For example, to create the symbolic variables with names x and y: 

>> syms x y 

If x and y are to be assumed to be real variables, they are created with the command: 



>> syms x y real 

Sym(var) 

To declare symbolic constants, the sym function is used. Its argument is a string 

containing the name of a special variable, a numeric expression, or a function 

evaluation. It is used in an assignment statement which serves as a declaration of a 

symbolic variable for the assigned variable. Examples include: 

>> pi = sym(’pi’); 

>> delta = sym(’1/10’); 

>> sqroot2 = sym(’sqrt(2)’); 

If the symbolic constant pi is created this way, it replaces the special variable pi in the 

workspace. The advantage of using symbolic constants is that they maintain full 

accuracy until a numeric evaluation is required. 

 

Example 2.1: - 

 

>> x=sym(1/2) 

x = 1/2 

>> y=sym(2/3) 

y = 2/3 

 

>> x*y 

ans = 1/3 

>> x+y 

ans = 7/6 

 

>> x/y 

ans = 3/4 

>> x^2 

ans = 1/4 

 

 

Symbolic variables and constants are represented by the data type symbolic object. 
 

>> whos 

Name       Size       Bytes        Class 

delta      1x1         132      sym object 

pi         1x1         128      sym object 

sqroot2    1x1         138      sym object 

x          1x1         126      sym object 

 

2.2 Symbolic Expressions 

Symbolic variables can be used in expressions and as arguments of functions in much 

the same way as numeric variables have been used. The operators + - * / ^ and the 



built-in functions can also be used in the same way as they have been used in numeric 

calculations.  

 

 

Example 2.2:- 

>> syms x y 

f = x^2*y + 5*x*sqrt(y) 

f = 

 x^2*y + 5*x*y^(1/2) 

 

syms s t A 

g = s^2 + 4*s + A 

g = 

 s^2 + 4*s + A 

 

 >> h=f*g 

 h = 

 (x^2*y + 5*x*y^(1/2))*(s^2 + 4*s + A) 

 

The variable x is the default independent variable, but as can be seen with the 

expressions above, other variables can be specified to be the independent variable. It is 

important to know which variable is the independent variable in an expression. The 

command to find the independent variable is: 
 

symvar (S)  

Finds the symbolic variables in a symbolic expression or matrix S by returning a string 

containing all of the symbolic variables appearing in S. The variables are returned in 

alphabetical order and are separated by commas. If no symbolic variables are found, 

symvar returns the empty string.  

Use example 2.2 
 

>> symvar(f) 

ans = 

     [x,y] 

>> symvar(z) 

ans = 

     [A,s,t] 
 

 



 

2.3 Manipulating Polynomial Expressions 

In the examples above, symbolic variables were declared and were used in symbolic 

expressions to create polynomials. We now wish to manipulate these polynomial 

expressions algebraically. 

The Matlab commands for this purpose include: 

 

expand(S)  

Expands each element of a symbolic expression S as a product of its factors. expand is 

most often used on polynomials, but also expands trigonometric, exponential and 

logarithmic functions. 
 

Example 2.3:- 

syms x; 

expand((x-2)*(x-4)) 

ans = x^2 - 6*x + 8 
 

syms x y; 

expand(cos(x+y)) 

ans = cos(x)*cos(y) - sin(x)*sin(y) 
 

syms a b; 

expand(exp((a+b)^2)) 

ans = exp(2*a*b)*exp(a^2)*exp(b^2) 
 

syms t; 

expand([sin(2*t), cos(2*t)]) 

ans =[ 2*cos(t)*sin(t), cos(t)^2 - sin(t)^2] 

 

factor(S)  

Factors each element of the symbolic matrix S.  
 

Example 2.4:- 

syms x y; 

factor(x^3-y^3) 

ans = (x - y)*(x^2 + x*y + y^2) 
 



syms a b; 

factor([a^2 - b^2, a^3 + b^3]) 

ans = [ (a - b)*(a + b), (a + b)*(a^2 - a*b + b^2)] 
 

x=sym(5678) 

x = 5678 

factor(x) 

ans = 2*17*167 

 

 

 

simplify(S) 

Simplifies each element of the symbolic matrix S. 
 

Example 2.5:- 

syms s 

H = (s^3 +2*s^2 +5*s +10)/(s^2 + 5); 

H = simplify(H) 

H = s+2 
 

syms x; 

simplify(sin(x)^2 + cos(x)^2) 

ans =1 
 

syms a b c; 

simplify(exp(c*log(sqrt(a+b)))) 

ans =(a + b)^(c/2) 
 

S = [(x^2 + 5*x + 6)/(x + 2), sqrt(16)]; 

R = simplify(S) 

R =[ x + 3, 4] 

 

[ n , d ] = numden(S) 

Returns two symbolic expressions that represent the numerator expression num and 

the denominator expression den for the rational representation of the symbolic 

expression S. 
 

Example 2.6:- 



[n, d] = numden(sym(4/5)) 

ans 

n =4  

d =5 
 

syms x y; 

[n,d] = numden(x/y + y/x) 

ans 

n = x^2 + y^2 

d = x*y 
 

 syms s 

G = s+4 + 2/(s+4) + 3/(s+2); 

[N, D] = numden(G) 

N = s^3+10*s^2+37*s+48 

D =(s+4)*(s+2) 

 

collect(f) 

views f as a polynomial in its symbolic variable, say x, and collects all the coefficients 

with the same power of x. A second argument can specify the variable in which to 

collect terms if there is more than one candidate. 
 

Example 2.7:- 

 

f=(x-1)*(x-2)*(x-3) 

collect(f) 

ans= x^3-6*x^2+11*x-6 
 

f=x*(x*(x-6)+11)-6 

collect(f) 

ans= x^3-6*x^2+11*x-6 
 

f=(1+x)*t + x*t  

collect(f) 

ans=2*x*t+t 

 

 

 



subs(S,old,new)  

Symbolic substitution, replacing symbolic variable old with symbolic variable new in 

the symbolic expression S. 
 

Example 2.8:- 

f = 2*x^2 - 3*x + 1 

subs(f,2) 

ans =3 
 

syms x y 

f = x^2*y + 5*x*sqrt(y) 

subs(f, x, 3) 

ans = 9*y+15*y^(1/2) 
 

syms s 

H = (s+3)/(s^2 +6*s + 8); 

G = subs(H,s,s+2) 

G = (s+5)/((s+2)^2+6*s+20) 
 

E = s^3 -14*s^2 +65*s -100; 

F = subs(E,s,7.1) 

F =13671/1000 

 

2.4 Some necessary subjects   

 

2.4.1 Function handles 

A function handle (@) is a reference to a function that can then be treated as a 

variable. It can be copied, placed in cell array, and evaluated just like a regular 

function. 

