


Chapter 1

Functions

In this chapter we review the basic concepts of functions, polynomial func-
tions, rational functions, trigonometric functions, logarithmic functions, ex-
ponential functions, hyperbolic functions, algebra of functions, composition
of functions and inverses of functions.

1.1 The Concept of a Function

Basically, a function f relates each element x of a set, say Df , with exactly
one element y of another set, say Rf . We say that Df is the domain of f and
Rf is the range of f and express the relationship by the equation y = f(x).
It is customary to say that the symbol x is an independent variable and the
symbol y is the dependent variable.

Example 1.1.1 Let Df = {a, b, c}, Rf = {1, 2, 3} and f(a) = 1, f(b) = 2
and f(c) = 3. Sketch the graph of f .

graph

Example 1.1.2 Sketch the graph of f(x) = |x|.
Let Df be the set of all real numbers and Rf be the set of all non-negative

real numbers. For each x in Df , let y = |x| in Rf . In this case, f(x) = |x|,

2
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the absolute value of x. Recall that

|x| =
{

x if x ≥ 0
−x if x < 0

We note that f(0) = 0, f(1) = 1 and f(−1) = 1.
If the domain Df and the range Rf of a function f are both subsets

of the set of all real numbers, then the graph of f is the set of all ordered
pairs (x, f(x)) such that x is in Df . This graph may be sketched in the xy-
coordinate plane, using y = f(x). The graph of the absolute value function
in Example 2 is sketched as follows:

graph

Example 1.1.3 Sketch the graph of

f(x) =
√
x− 4.

In order that the range of f contain real numbers only, we must impose
the restriction that x ≥ 4. Thus, the domain Df contains the set of all real
numbers x such that x ≥ 4. The range Rf will consist of all real numbers y
such that y ≥ 0. The graph of f is sketched below.

graph

Example 1.1.4 A useful function in engineering is the unit step function,
u, defined as follows:

u(x) =

{
0 if x < 0
1 if x ≥ 0

The graph of u(x) has an upward jump at x = 0. Its graph is given below.
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graph

Example 1.1.5 Sketch the graph of

f(x) =
x

x2 − 4
.

It is clear that Df consists of all real numbers x 6= ±2. The graph of f is
given below.

graph

We observe several things about the graph of this function. First of all,
the graph has three distinct pieces, separated by the dotted vertical lines
x = −2 and x = 2. These vertical lines, x = ±2, are called the vertical
asymptotes. Secondly, for large positive and negative values of x, f(x) tends
to zero. For this reason, the x-axis, with equation y = 0, is called a horizontal
asymptote.

Let f be a function whose domain Df and range Rf are sets of real
numbers. Then f is said to be even if f(x) = f(−x) for all x in Df . And
f is said to be odd if f(−x) = −f(x) for all x in Df . Also, f is said to be
one-to-one if f(x1) = f(x2) implies that x1 = x2.

Example 1.1.6 Sketch the graph of f(x) = x4 − x2.
This function f is even because for all x we have

f(−x) = (−x)4 − (−x)2 = x4 − x2 = f(x).

The graph of f is symmetric to the y-axis because (x, f(x)) and (−x, f(x)) are
on the graph for every x. The graph of an even function is always symmetric
to the y-axis. The graph of f is given below.

graph



1.1. THE CONCEPT OF A FUNCTION 5

This function f is not one-to-one because f(−1) = f(1).

Example 1.1.7 Sketch the graph of g(x) = x3 − 3x.
The function g is an odd function because for each x,

g(−x) = (−x)3 − 3(−x) = −x3 + 3x = −(x3 − 3x) = −g(x).

The graph of this function g is symmetric to the origin because (x, g(x))
and (−x,−g(x)) are on the graph for all x. The graph of an odd function is
always symmetric to the origin. The graph of g is given below.

graph

This function g is not one-to-one because g(0) = g(
√

3) = g(−
√

3).
It can be shown that every function f can be written as the sum of an

even function and an odd function. Let

g(x) =
1

2
(f(x) + f(−x)), h(x) =

1

2
(f(x)− f(−x)).