Function handles can refer to built-in MATLAB functions, to your own function in an 

M-file, or to anonymous functions. An anonymous function is defined with a one-line 

expression, rather than by an M-file. Try: 
 

g = @(x) x^2-5*x+6-sin(9*x) 

g(1)= 1.5879 
 



Some MATLAB functions that operate on function handles need to evaluate the 

function on a vector, so it is often better to define an anonymous function (or M-file)so 

that it can operate entry-wise on scalars, vectors, or 

 matrices. Try this instead: 
 

g = @(x) x.^2-5*x+6-sin(9*x) 

g([-1 0 2 3]) 

ans = 

   12.4121    6.0000    0.7510   -0.9564 

The general syntax for an anonymous function is 
 

fname = @(var1, var2, ...) expression 
 

Here is an example with two input arguments: 
 

norm2 = @(x,y) sqrt(x^2 + y^2) 

norm2(4, 5) 

 

Example 2.9: - Write a program to draw the surface of input function on square region 

around origin point. 

 

 

f=input('input handle f(x,y)='); 

[x1,y1]=meshgrid(-3:0.1:3); 

z1=f(x1,y1); 

surf(x1,y1,z1) 

 

should input the function as @(x,y)x.^2+y.^2 

 

 

2.4.2 Cell arrays 

Cell arrays are arrays which contain elements of arbitrary types. They are identified by 

curly braces instead of square ones: 

>> c = {[3,4],18.2,[1,2;2,1],'string'}; 

defines a cell array c. We can access elements of c in the following way: 

>> c{3} 

ans = 

     1 2 

     2 1 

 



Example 2.10: - You can substitute multiple symbolic expressions, numeric 

expressions, or any combination, using cell arrays of symbolic or numeric values. Try: 

syms x y 

S = x^y 

subs(S, x, 3) 

subs(S, {x y}, {3 2}) 

subs(S, {x y}, {3 x+1}) 

 
 

Example 2.11: - Let 
 

D = {‘red’;‘blue’;‘green’;‘yellow’} 
 

D = 

‘red’ 

‘blue’ 

‘green’ 

‘yellow’ 

 

sort(D) 

ans =  

    'blue' 

    'green' 

    'red' 

    'yellow' 

 

 

 

2.4.1 Structure 

A structure is a MATLAB data type that provides the means to store hierarchical data 

together in a single entity. A structure consists mainly of data containers, called fields, 

and each of these fields stores an array of some MATLAB data type. You assign a 

name to each field as you create the structure. The figure below shows a structure s 

that has three fields: a, b, and c. 

 

Example 2.12: - 

 

 



 

s.a=[1 4 7 2 9 3]; 

s.b=’James’ 

s.c=[8 1 6;3 5 7;4 9 2]; 

 

Like all MATLAB data types, the structure is an array. The class of a structure is 

called struct, so an array of structures is often referred to as a struct array. Like other 

MATLAB arrays, a struct array can have any dimensions. The struct array shown 

below has the dimensions 1-by-2 and is composed of two elements: s(1) and s(2). Each 

of these elements is a structure with fields a, b, and c of its own. 

 

 

Example 2.13: - 

 

 
s(1).a=[1 4 7 2 9 3]; 

s(1).b=’James’ 

s(1).c=[8 1 6;3 5 7;4 9 2]; 

s(2).a=’Anne’; 

s(2).b=pi; 

s(2).c=[1;2;3;4;5;6;7]; 

 

2.5 Polynomial and Solving Equations 
 

Polynomials divisor function  



[q, r] = quorem(p, h)  Divided p by h and return quotient q and remainder r. 

 

Example 2.14: -  

syms x 

p=x^3-4*x^2+3*x+1;  

h=x^2+1; 

[q, r] = quorem(p, h)  

q = x - 4 

r =2*x + 5 

 

Coefficients of polynomial  

C = coeffs(p) returns the coefficients of the polynomial p with respect to all the in 

determinates of p. 

C = coeffs(p, x) returns the coefficients of the polynomial p with respect to x. 

 

Example 2.15: -  

syms x 

 f=2*x^3-6*x+2; 

coeffs(f) 

ans =[ 2, -6, 2] 

 

Example 2.16: -  

syms x y 

z = 3*x^2*y^2 + 5*x*y^3; 

coeffs(z) 

coeffs(z,x) 

ans =[ 5, 3] 

ans =[ 5*y^3, 3*y^2] 

 

Conversions 

sym2poly(P):- Converts from a symbolic polynomial P to a row vector containing the 

polynomial coefficients. 

 

poly2sym(p) :-Converts from a polynomial coefficient vector p to a symbolic 

polynomial in the variable x. poly2sym(p,v) uses the symbolic the variable v. 

  



Example 2.17: - consider the polynomial A(s) = s3 + 4s2 − 7s − 10 

In Matlab: 

 

a = [1 4 -7 -10]; 

A = poly2sym(a,s) 

A = s^3+4*s^2-7*s-10 

 

Example 2.18: -  For the polynomial B(s) = 4s3 − 2s2 + 5s − 16 

syms s 

B = 4*s^3 -2*s^2 +5*s -16; 

b = sym2poly(B) 

b = 4 -2 5 -16 

 

double 

The function double(c) converts the symbolic object c (constants, scalar, or matrix) 

into a double precision floating point variable. 

 

Example 2.19: -  

 a=sym(2/3) 

 b=sym(1/5); 

 a+b=13/15 

 double(a+b)= 0.8667 

 
Solving Equations 

You can solve equations involving variables with solve.  
 

Example 2.20: - to find the solutions of the quadratic equation x2 − 2x − 4 = 0, type 

 

solve(’xˆ2 - 2*x - 4 = 0’) 

ans = 

[ 5^(1/2)+1] 

[ 1-5^(1/2)] 
 

Or 
 

syms x 

f=x^2-2*x-4; 

solve(f) 



ans = 

 1 - 5^(1/2) 

 5^(1/2) + 1 

 

Note that the equation to be solved is specified as a string; that is, it is surrounded by 

single quotes. The answer consists of the exact (symbolic) solutions 1 ±√5. To get 

numerical solutions, type double(ans), or vpa(ans) to display more digits. 
 

double(solve(f)) 

ans = 

   -1.2361 

    3.2361 
 

Or 
 

vpa(solve(f)) 

ans = 

 -1.2360679774997896964091736687313 

  3.2360679774997896964091736687313 
 

The command solve can solve higher-degree polynomial equations, as well as many 

other types of equations. It can also solve equations involving more than one variable. 

If there are fewer equations than variables, you should specify (as strings) which 

variable(s) to solve for.  

 

Example 2.21: - to solve 2x − log y = 1 for y in terms of x. 
 

syms x y 

solve(2*x - log(y) ==1, x) 

ans = 

log(y)/2 + 1/2 
  

 

You can specify more than one equation as well.  

 

Example 2.22: - 

 

syms x y 

[xsol, ysol] = solve(x^2 - y == 2, y - 2*x ==5,[x,y]) 

 

 



Exercises  

 

Q1) Write a program to draw the graph of input function. 

Q2) Write a program to draw the surface of input function. 

Q3) Write a program to check if the input function is odd or even. 

Q4) Write a program to find all asymptotic line of input function if exist. 

Q5) Write a program to find the area between three line if they are not co-linear and 

then draw the triangle of intersection. 

Q6) Write a program to find out if the input function is onto one or not then find it 

inverse if exist the draw the graphs. 

Q7) Write a program to find all singular point of input equation. 

Q8) Write a program to find the equation of line from two points. 

Q9) Mixing MATLAB built-in functions to do the following by one-line statement in 

command window 

a) Find the number of imaginary roots of polynomial. 

b) Find the sum of real roots of polynomial. 

c) Find the maximum coefficient in polynomial. 

d) Find the degree of polynomial. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

Calculus Applications 

 
The Symbolic Math Toolbox provides functions to do the basic operations of calculus; 

differentiation, limits, integration, summation, and Taylor series expansion. 

 

4.1 Limits 

limit:-Compute limit of symbolic expression 

Syntax 
limit(expr, x, a) 

limit(expr, a) 

limit(expr) 

limit(expr, x, a, 'left') 

limit(expr, x, a, 'right') 

 

Description 

limit(expr,x,a):- computes bidirectional limit of the symbolic expression expr 

when x approaches a. 

limit(expr,a):- computes bidirectional limit of the symbolic expression expr 

when the default variable approaches a. 

limit(expr):- computes bidirectional limit of the symbolic expression expr when 

the default variable approaches 0. 

limit(expr,x,a,'left'):-computes the limit of the symbolic expression 

expr when x approaches a from the left. 

limit(expr,x,a,'right'):- computes the limit of the symbolic expression 

expr when x approaches a from the right. 

Example 4.1:- Find the following limits 

1)  lim
𝑥→2

𝑥2 − 4

𝑥 − 2
      2)  lim

𝑦→0
(𝑥𝑦 + 𝑥)        3) lim

𝑥→0+

1

𝑥
      4) lim

𝑡→∞

1 − 𝑡2

3𝑡2 + 𝑡
     5) lim

𝑥→0−

|𝑥|

𝑥
  

 

1) syms x y 

 limit((x^2-4)/(x-2),2) 

 ans =4 

2) limit(x*y+x,y,0) 

  ans = x 

 

if we write 



or 

limit((x^2-4)/(x-2),x,2) 

 ans =4 

  limit(x*y+x,0) 

  ans = 0 

 

3) limit(1/x,x,0,'right') 

  ans = Inf 

 

4) syms t 

 limit((1-

t^2)/(3*t^2+t),t,inf) 

 ans =-1/3 5) limit(abs(x)/x,x,0,'left') 

  ans = -1 

 

4.2 Differentiation 

diff:- Differentiate symbolic expression 

Syntax 
diff(expr) 

diff(expr, v) 

diff(expr, n) 

diff(expr, v, n) 

 

Description 

diff(expr):- differentiates a symbolic expression expr with respect to its free 

variable as determined by symvar. 

diff(expr, v):- differentiate expr with respect to v. 

diff(expr, n):- differentiates expr n times. n is a positive integer. 

diff(expr, v, n):- differentiate expr with respect to v n times. 

 

Example 4.2: - Find the following derivative 

1)  
𝑑

𝑑𝑥
(𝑒𝑥 sin 𝑎𝑥)     2) 

𝑑3

𝑑𝑡3
(𝑡3 + tan  𝑡)    3)

𝜕

𝜕𝑦
(𝑥2 + 𝑦2 − 3𝑥𝑦)  

 

 syms x y t a 

1) diff(exp(x)*sin(a*x)) 

   ans = exp(x)*sin(a*x) + a*exp(x)*cos(a*x) 

  

  diff(exp(x)*sin(a*x),x) 

  ans = exp(x)*sin(a*x) + a*exp(x)*cos(a*x) 

 

2) diff(t^3+tan(t),t,3) 



   ans =2*(tan(t)^2 + 1)^2 + 4*tan(t)^2*(tan(t)^2 + 1) + 6 

 

3) diff(x^2+y^2-3*x*y,y) 

   ans =2*y - 3*x 
 

 

 

jacobian 

Compute Jacobian matrix 
 

Syntax 

jacobian(f, v) 

 

Description 

jacobian(f, v):- computes the Jacobian of the scalar or vector f with respect 

to v. The (i, j)-th entry of the result is 𝜕𝑓(𝑖)/𝜕𝑣(𝑗). If f is scalar, the Jacobian of 

f is the gradient of f. If v is a scalar, the result equals to diff(f, v). 
 

Example 4.3: - Let  𝑥 = 𝑟𝑐𝑜𝑠𝜃 and 𝑦 = 𝑟𝑠𝑖𝑛𝜃 then find  𝐽 =
𝜕(𝑥,𝑦)

𝜕(𝑟,𝜃)
 . 

 

 syms x y r th 

 J=jacobian([x; y], [r th]) 

 x=r*cos(th); 

 y=r*sin(th); 

 J=jacobian([x; y], [r th]) 

 J = [ cos(th), -r*sin(th)] 

     [ sin(th),  r*cos(th)] 

 det(J) 

 ans = r*cos(th)^2 + r*sin(th)^2 

 simplify(ans) 

 ans = r 

 
 

4.3 Integration 
 

int:-Integrate symbolic expression 
 

Syntax 

int(expr) 

int(expr, v) 



int(expr, a, b) 

int(expr, v, a, b) 
 

Description 

int(expr) :- returns the indefinite integral of expr with respect to its symbolic 

variable as defined by symvar. 

int(expr,v) :- returns the indefinite integral of expr with respect to the symbolic 

scalar variable v. 

int(expr,a,b) :- returns the definite integral from a to b of expr with respect to 

the default symbolic variable. a and b are symbolic or double scalars. 

int(expr,v,a,b) :- returns the definite integral of expr with respect to v from a 

to b. 
 

Example 4.4: - Find the following integral 

1) ∫
1

2 + 𝑥2
𝑑𝑥       2) ∫ 𝑥𝑒𝑥𝑑𝑥      3) ∫ √1 − 𝑥2𝑑𝑥

1

0

 

1) syms x 

  int(1/(2+x^2),x) 

  ans =(2^(1/2)*atan((2^(1/2)*x)/2))/2 
 

2) int(x*exp(x)) 

  ans = exp(x)*(x - 1) 
 

3) int(sqrt(1-x^2),x,0,1) 

  ans = pi/4 

 
 

4.4 Symbolic Summation 
 

symsum:- Evaluate symbolic sum of series 
 

Syntax 

r = symsum(expr) 

r = symsum(expr, v) 

r = symsum(expr, a, b) 

r = symsum(expr, v, a, b) 
 

Description 



r = symsum(expr) :- evaluates the sum of the symbolic expression expr with 

respect to the default symbolic variable defaultVar determined by symvar. The 

value of the default variable changes from 0 to defaultVar - 1. 

r = symsum(expr,v):- evaluates the sum of the symbolic expression expr 

with respect to the symbolic variable v. The value of the variable v changes from 0 to 

v - 1. 

r = symsum(expr,a,b):- evaluates the sum of the symbolic expression expr 

with respect to the default symbolic variable defaultVar determined by symvar. 