Then,

g(−x) =
1

2
(f(−x) + f(x)) = g(x)

h(−x) =
1

2
(f(−x)− f(x)) = −h(x).

Furthermore
f(x) = g(x) + h(x).

Example 1.1.8 Express f as the sum of an even function and an odd func-
tion, where,

f(x) = x4 − 2x3 + x2 − 5x+ 7.

We define

g(x) =
1

2
(f(x) + f(−x))

=
1

2
{(x4 − 2x3 + x2 − 5x+ 7) + (x4 + 2x3 + x2 + 5x+ 7)}

= x4 + x2 + 7
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and

h(x) =
1

2
(f(x)− f(−x))

=
1

2
{(x4 − 2x3 + x2 − 5x+ 7)− (x4 + 2x3 + x2 + 5x+ 7)}

= −2x3 − 5x.

Then clearly g(x) is even and h(x) is odd.

g(−x) = (−x)4 + (−x)2 + 7

= x4 + x2 + 7

= g(x)

h(−x) =− 2(−x)3 − 5(−x)

= 2x3 + 5x

= −h(x).

We note that

g(x) + h(x) = (x4 + x2 + 7) + (−2x3 − 5x)

= x4 − 2x3 + x2 − 5x+ 7

= f(x).

It is not always easy to tell whether a function is one-to-one. The graph-
ical test is that if no horizontal line crosses the graph of f more than once,
then f is one-to-one. To show that f is one-to-one mathematically, we need
to show that f(x1) = f(x2) implies x1 = x2.

Example 1.1.9 Show that f(x) = x3 is a one-to-one function.
Suppose that f(x1) = f(x2). Then

0 = x3
1 − x3

2

= (x1 − x2)(x2
1 + x1x2 + x2

2) (By factoring)

If x1 6= x2, then x2
1 + x1x2 + x2

2 = 0 and

x1 =
−x2 ±

√
x2

2 − 4x2
2

2

=
−x2 ±

√
−3x2

2

2
.
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This is only possible if x1 is not a real number. This contradiction proves
that f(x1) 6= f(x2) if x1 6= x2 and, hence, f is one-to-one. The graph of f is
given below.

graph

If a function f with domain Df and range Rf is one-to-one, then f has a
unique inverse function g with domain Rf and range Df such that for each
x in Df ,

g(f(x)) = x

and for such y in Rf ,
f(g(y)) = y.

This function g is also written as f−1. It is not always easy to express g
explicitly but the following algorithm helps in computing g.

Step 1 Solve the equation y = f(x) for x in terms of y and make sure that there
exists exactly one solution for x.

Step 2 Write x = g(y), where g(y) is the unique solution obtained in Step 1.

Step 3 If it is desirable to have x represent the independent variable and y
represent the dependent variable, then exchange x and y in Step 2 and
write

y = g(x).

Remark 1 If y = f(x) and y = g(x) = f−1(x) are graphed on the same
coordinate axes, then the graph of y = g(x) is a mirror image of the graph
of y = f(x) through the line y = x.

Example 1.1.10 Determine the inverse of f(x) = x3.
We already know from Example 9 that f is one-to-one and, hence, it has

a unique inverse. We use the above algorithm to compute g = f−1.

Step 1 We solve y = x3 for x and get x = y1/3, which is the unique solution.
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Step 2 Then g(y) = y1/3 and g(x) = x1/3 = f−1(x).

Step 3 We plot y = x3 and y = x1/3 on the same coordinate axis and compare
their graphs.

graph

A polynomial function p of degree n has the general form

p(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an, a2 6= 0.

The polynomial functions are some of the simplest functions to compute.
For this reason, in calculus we approximate other functions with polynomial
functions.

A rational function r has the form

r(x) =
p(x)

q(x)

where p(x) and q(x) are polynomial functions. We will assume that p(x) and
q(x) have no common non-constant factors. Then the domain of r(x) is the
set of all real numbers x such that q(x) 6= 0.

Exercises 1.1

1. Define each of the following in your own words.

(a) f is a function with domain Df and range Rf

(b) f is an even function

(c) f is an odd function

(d) The graph of f is symmetric to the y-axis

(e) The graph of f is symmetric to the origin.