The value of the default variable changes from a to b. 

r = symsum(expr,v,a,b):- evaluates the sum of the symbolic expression 

expr with respect to the symbolic variable v. The value of the default variable 

changes from a to b. 
 

Example 4.5:- Find the sum of the following series 

1) ∑ 𝑖

𝑛

𝑖=0

           2) ∑
1

𝑛2

∞

𝑛=1

              3) ∑ 𝑥𝑘

𝑛

𝑘=0

          4) ∑
1

𝑘
−

1

𝑘 + 1

𝑛

𝑘=1

  

1) syms x n k 

    symsum(k,1,n) 

    ans = (n*(n + 1))/2 

 or 

   symsum(n+1) 

   ans = n^2/2 + n/2 
 

2) s1=symsum(1/k^2,1,inf) 

   s1 = pi^2/6 
 

3) s2=symsum(x^k,k,0,inf) 

   s2 = piecewise([1 <= x, Inf], [abs(x) < 1, -1/(x - 1)]) 
 

4) symsum(1/k-1/(k+1),k,1,n) 

  ans = psi(n + 1) - psi(n + 2) + 1 

  simplify(ans) 

  ans = 1 - 1/(n + 1) 
 

 

4.5 Taylor Series 
 

taylor:- Taylor series expansion 
 

jar:file:///C:/Program%20Files/MATLAB/R2010a/help/toolbox/symbolic/help.jar%21/symvar.html
jar:file:///C:/Program%20Files/MATLAB/R2010a/help/toolbox/symbolic/help.jar%21/symvar.html


Syntax 

taylor(f) 

taylor(f, n) 

taylor(f, a) 

taylor(f, n, v) 

taylor(f, n, v, a) 
 

Description 

taylor(f) :- returns the fifth order Maclaurin polynomial approximation to f.  

taylor(f,n):- returns the (n-1)-order Maclaurin polynomial approximation to f. 

Here n is a positive integer. 

taylor(f,a) :- returns the fifth order Taylor series approximation to f about point 

a. Here a is a real number. If a is a positive integer or if you want to change the 

expansion order, use taylor(f,n,a) to specify the base point and the expansion 

order. 
 

taylor(f,n,v):- returns the (n-1)-order Maclaurin polynomial approximation 

to f, where f is a symbolic expression representing a function and v specifies the 

independent variable in the expression. v can be a string or symbolic variable. 

taylor(f,n,v,a):- returns the Taylor series approximation to f about a. The 

argument a can be a numeric value, a symbol, or a string representing a numeric value 

or an unknown. If a is a symbol or a string, do not omit v. 

 

Example 4.6:- Find Maclaurin series of 𝑒𝑥 and Taylor series of it about 𝑥0 = 1. 
 

syms x 

taylor(exp(x))  

ans = x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1 
 

taylor(exp(x),10)  

ans = x^9/362880 + x^8/40320 + x^7/5040 + x^6/720 + 

x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1 
 

taylor(exp(x),3,1) 

ans = exp(1) + exp(1)*(x - 1) + (exp(1)*(x - 1)^2)/2 

 

4.6 Functional inverse 
 

inverse:- Functional inverse 
 



Syntax 

g = finverse(f) 

g = finverse(f,v) 

 

Description 

g = finverse(f) returns the functional inverse of f. f is a scalar sym 

representing a function of one symbolic variable, say x. Then g is a scalar sym that 

satisfies g(f(x)) = x. That is, finverse(f) returns f–1, provided f–1 exists. 

 

g = finverse(f,v) uses the symbolic variable v, where v is a sym, as the 

independent variable. Then g is a scalar sym that satisfies g(f(v)) = v. Use this 

form when f contains more than one symbolic variable. 
 

Example 4.7:- Find inverse of following functions 
 

1)  𝑓(𝑥) = 3𝑥 − 1     2) 𝑔(𝑥) = 2 + 𝑒𝑥       3) ℎ(𝑥) = sin (2𝑥 + 1) 
 

syms x 

1) f=3*x-1; 

   finverse(f) 

  

   ans = x/3 + 1/3 

  

2) g=2+exp(x); 

   finverse(g) 

   ans = log(x - 2) 

  

3) h=sin(2*x+1); 

   finverse(h) 

   Warning: finverse(sin(2*x + 1)) is not unique.   

   ans = asin(x)/2 - ½ 

 

4.8 Functional composition 
 

compose:-Functional composition 
 

Syntax 

compose(f,g) 

compose(f,g,z) 



compose(f,g,x,z) 

compose(f,g,x,y,z) 
 

Description 

compose(f,g) :- returns f(g(y)) where f = f(x) and g = g(y). Here x is 

the symbolic variable of f as defined by symvar and y is the symbolic variable of g 

as defined by symvar. 

compose(f,g,z) :- returns f(g(z)) where f = f(x), g = g(y), and x and 

y are the symbolic variables of f and g as defined by symvar. 

compose(f,g,x,z) :- returns f(g(z)) and makes x the independent variable for 

f. That is, if f = cos(x/t), then compose(f,g,x,z) returns cos(g(z)/t) 

whereas compose(f,g,t,z) returns cos(x/g(z)). 

compose(f,g,x,y,z) :- returns f(g(z)) and makes x the independent variable 

for f and y the independent variable for g. For f = cos(x/t) and g = 

sin(y/u), compose(f,g,x,y,z) returns cos(sin(z/u)/t) whereas 

compose(f,g,x,u,z) returns cos(sin(y/z)/t). 
 

Examples 4.9: - 
 

Suppose 

syms x y z t u; 

f = 1/(1 + x^2); g = sin(y); h = x^t; p = exp(-y/u); 

Then 

a = compose(f,g) 

b = compose(f,g,t) 

c = compose(h,g,x,z) 

d = compose(h,g,t,z) 

e = compose(h,p,x,y,z) 

f = compose(h,p,t,u,z) 

returns: 

a = 1/(sin(y)^2 + 1) 

b = 1/(sin(t)^2 + 1) 

c = sin(z)^t 

d = x^sin(z) 

e =(1/exp(z/u))^t 

f = x^(1/exp(y/z)) 

 

 



Exercises 

 

Q1) Write a program to find derivative of input function by definition. 

Q2) Write a program to find the area under function 𝑓(𝑥) on interval [𝑎, 𝑏] by 

Riemann integral. 

Q3) Write a program to find tangent line of function 𝑓(𝑥) at 𝑥0 and draw the graphs. 

Q4) Write a program to find local maximum, Local minimum and Inflection point of 

function 𝑓(𝑥) then draw its graph. 

Q5) Write a program to find the area between two input functions. 

Q6) Write a program to find the area under function 𝑓(𝑥) on interval [𝑎, 𝑏]. 

Q7) Write a program to find the area under function 𝑓(𝑥) if exist. 

Q8) Write a program to find local maximum, local minimum and saddle point of 

function 𝑓(𝑥, 𝑦) then draw its graph. 

Q9) Write a program to find the parametric equation of line in 𝑅3 that  pass through 

the two points and plot of its graph. 

Q10) Write a program to find the equation of plane pass through the three points and 

plot of its graph. 

Q11) Write a program to find the eq. of tangent plane of the surface 𝑓(𝑥, 𝑦, 𝑧) at the 

point (𝑥0, 𝑦0, 𝑧0). 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

Linear Algebra  

 
5.1 Solving Linear Systems 

 

  Using mldivide or x=A\b 

        Suppose that A is a non-singular n × n matrix and b is a column vector of length 

n. Then typing x = A\b numerically computes the unique solution to A*x = b. 

Type help mldivide for more information. 

 

Example 5.1:- use MATLAB to solve the following linear system  

 
𝑥 − 2𝑦 + 𝑧 = −1
𝑥 +  𝑦 − 𝑧 =     0
2𝑥 + 𝑦 − 3𝑧 =  2

 

solve:- 

 
>>A=[1 -2 1;1 1 -1;2 1 -3] 

>> b=[-1;0;2] 

>> X=A\b 

 

X = 

   -0.8000 

   -0.6000 

   -1.4000 

 

Using inv(A) 

        Suppose that A is a non-singular n × n matrix and b is a column vector of length 

n. Then can solved linear system 𝐴𝑥 = 𝑏 by 𝑥 = 𝑖𝑛𝑣(𝐴) ∗ 𝑏 

 

Example 5.1 can be solving by  
 

X=inv(A)*b 

 

Using linsolve 

X = linsolve(A,B) solves the linear system AX = B using LU factorization with partial 

pivoting when A is square and QR factorization with column pivoting otherwise. The 

number of rows of A must equal the number of rows of B. 



 

 

5.2 Calculating Eigenvalues and Eigenvectors 

The eigenvalues of a square matrix A are calculated with eig(A). The command  

[U, R] = eig(A) calculates both the eigenvalues and eigenvectors. The 

eigenvalues are the diagonal elements of the diagonal matrix R, and the columns of U 

are the eigenvectors.  

Here is an example illustrating the use of eig. 

 

Example 5.2:- 

 
 

>> A = [3 -2 0; 2 -2 0; 0 1 1]; 

>> eig(A) 

ans = 

      1 

     -1 

      2 

>> [U, R] = eig(A) 

U = 

        0  -0.4082  -0.8165 

        0  -0.8165  -0.4082 

   1.0000   0.4082  -0.4082 

R = 

   1   0   0 

   0  -1   0 

   0   0   2 

The eigenvector in the first column of U corresponds to the eigenvalue in the first 

column of R, and so on.  
 

 

 

 



5.3 MATLAB Linear Algebra Functions 
 

Euclidean Norm 

The length of a vector is called the norm of the vector. From Euclidean geometry, the 

distance between two points is the square root of the sum of the squares of the 

distances in each dimension. Thus, the notation and definition of the Euclidean norm is 

 

‖X‖ = √𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2 

 

Note that the norm can be defined in terms of the inner product: 

 

‖X‖ = √(X, X) 

 

Vector norm 

n = norm(X)  returns the Euclidean Norm of vector X. 

n = norm(X,p)  returns a different kind of norm, depending on the value of p. 

 

Example 5.3: - Let a=(2 3 -4) and b=(7 -4 5) then find the norm and unit 

vector for each of a and b then find the angle between a and b. 

 
>> a=[2 3 -4]; 

>> b=[7 -4 5]; 

>> na=norm(a) 

na =   5.3852 

>> nb=norm(b) 

nb =   9.4868 

>> ua=a/norm(a) 

ua =   0.3714    0.5571   -0.7428 

>> ub=b/norm(b) 

ub =   0.7379   -0.4216    0.5270 

>> theta = acos(dot(a,b)/(norm(a)*norm(b))) 

theta =  1.9309 

 

 



Rank of Matrix 

rank(A) :- Returns the rank of the matrix A, which is the number of independent rows 

of A. 

 

Example 5.4:- Let M = [0 2 2 3 -4; -2 4 2 -1 -6; 3 -4 -1 2 8]; 

then 

                  rank(M)=3 

 

Reduced row echelon form 

R = rref(A) produces the reduced row echelon form of A using Gauss Jordan 

elimination with partial pivoting. 

Example 5.5:- Use rref to solve the following linear system  

 
𝑥 − 2𝑦 + 𝑧 = −1
𝑥 +  𝑦 − 𝑧 =     0
2𝑥 + 𝑦 − 3𝑧 =  2

 

 

sol:- >> A=[1 -2 1;1 1 -1;2 1 -3]; 

   >> b=[-1;0;2]; 

   >> R=rref([A b]); 

   >> Sol=R(:,4)’ 

Sol = -0.8000   -0.6000   -1.4000 

 

Other functions 

There are useful function listed in below table 

 

1 C = dot(A,B) returns the scalar dot product of A and B. 

2 C = cross(A,B) returns the cross product of A and B. 

3 L = tril(A) returns the lower triangular part of A. 

4 U = triu(A) returns the Upper triangular part of A. 

file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/dot.html%23bt9pw32-2


5 b = trace(A) is the sum of the diagonal elements of the matrix A. 

6 Q = orth(A) 

returns an orthonormal basis for the range of A. The 

columns of Q are vectors, which span the range of A. The 

number of columns in Q is equal to the rank of A. 

 

Exercises  

 

Q1) Mixing MATLAB built-in functions to do the following by one-line statement in 

command window 

a) Check whether the matrix An×m is zero matrix or not. 

b) Check whether the matrix An×n is identity matrix or not. 

c) Check whether the matrix An×n is diagonal matrix or not. 

d) Check whether the matrix An×n is Symmetric matrices or not. 

e) Check whether the matrix An×n is Singular matrix or not. 

f) Check whether the matrix An×n is Hermitian matrix or not. 

g) Check whether the matrix An×n is Orthogonal matrix or not. 

h) Check whether the matrix An×n is Idempotent matrix or not. 

i) Check whether the matrix An×n is Involuntary matrix or not. 

j) Check whether the matrix An×n is Nilpotent matrix of power p or not. 

k) Check whether the all eigenvalue of matrix An×n is real or not. 

l) Check whether two vectors in R3 are parallel or not. 

m) Find the angle between two vectors in R3. 

Q2) Write a program to input three vectors in R3 then find out are independent or not. 

Q3) Write a program to solve linear system by using Cramer’s rule. 

Q4) Write a program input three vectors V1, V2 and V3in R3 then find the area of 

triangle V1V2V3. 