(f) The function f is one-to-one and has inverse g.
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2. Determine the domains of the following functions

(a) f(x) =
|x|
x

(b) f(x) =
x2

x3 − 27

(c) f(x) =
√
x2 − 9 (d) f(x) =

x2 − 1

x− 1

3. Sketch the graphs of the following functions and determine whether they
are even, odd or one-to-one. If they are one-to-one, compute their in-
verses and plot their inverses on the same set of axes as the functions.

(a) f(x) = x2 − 1 (b) g(x) = x3 − 1

(c) h(x) =
√

9− x, x ≥ 9 (d) k(x) = x2/3

4. If {(x1, y1), (x2, y2), . . . , (xn+1, yn+1)} is a list of discrete data points in
the plane, then there exists a unique nth degree polynomial that goes
through all of them. Joseph Lagrange found a simple way to express this
polynomial, called the Lagrange polynomial.

For n = 2, P2(x) = y1

(
x− x2

x1 − x2

)
+ y2

(
x− x1

x2 − x1

)

For n = 3, P3(x) = y1
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
+ y2

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
+

y3
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)

P4(x) =y1
(x− x2)(x− x3)(x− x4)

(x1 − x2)(x1 − x3)(x1 − x4)
+ y2

(x− x1)(x− x3)(x− x4)

(x2 − x1)(x2 − x3)(x2 − x4)
+

y3
(x− x1)(x− x2)(x− x4)

(x3 − x1)(x3 − x2)(x3 − x4)
+ y4

(x− x1)(x− x2)(x− x3)

(x4 − x1)(x4 − x2)(x4 − x3)

Consider the data {(−2, 1), (−1,−2), (0, 0), (1, 1), (2, 3)}. Compute P2(x),
P3(x), and P4(x); plot them and determine which data points they go
through. What can you say about Pn(x)?
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5. A linear function has the form y = mx + b. The number m is called
the slope and the number b is called the y-intercept. The graph of this
function goes through the point (0, b) on the y-axis. In each of the
following determine the slope, y-intercept and sketch the graph of the
given linear function:

a) y = 3x− 5 b) y = −2x+ 4 c) y = 4x− 3

d) y = 4 e) 2y + 5x = 10

6. A quadratic function has the form y = ax2 + bx + c, where a 6= 0. On
completing the square, this function can be expressed in the form

y = a

{(
x+

b

2a

)2

− b2 − 4ac

4a2

}
.

The graph of this function is a parabola with vertex

(
− b

2a
, −b

2 − 4ac

4a

)
and line of symmetry axis being the vertical line with equation x =

−b
2a

.

The graph opens upward if a > 0 and downwards if a < 0. In each of
the following quadratic functions, determine the vertex, symmetry axis
and sketch the graph.

a) y = 4x2 − 8 b) y = −4x2 + 16 c) y = x2 + 4x+ 5

d) y = x2 − 6x+ 8 e) y = −x2 + 2x+ 5 f) y = 2x2 − 6x+ 12

g) y = −2x2 − 6x+ 5 h) y = −2x2 + 6x+ 10 i) 3y + 6x2 + 10 = 0

j) y = −x2 + 4x+ 6 k) y = −x2 + 4x l) y = 4x2 − 16x

7. Sketch the graph of the linear function defined by each linear equation
and determine the x-intercept and y-intercept if any.

a) 3x− y = 3 b) 2x− y = 10 c) x = 4− 2y
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d) 4x− 3y = 12 e) 3x+ 4y = 12 f) 4x+ 6y = −12

g) 2x− 3y = 6 h) 2x+ 3y = 12 i) 3x+ 5y = 15

8. Sketch the graph of each of the following functions:

a) y = 4|x| b) y = −4|x|

c) y = 2|x|+ |x− 1| d) y = 3|x|+ 2|x− 2| − 4|x+ 3|

e) y = 2|x+ 2| − 3|x+ 1|

9. Sketch the graph of each of the following piecewise functions.

a) y =

{
2 if x ≥ 0

−2 if x < 0
b) y =

{
x2 for x ≤ 0

2x+ 4 for x > 0

c) y =

{
4x2 if x ≥ 0

3x3 x < 0
d) y =

{
3x2 for x ≤ 1

4 for x > 1

e) y = n− 1 for n− 1 ≤ x < n, for each integer n.

f) y = n for n− 1 < x ≤ n for each integer n.