 

 

 



Chapter 6 

Solving Differential Equation 

 

6.1 Single Differential Equation 

The function dsolve computes symbolic solutions to ordinary differential equations. 

The equations are specified by symbolic expressions containing the letter D to denote 

differentiation. The symbols D2, D3, ... DN, correspond to the second, third, ..., Nth 

derivative, respectively. Thus, D2y is the Symbolic Math Toolbox equivalent of d2y /dt 
2 . The dependent variables are those preceded by D and the default independent 

variable is t. Note that names of symbolic variables should not contain D. The 

independent variable can be changed from t to some other symbolic variable by 

including that variable as the last input argument. 

 

Syntax 
dsolve('eq','cond1','cond2',...,'v') 

 

or 

dsolve(eq,cond1,'cond2) 

 

 

Example 6.1:- Find the general solution of the first order differential equation  
𝑑𝑦

𝑑𝑡
+ 𝑦 = 𝑡𝑒𝑡 

sol:- 

 
>> dsolve('Dy + y = t*exp(t)') 

 

ans = 

     1/2*t*exp(t)-1/4*exp(t)+exp(-t)*C1 

 

Or  

 

>> syms y(t) 

>> dsolve(diff(y)+y==t*exp(t)) 

ans = 

(exp(t)*(2*t - 1))/4 + C1*exp(-t) 

 

Example 6.2:- Find the partical solution of the first order differential equation  



𝑑𝑦

𝑑𝑡
= 1 + 𝑦2,     𝑦(0) = 1 

 

dsolve('Dy=1+y^2') 

uses y as the dependent variable and t as the default independent variable. 

The output of this command is 

ans = tan(t+C1) 

To specify an initial condition, use 

y = dsolve('Dy=1+y^2','y(0)=1') 

This produces 

y =tan(t+1/4*pi) 

 

or  

>> dsolve(diff(y)==1+y^2,y(0)==1) 

ans = 

tan(t + pi/4) 

 

 

Example 6.3: - Nonlinear equations may have multiple solutions, even when initial 

conditions are given: 
 

x = dsolve('(Dx)^2+x^2=1','x(0)=0') 

results in 

x = 

   [ sin(t)] 

   [ -sin(t)] 

Or 

>> syms x(t) 

>> x = dsolve(diff(x)^2+x^2==1,x(0)==0) 

x = 

 cosh(t*1i + (pi*1i)/2) 



 cosh(t*1i - (pi*1i)/2) 

 

Example 6.4:- Here is a second order differential equation with two initial conditions. 

The commands 

 

y = dsolve('D2y=cos(2*x)-y','y(0)=1','Dy(0)=0', 'x'); 

simplify(y) 

produce 

ans = 4/3*cos(x)-2/3*cos(x)^2+1/3 

or 

>> y = dsolve(diff(y,2)==cos(2*x)-

y,y(0)==1',diff(y(0))==0) 

y = 

(5*cos(x))/3 + C20*sin(x) + sin(x)*(sin(3*x)/6 + sin(x)/2) 

- (2*cos(x)*(6*tan(x/2)^2 - 3*tan(x/2)^4 + 

1))/(3*(tan(x/2)^2 + 1)^3) 

>> simplify(y) 

ans = 

(4*cos(x))/3 - (2*cos(x)^2)/3 + C20*sin(x) + 1/3 

 

6.2 Several Differential Equations 

The function dsolve can also handle several ordinary differential equations in several 

variables, with or without initial conditions. For example, here is a pair of linear, first-

order equations. 

 
dsolve('eq1','eq2','eq3', ...,'cond1','cond2',...,'v') 

 

or 

dsolve(eq1,eq2,eq3,...,cond1,'cond2,...,) 

 

 

 



Example 6.5: - solve linear system of differential equations 

 

𝑥 =́ 3𝑥 + 4𝑦 

𝑦 =́− 4𝑥 + 3𝑦 

 

 
 

S = dsolve('Dx = 3*x+4*y', 'Dy = -4*x+3*y') 

The computed solutions are returned in the structure S. You can determine the 

values of f and g by typing 
 

x = S.x 

x = exp(3*t)*(C1*sin(4*t)+C2*cos(4*t)) 

y = S.y 

y = exp(3*t)*(C1*cos(4*t)-C2*sin(4*t)) 

 

If you prefer to recover f and g directly as well as include initial conditions, 

type 

 

[x,y] = dsolve('Dx=3*x+4*y,Dg =-4*x+3*y', 'x(0) = 0,y(0) = 

1') 

f = exp(3*t)*sin(4*t) 

g = exp(3*t)*cos(4*t) 

 

or 

>> syms x(t) y(t) 

>> S = dsolve(diff(x) == 3*x+4*y, diff(y) == -4*x+3*y); 

>> S.x 

ans = 

C22*cos(4*t)*exp(3*t) + C21*sin(4*t)*exp(3*t) 

>> S.y 

ans = 

C21*cos(4*t)*exp(3*t) - C22*sin(4*t)*exp(3*t) 



 

Chapter 7 

Introduction to Numerical analysis 
 

7.1 Numerical analysis  

Is the study of algorithms that use numerical approximation (as opposed to general 

symbolic manipulations) for the problems of mathematical analysis. 

 

 

7.1.1 Numerical Errors 

 1. True Error 

True Error is defined as the difference between the true value in a calculation and the 

approximate value found using a numerical method etc. 

 

                True Error = True Value – Approximate Value 

 

2. Approximate Error 

Approximate error is defined as the difference between the present approximation and 

the previous approximation. 

 

                 Approximate Error (Ea) = Present Approximation – Previous 

Approximation 

 

3. Sources of Error 

 

a. Human Error 

   It causes when we use inaccurate measurement of data or inaccurate representation 

of mathematical constants. 

 

b. Truncation Error 

   It causes when we are forced to use mathematical techniques which give 

approximate, rather than exact answer. 

 

c. Round-off Error 

  These types of errors are associated with the limited number of digits numbers in the 

computers. 

 



7.2 Solutions of Equations in one Variable 

This section deals with finding solutions of algebraic and transcendental equations of 

the forms  

( ) 0f x  ,         (1) 

where we want to solve for the unknown x.  

 

7.2.1 Locating the position of roots (Programming Method) 

 To locate the position of roots of the function (equation) ( ) 0f x   by using 

programming method, let ( )f x  be continuous function on the interval [ , ]a b . We 

divide the interval [ , ]a b  into n subintervals   0a x  1x   2x   ... nx b  where 

ix a i h  , 0,1,..., ;i n  h=
b a

n


. If 1( ) ( ) 0i if x f x    for any 0in, then there exits 

c, a < c < b for which f(c)=0. 

 

Example 7.1:  

Find the approximate location of roots of the function  

1. 4 3 2( ) 7 3 26 10 0f x x x x x        on the interval [-8,8] with n=4 and n=8. 