10. The reflection of the graph of y = f(x) is the graph of y = −f(x). In
each of the following, sketch the graph of f and the graph of its reflection
on the same axis.

a) y = x3 b) y = x2 c) y = |x|

d) y = x3 − 4x e) y = x2 − 2x f) y = |x|+ |x− 1|

g) y = x4 − 4x2 h) y = 3x− 6 i) y =

{
x2 + 1 for x ≤ 0

x3 + 1 if x < 0
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11. The graph of y = f(x) is said to be

(i) Symmetric with respect to the y-axis if (x, y) and (−x, y) are both
on the graph of f ;

(ii) Symmetric with respect to the origin if (x, y) and (−x,−y) are both
on the graph of f .

For the functions in problems 10 a) – 10 i), determine the functions whose
graphs are (i) Symmetric with respect to y-axis or (ii) Symmetric with
respect to the origin.

12. Discuss the symmetry of the graph of each function and determine whether
the function is even, odd, or neither.

a) f(x) = x6 + 1 b) f(x) = x4 − 3x2 + 4 c) f(x) = x3 − x2

d) f(x) = 2x3 + 3x e) f(x) = (x− 1)3 f) f(x) = (x+ 1)4

g) f(x) =
√
x2 + 4 h) f(x) = 4|x|+ 2 i) f(x) = (x2 + 1)3

j) f(x) =
x2 − 1

x2 + 1
k) f(x) =

√
4− x2 l) f(x) = x1/3

1.2 Trigonometric Functions

The trigonometric functions are defined by the points (x, y) on the unit circle
with the equation x2 + y2 = 1.

graph

Consider the points A(0, 0), B(x, 0), C(x, y) where C(x, y) is a point on
the unit circle. Let θ, read theta, represent the length of the arc joining
the points D(1, 0) and C(x, y). This length is the radian measure of the
angle CAB. Then we define the following six trigonometric functions of θ as
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follows:

sin θ =
y

1
, cos θ =

x

1
, tan θ =

y

x
=

sin θ

cos θ
,

csc θ =
1

y
=

1

sin θ
, sec θ =

1

x
=

1

cos θ
, cot θ =

x

y
=

1

tan θ
.

Since each revolution of the circle has arc length 2π, sin θ and cos θ have
period 2π. That is,

sin(θ + 2nπ) = sin θ and cos(θ + 2nπ) = cos θ, n = 0,±1,±2, . . .

The function values of some of the common arguments are given below:

θ 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π

sin θ 0 1/2
√

2/2
√

3/2 1
√

3/2
√

2/2 1/2 0

cos θ 1
√

3/2
√

2/2 1/2 0 −1/2 −
√

2/2 −
√

3/2 -1

θ 7π/6 5π/4 4π/3 3π/2 5π/3 7π/4 11π/6 2π

sin θ −1/2 −
√

2/2 −
√

3/2 −1 −
√

3/2 −
√

2/2 −1/2 0

cos θ −
√

3/2 −
√

2/2 −1/2 0 1/2
√

2/2
√

3/2 1

A function f is said to have period p if p is the smallest positive number
such that, for all x,

f(x+ np) = f(x), n = 0,±1,±2, . . . .

Since csc θ is the reciprocal of sin θ and sec θ is the reciprocal of cos(θ), their
periods are also 2π. That is,

csc(θ + 2nπ) = csc(θ) and sec(θ + 2nπ) = sec θ, n = 0,±1,±2, . . . .

It turns out that tan θ and cot θ have period π. That is,

tan(θ + nπ) = tan θ and cot(θ + nπ) = cot θ, n = 0,±1,±2, . . . .

Geometrically, it is easy to see that cos θ and sec θ are the only even trigono-
metric functions. The functions sin θ, cos θ, tan θ and cot θ are all odd func-
tions. The functions sin θ and cos θ are defined for all real numbers. The
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functions csc θ and cot θ are not defined for integer multiples of π, and sec θ
and tan θ are not defined for odd integer multiples of π/2. The graphs of the
six trigonometric functions are sketched as follows:

graph

The dotted vertical lines represent the vertical asymptotes.

There are many useful trigonometric identities and reduction formulas.
For future reference, these are listed here.

sin2 θ + cos2 θ = 1 sin2 θ = 1− cos2 θ cos2 θ = 1− sin2 θ
tan2 θ + 1 = sec2 θ tan2 θ = sec2 θ − 1 sec2 θ − tan2 θ = 1
1 + cot2 θ = csc2 θ cot2 θ = csc2 θ − 1 csc2 θ − cot2 θ = 1

sin 2θ = 2 sin θ cos θ cos 2θ = 2 cos2 θ − 1 cos 2θ = 1 + 2 sin2 θ

sin(x+ y) = sinx cos y + cosx sin y, cos(x+ y) = cosx cos y − sinx sin y
sin(x− y) = sinx cos y − cosx sin y, cos(x− y) = cosx cos y + sinx sin y

tan(x+ y) =
tanx+ tan y

1− tanx tan y
tan(x− y) =

tanx− tan y

1 + tanx tan y

sinα + sin β = 2 sin

(
α + β

2

)
cos

(
α− β

2

)

sinα− sinβ = 2 cos

(
α + β

2

)
sin

(
α− β

2

)

cosα + cosβ = 2 cos

(
α + β

2

)
cos

(
α− β

2

)

cosα− cos β = −2 sin

(
α + β

2

)
sin

(
α− β

2

)
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sinx cos y =
1

2
(sin(x+ y) + sin(x− y))

cosx sin y =
1

2
(sin(x+ y)− sin(x− y))

cosx cos y =
1

2
(cos(x− y) + cos(x+ y))

sinx sin y =
1

2
(cos(x− y)− cos(x+ y))

sin(π ± θ) = ∓ sin θ

cos(π ± θ) = − cos θ

tan(π ± θ) = ± tan θ

cot(π ± θ) = ± cot θ

sec(π ± θ) = − sec θ

csc(π ± θ) = ∓ csc θ

In applications of calculus to engineering problems, the graphs of y =
A sin(bx+ c) and y = A cos(bx+ c) play a significant role. The first problem
has to do with converting expressions of the form A sin bx + B cos bx to one
of the above forms. Let us begin first with an example.

Example 1.2.1 Express y = 3 sin(2x)−4 cos(2x) in the form y = A sin(2x±
θ) or y = A cos(2x± θ).

First of all, we make a right triangle with sides of length 3 and 4 and
compute the length of the hypotenuse, which is 5. We label one of the acute
angles as θ and compute sin θ, cos θ and tan θ. In our case,

sin θ =
3

5
, cos θ =

4

5
, and, tan θ =

3

4
.

graph
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Then,

y = 3 sin 2x− 4 cos 2x

= 5

[
(sin(2x))

(
3

5

)
− (cos(2x))

4

5

]
= 5[sin(2x) sin θ − cos(2x) cos θ]

= −5[cos(2x) cos θ − sin(2x) sin θ]

= −5[cos(2x+ θ)]

Thus, the problem is reduced to sketching a cosine function, ???

y = −5 cos(2x+ θ).

We can compute the radian measure of θ from any of the equations

sin θ =
3

5
, cos θ =

4

5
or tan θ =

3

4
.

Example 1.2.2 Sketch the graph of y = 5 cos(2x+ 1).
In order to sketch the graph, we first compute all of the zeros, relative

maxima, and relative minima. We can see that the maximum values will be
5 and minimum values are −5. For this reason the number 5 is called the
amplitude of the graph. We know that the cosine function has zeros at odd
integer multiples of π/2. Let

2xn + 1 = (2n+ 1)
π

2
, xn = (2n+ 1)

π

4
− 1

2
, n = 0,±1,±2 . . . .