2. 3 2( ) 4 10 0f x x x      on the interval [1,2] with n=5. 

3. 3 2132 28 147
( )

32 32 32
f x x x x     on the interval [-1,4] with n=5. 

Solution: (1):  Let n=4, h=
8 ( 8)

4
4

b a

n

  
  : 

X -8 -4 0 4 8 

f(x) + + - - + 

 



There is a root between (-4,0) and (4,8). 

If n=8, h=2: 

x -8 -6 -4 -2 0 2 4 6 8 

f(x) + + + + - + - + + 

 

There is a root between (-2,0), (0,2), (2,4) and (4,6). 

 

Solution: (2): Let n=5, h=0.2 

x 1 1.2 1.4 1.6 1.8 2 

f(x) - - + + + + 

 

There is a root between (1.2,1.4). 

 

Solution: (3): Let n=5, h=1 

x -1 0 1 2 3 4 

f(x) - + + - - + 

There is a root between (-1, 0), (1, 2) and (3, 4), see Figure 2.1. 

 

Figure 1. Graph of  3 2132 28 147
( )

32 32 32
f x x x x     



7.2.2 Numerical methods: 

We shall discuss some numerical methods for solving algebraic and transcendental 

equations. 

1. Bisection Method 

Suppose a continuous function f defined on the interval [a, b] is given with f(a) 

and f(b) of opposite sign (i.e. ( ) ( ) 0f a f b  ). Then by intermediate value theorem 

1.2.5 there exists a point c(a, b) such that f(c)=0. If we choose the midpoint c=
2

b a
, 

then three possibilities arise: 

  <0 there is a root between a, c  d=
2

a c
, 

If f(a)f(c) >0 there is a root between b, c  d=
2

b c
, 

  =0 c is exact root ((Stop)). 

We stop iteration if the interval width is as small as desired i.e. 1| |i ix x    for any i. 

 

Example 7.2: Find an approximate root of 2( ) 2f x x   in the interval [1, 2]by using 

Bisection method if it’s possible with error 410   . 

 

Solution: It is possible to use bisection method because f is continuous on [1, 2]  and 

f(a)=f(1)=−1=−ve; f(b)=f(2)=2=+ve, 

  f(a)f(b)= −2<0  (i.e. a root lies between 1 and 2). 

We have the formula 

x1=
1 2

1.5
2 2

a b 
  ,        | x1−a | = 0.5>. 

Find x2: 



f(x1) = 0.25= +ve. So the root lies between 1 and 1.5. 

  x2=
1 1.25
2

x a
 ,    | x1− x2| = 0.25 > .  

Find x3: 

f(x2)=−0.437=−ve. So the root lies between 1.25 and 1.5. 

  x3=
1 2 1.375

2

x x
 ,    | x2 − x3 | = 0.125 > .  

  

Stop iteration if 4
1| | 10i ix x 
  for any i=1, 2, …. 

 

Example 7.3: Find an approximate root of ( ) log( ) 1f x x x   in the interval [1, 2]  by 

using Bisection method with error 310   . 

Solution: f(x0) = f(1)=−1=−ve;  f(x1) = f(2) = 0.3863=+ve. 

  f(x0)f(x1)= − 0.3863 < 0  (i.e. a root lies between 1 and 2). 

We have the formula 

0 1
2

1 2
1.5

2 2

x x
x

 
   ,   1 2| | 0.5x x    . 

Find 3x : 

f(x2) =− ve. So the root lies between 1.5 and 2. 

   1 2
3 1.75

2

x x
x


  ,    2 3| | 0.25x x    . 

Find 4x : 

f(x3) =− ve. So the root lies between 1.75 and 2. 

  1 3
4 1.875

2

x x
x


  ,  3 4| | 0.125x x    . 

Find 5x : 



f(x4) =+ve. So the root lies between 1.75 and 1.875. 

  3 4
5 1.8125

2

x x
x


  ,  

Similarly, we get 

x6=1.78125, 

x7=1.765625, 

x8=1.7578125, 

x9=1.76171875, 

x10=1.763671875, 

x11=1.762953125. 

So the root is x11=1.762953125 with error 310   . 

 

Theorem 7.1: Let f [ , ]n nC a b  and suppose ( ) ( ) 0f a f b  . The bisection procedure 

generates a sequence {Pn} approximating P with the property ;   1.
2

n n

b a
P P n


    

Proof: For each 1n  we have 
12

n n n

b a
b a




   and P ( , )n na b . Since  

 Pn=
1

( )
2

a b  for all 1n  , it follows that  

   
1

( ) ;   for all 1.
2 2

n n n n

b a
P P b a n


      

 

Example 7.4: Determine approximately how many bisection iterations are necessary to 

solve f(x) with error  over [ , ]a b . 

Solution: We must find an integer n that will satisfy 
2

n n

b a
P P


   .  

  2nb a




 .  



By taking the natural logarithm to the both sides of the above equation, we get 

ln (2)
b a

nln


 
 

 
, which implies that 

ln

ln(2)

b a

n


 
 
  .   

For example, if f(x)=x3+4x-10=0, 510   and [1,2]. 

55

2 1
ln

ln(10 ) 11.51292510
16.6096

ln(2) ln(2) 0.693147
n



 
 
      n=17 (number of iterations). 

 

2. False-Position method (Regula falsi method) 

The method of False-Position is often referred to as the method of linear interpolation 

or the Latin equivalent (Regula falsi method). It is a method that is sometimes used in 

the attempt to speed up the bisection method. Suppose a continuous function f defined 

on the interval [a, b] is given with f(a) and f(b) of opposite sign (i.e. f(a)f(b)<0). To 

derive a formula for false-position method, approximate the graph of f by a straight line 

on [a, b] connecting (a, f(a)) and (b, f(b)) which intersect x-axis at (c,0) where c is more 

approximate to the exact (actual) root than a and b. 

To obtain a formula for c we use the slop equality: 

( ) ( ) ( )f b f a f b y

b a b x

 


 
 

( ) ( ) ( ) 0f b f a f b

b a b c

 


 
 

( ) ( )

( ) ( )

af b bf a
c

f b f a





. 

To find another approximation: 

  <0 there is a root between a, c d=
( ) ( )

( ) ( )

af c cf a

f c f a




, 

If f(a)f(c) >0 there is a root between b, c d=
( ) ( )

( ) ( )

bf c cf b

f c f b




, 

  =0 c is exact root ((Stop)). 

We stop iteration if the interval width is as small as desired i.e.  

1| |i ix x    for any i. 



(b,0) (c,0) 

(a, f(a)) 

(b,  f(b)) 

(a,0) 

y=f(x) 

                                                      Straight line 

 

                                     

 

 

 

                                                               

                                        Figure 2 Linear Interpolation       

 

Example 7.5: Find an approximate root of 2( ) 2 1 0f x x x    , between [-1,0] by 

using False-Position method with error
510   . 