The max and min values of a cosine function occur halfway between the
consecutive zeros. With this information, we are able to sketch the graph of

the given function. The period is π, phase shift is
1

2
and frequency is

1

π
.

graph

For the functions of the form y = A sin(ωt± d) or y = A cos(ωt± d) we
make the following definitions:
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period =
2π

ω
, frequency =

1

period
=

ω

2π
,

amplitude = |A|, and phase shift =
d

ω
.

The motion of a particle that follows the curves A sin(ωt±d) or A cos(ωt±d)
is called simple harmonic motion.

Exercises 1.2

1. Determine the amplitude, frequency, period and phase shift for each of
the following functions. Sketch their graphs.

(a) y = 2 sin(3t− 2) (b) y = −2 cos(2t− 1)
(c) y = 3 sin 2t+ 4 cos 2t (d) y = 4 sin 2t− 3 cos 2t

(e) y =
sinx

x

2. Sketch the graphs of each of the following:

(a) y = tan(3x) (b) y = cot(5x) (c) y = x sinx
(d) y = sin(1/x) (e) y = x sin(1/x)

3. Express the following products as the sum or difference of functions.

(a) sin(3x) cos(5x) (b) cos(2x) cos(4x) (c) cos(2x) sin(4x)
(d) sin(3x) sin(5x) (e) sin(4x) cos(4x)

4. Express each of the following as a product of functions:

(a) sin(x+ h)− sinx (b) cos(x+ h)− cosx (c) sin(5x)− sin(3x)
(d) cos(4x)− cos(2x) (e) sin(4x) + sin(2x) (f) cos(5x) + cos(3x)

5. Consider the graph of y = sinx,
−π
2
≤ x ≤ π

2
. Take the sample points

{(
−π

2
,−1

)
,
(
−π

6
, −π

2

)
, (0, 0),

(
π

6
,

1

2

)
,
(π

2
, 1
)}

.



18 CHAPTER 1. FUNCTIONS

Compute the fourth degree Lagrange Polynomial that approximates and
agrees with y = sinx at these data points. This polynomial has the form

P5(x) = y1
(x− x2)(x− x3)(x− x4)(x− x5)

(x1 − x2)(x1 − x3)(x1 − x4)(x1 − x5)
+

y2
(x− x1)(x− x3)(x− x4)(x− x5)

(x2 − x1)(x2 − x3)(x2 − x4)(x2 − x5)
+ · · ·

+ y5
(x− x1)(x− x2)(x− x3)(x− x4)

(x5 − x1)(x5 − x2)(x5 − x3)(x5 − x4)
.

6. Sketch the graphs of the following functions and compute the amplitude,
period, frequency and phase shift, as applicable.

a) y = 3 sin t b) y = 4 cos t c) y = 2 sin(3t)

d) y = −4 cos(2t) e) y = −3 sin(4t) f) y = 2 sin
(
t+ π

6

)
g) y = −2 sin

(
t− π

6

)
h) y = 3 cos(2t+ π) i) y = −3 cos(2t− π)

j) y = 2 sin(4t+ π) k) y = −2 cos(6t− π) l) y = 3 sin(6t+ π)

7. Sketch the graphs of the following functions over two periods.

a) y = 2 secx b) y = −3 tanx c) y = 2 cotx

d) y = 3 cscx e) y = tan(πx) f) y = tan
(
2x+ π

3

)
g) y = 2 cot

(
3x+ π

2

)
h) y = 3 sec

(
2x+ π

3

)
i) y = 2 sin

(
πx+ π

6

)
8. Prove each of the following identities:

a) cos 3t = 3 cos t+ 4 cos3 t b) sin(3t) = 3 sinx− 4 sin3 x

c) sin4 t− cos4 t = − cos 2t d)
sin3 t− cos3 t

sin t− cos t
= 1 + sin 2t

e) cos 4t cos 7t− sin 7t sin 4t = cos 11t f)
sin(x+ y)

sin(x− y)
=

tanx+ tan y

tanx− tan y
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9. If f(x) = cosx, prove that

f(x+ h)− f(x)

h
= cosx

(
cosh− 1

h

)
− sinx

(
sinh

h

)
.

10. If f(x) = sinx, prove that

f(x+ h)− f(x)

h
= sinx

(
cosh− 1

h

)
+ cosx

(
sinh

h

)
.

11. If f(x) = cosx, prove that

f(x)− f(t)

x− t
= cos t

(
cos(x− t)− 1

x− t

)
− sin t

(
sin(x− t)
x− t

)
.

12. If f(x) = sinx, prove that

f(x)− f(t)

x− t
= sin t

(
cos(x− t)− 1

x− t

)
+ cos t

(
sin(x− t)
x− t

)
.

13. Prove that

cos(2t) =
1− tan2 t

1 + tan2 t
.

14. Prove that if y = tan
(x

2

)
, then

(a) cosx =
1− u2

1 + u2
(b) sinx =

2u

1 + u2

1.3 Inverse Trigonometric Functions

None of the trigonometric functions are one-to-one since they are periodic.
In order to define inverses, it is customary to restrict the domains in which
the functions are one-to-one as follows.
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1. y = sinx, −π
2
≤ x ≤ π

2
, is one-to-one and covers the range −1 ≤ y ≤ 1.

Its inverse function is denoted arcsinx, and we define y = arcsinx, −1 ≤
x ≤ 1, if and only if, x = sin y, −π

2
≤ y ≤ π

2
.

graph

2. y = cosx, 0 ≤ x ≤ π, is one-to-one and covers the range −1 ≤ y ≤ 1. Its
inverse function is denoted arccosx, and we define y = arccosx, −1 ≤
x ≤ 1, if and only if, x = cos y, 0 ≤ y ≤ π.

graph

3. y = tanx,
−π
2

< x <
π

2
, is one-to-one and covers the range −∞ <

y < ∞ Its inverse function is denoted arctanx, and we define y =

arctanx, −∞ < x <∞, if and only if, x = tan y,
−π
2

< y <
π

2
.

graph

4. y = cotx, 0, x < π, is one-to-one and covers the range −∞ < y <∞. Its
inverse function is denoted arccot x, and we define y = arccotx, −∞ <
x <∞, if and only if x = cot y, 0 < y < π.

graph
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5. y = secx, 0 ≤ x ≤ π

2
or

π

2
< x ≤ π is one-to-one and covers the range

−∞ < y ≤ −1 or 1 ≤ y < ∞. Its inverse function is denoted arcsec x,
and we define y = arcsec x, −∞ < x ≤ −1 or 1 ≤ x < ∞, if and only

if, x = sec y, 0 ≤ y <
π

2
or

π

2
< y ≤ π.

graph

6. y = cscx,
−π
2
≤ x < 0 or 0 < x ≤ π

2
, is one-to-one and covers the

range −∞ < y ≤ −1 or 1 ≤ y < ∞. Its inverse is denoted arccscx and
we define y = arccscx, −∞ < x ≤ −1 or 1 ≤ x < ∞, if and only if,

x = csc y,
−π
2
≤ y < 0 or 0 < y ≤ π

2
.

Example 1.3.1 Show that each of the following equations is valid.

(a) arcsinx+ arccosx =
π

2

(b) arctanx+ arccotx =
π

2

(c) arcsecx+ arccscx =
π

2

To verify equation (a), we let arcsinx = θ.

graph

Then x = sin θ and cos
(π

2
− θ
)

= x, as shown in the triangle. It follows

that

π

2
− θ = arccosx,

π

2
= θ + arccosx = arcsinx+ arccosx.

The equations in parts (b) and (c) are verified in a similar way.
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Example 1.3.2 If θ = arcsinx, then compute cos θ, tan θ, cot θ, sec θ and
csc θ.

If θ is −π
2
, 0, or

π

2
, then computations are easy.

graph

Suppose that −π
2
< x < 0 or 0 < x <

π

2
. Then, from the triangle, we get

cos θ =
√

1− x2, tan θ =
x√

1− x2
, cot θ =

√
1− x2

x
,

sec θ =
1√

1− x2
and csc θ =

1

x
.

Example 1.3.3 Make the given substitutions to simplify the given radical
expression and compute all trigonometric functions of θ.