Solution: Let x1=-1, x2=0, f(x1)=2=+ve and f(x2)=−1=−ve.  

  f(x1)f(x2)=-2<0  (i.e. a root lies between −1 and 0). 

We have the formula 

1 2 2 1
3

2 1

( ) ( )
.

( ) ( )

x f x x f x
x

f x f x





 

  3

1 (0) 0 ( 1) 1 ( 1) 0 2
0.33

(0) ( 1) 1 2

f f
x

f f

         
  

   
. |x3-x2|=0.33>. 

Find x4:  

 f(x3)=-0.22=-ve. So the root lies between -1 and 0.33.  

  1 3 3 1
4

3 1

( ) ( )
0.4

( ) ( )

x f x x f x
x

f x f x


  


.     |x4-x3|=0.07>. 

  

Stop iteration if |xi-xi+1| for any i=1, 2, …. 

 



Example 7.6: A real root of the equation  3( ) 5 1 0f x x x     lies in the interval (0, 

1). Perform four iterations of the False-position method to obtain this root. 

Solution: We have 0 1 0 0 1 10, 1, ( ) 1, ( ) 3x x f f x f f x       . 

 1 0 0 1 1 0
2 1 1

1 0 1 0

0.25
x x x f x f

x x f
f f f f

  
    

  
,      2 0.234375f   . 

Since 0 2 0,f f  there is a root r between 0 2( , )x x . Therefore, 

2 0 0 2 2 0
3 2 2

2 0 2 0

0.202532
x x x f x f

x x f
f f f f

  
    

  
,      3 0.004352f   . 

Since 0 3 0,f f  there is a root  r  between 0 3( , )x x . Therefore, 

3 0 0 3 3 0
4 3 3

3 0 3 0

0.201654
x x x f x f

x x f
f f f f

  
    

  
,      3 0.000070f   . 

Since 0 4 0,f f  there is a root  r  between 0 4( , )x x . Therefore, 

4 0 0 4 4 0
5 4 4

4 0 4 0

0.201640
x x x f x f

x x f
f f f f

  
    

  
 

 

Example 7.7: Use the False-position method to determine the root of the equation 

cos( ) 0xx xe  . Taking the initial approximations as 0 10, 1x x  . 

Solution: We have 0 1 0 0 1 10, 1, ( ) 1, ( ) 2.177979523x x f f x f f x       . 

1 0 0 1 1 0
2 1 1

1 0 1 0

0.3146653378,
x x x f x f

x x f
f f f f

  
    

  
 

            2 0.519871175f  . 

Since 1 2 0,f f   there is a root  r  between 1 2( , )x x . Therefore, 

2 1 1 2 2 1
3 2 2

2 1 2 1

0.4467281466
x x x f x f

x x f
f f f f

  
    

  
,   



          3 0.203544710f  . 

Since 1 3 0,f f  there is a root  r  between 1 3( , )x x . Therefore, 

3 1 1 3 3 1
4 3 3

3 1 3 1

0.4940153366
x x x f x f

x x f
f f f f

  
    

  
. 

  

 

3. Newton-Raphson method 

 Suppose that the function f is twice continuously differentiable on the interval [a, 

b], that is fC2 [a, b]. Let c be an approximation to the exact root  such that ( ) 0f c   

and |c-| is small. Consider the first degree Taylor polynomial of f expanded about c i.e.  

f(x)=f(c)+(x-c) ( )f c +
2( )

( )
2!

x c
f 


 ,     (3) 

where  lies between x and c. Since f()=0, equation (2.3) with x= gives 

 0= f(c)+(-c) ( )f c +
2( )

( )
2!

c
f





  

Newton-Raphson is derived by assuming that the term involving 2( )c  is negligible 

and that 

 0 f(c)+(-c) ( )f c  
( )

( )

f c
c

f c



 

This should be a better approximation to  than is c. This sets the stage for the Newton-

Raphson method, which involves generating the sequence { }nx defined by 

1
1

1)

( )

(

n
n n

n

f x
x x

f x






 


, n=1, 2, …. 

 

Example 7.8: Perform four iteration of the Newton-Raphson method to find an 

approximate root of the equation 3 5 1 0x x    near 0 0.5x  . 



Solution:  Let 3( ) 5 1 0f x x x    . Here  2( ) 3 5f x x   . 

Using the Newton-Raphson method 

 1

( )

( )

k
k k

k

f x
x x

f x
  


,  

we get 

 
3 3

1 2 2

5 1 2 1

3 5 3 5

k k k
k k

k k

x x x
x x

x x


  
  

 
,   for k=0, 1, 2, … . 

Starting with 0 0.5x  , we obtain 

 1 0.176471,x   

2 0.201568x  , 

3 0.201640x  . 

The exact value correct to six decimal places is 0.2012640. 

 

Example 7.9: If f(x)=x3−x+1 and x0=1, what are x1 and x2 in the Newton iteration?. 

Solution: From the basic formula, 0
1 0

0)

( )

(

f x
x x

f x
 


.  

Now, 2( ) 3 1f x x   , and so 0( ) (1) 2f x f   . Also 0( ) (1) 1f x f  .  

  1

1 1
1

2 2
x    .  

Similarly  

1
2 1

1)

( )

(

f x
x x

f x
 


 ,  1

1 5
( ) ( )

2 8
f x f   and 1

1 1
( ) ( )

2 4
f x f    . 

  2

1 5 / 8
3

2 1/ 4
x   


. 

 



Example 7.10: Use Newton-Raphson method to find an efficient method for 

computing:  

(1) , 0n a a  ; n=2, 3, … 

 (2) 
1

, 0a
a

  without using division.   

Solution (1):  Let nx a .   Then  xn-a=0 . And let   f(x)= xn-a,  then 1( ) .nf x nx    

  
1

1 1

( ) 1
1

( )

n
ni i

i i i i in
i i

f x x a a
x x x x x

f x n nnx


 

  
       

  
 for  i=0, 1, 2, … . 

If, for example, we wish to compute 17 and begin with 0 4x  , the successive 

approximations are as follows: given in rounded form to exhibit only correct figures. 

 1 4.12x  , 

 2 4.123106x  , 

 3 4.1231056256177,x   

 4 4.123105625617660549821409856.x   

The value given by 4x  is correct to 28 figures.  

Solution (2): Let 
1

x
a

 . Then 
1

0a
x
  . And let 

1
( )f x a

x
  , then 

2

1
( )f x

x
   . 

 2
1

2

1

( )
(2 )

1( )

i i
i i i i i i i i

i

i

a
f x x

x x x x x ax ax x
f x

x





        




, i=0, 1, 2, … . 

If, for example, we wish to compute 
21

1
and begin with 0 0.05x  , the successive 

approximations are as follows: 

 1 0.0475x  , 

 2 0.04761875x  , 

 3 0.047619047617188x  , 



 4 0.047619047619048x  , 

   

          The exact value of  
1

21
 is 0.047619047619048. 
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