(a)
√

4− x2, x = 2 sin θ (b)
√
x2 − 9, x = 3 sec θ

(c) (4 + x2)3/2, x = 2 tan θ

(a) For part (a), sin θ =
x

2
and we use the given triangle:

graph

Then

cos θ =

√
4− x2

2
, tan θ =

x√
4− x2

, cot θ =

√
4− x2

x
,

sec θ =
2√

4− x2
, csc θ =

2

x
.

Furthermore,
√

4− x2 = 2 cos θ and the radical sign is eliminated.
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(b) For part (b), sec θ =
x

3
and we use the given triangle:

graph

Then,

sin θ =

√
x2 − 4

x
, cos θ =

3

x
, tan θ =

√
x2 − 4

3

cot θ =
3√

x2 − 9
, csc θ =

x√
x2 − 9

.

Furthermore,
√
x2 − 9 = 3 tan θ and the radical sign is eliminated.

(c) For part (c), tan θ =
x

2
and we use the given triangle:

graph

Then,

sin θ =
x√
x2 + 4

, cos θ =
2√

x2 + 4
, cot θ =

2

x
,

sec θ =

√
x2 + 4

2
, csc θ =

√
x2 + 4

x
.

Furthermore,
√
x2 + 4 = 2 sec θ and hence

(4 + x)3/2 = (2 sec θ)3 = 8 sec3 θ.
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Remark 2 The three substitutions given in Example 15 are very useful in
calculus. In general, we use the following substitutions for the given radicals:

(a)
√
a2 − x2, x = a sin θ (b)

√
x2 − a2, x = a sec θ

(c)
√
a2 + x2, x = a tan θ.

Exercises 1.3

1. Evaluate each of the following:

(a) 3 arcsin

(
1

2

)
+ 2 arccos

(√
3

2

)

(b) 4 arctan

(
1√
3

)
+ 5arccot

(
1√
3

)
(c) 2arcsec (−2) + 3 arccos

(
− 2√

3

)
(d) cos(2 arccos(x))

(e) sin(2 arccos(x))

2. Simplify each of the following expressions by eliminating the radical by
using an appropriate trigonometric substitution.

(a)
x√

9− x2
(b)

3 + x√
16 + x2

(c)
x− 2

x
√
x2 − 25

(d)
1 + x√

x2 + 2x+ 2
(e)

2− 2x√
x2 − 2x− 3

(Hint: In parts (d) and (e), complete squares first.)

3. Some famous polynomials are the so-called Chebyshev polynomials, de-
fined by

Tn(x) = cos(n arccosx), −1 ≤ x ≤ 1, n = 0, 1, 2, . . . .
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(a) Prove the recurrence relation for Chebyshev polynomials:

Tn+1(x) = 2xTn(x)− Tn−1(x) for each n ≥ 1.

(b) Show that T0(x) = 1, T1(x) = x and generate T2(x), T3(x), T4(x) and
T5(x) using the recurrence relation in part (a).

(c) Determine the zeros of Tn(x) and determine where Tn(x) has its
absolute maximum or minimum values, n = 1, 2, 3, 4, ?.

(Hint: Let θ = arccosx, x = cos θ. Then Tn(x) = cos(nθ), Tn+1(x) =
cos(nθ + θ), Tn−1(x) = cos(nθ − θ). Use the expansion formulas and
then make substitutions in part (a)).

4. Show that for all integers m and n,

Tn(x)Tm(x) =
1

2
[Tm+n(x) + T|m−n|(x)]

(Hint: use the expansion formulas as in problem 3.)

5. Find the exact value of y in each of the following

a) y = arccos
(
−1

2

)
b) y = arcsin

(√
3

2

)
c) y = arctan(−

√
3)

d) y = arccot
(
−
√

3
3

)
e) y = arcsec (−

√
2) f) y = arccsc (−

√
2)

g) y = arcsec
(
− 2√

3

)
h) y = arccsc

(
− 2√

3

)
i) y = arcsec (−2)

j) y = arccsc (−2) k) y = arctan
(
−1√

3

)
l) y = arccot (−

√
3)

6. Solve the following equations for x in radians (all possible answers).

a) 2 sin4 x = sin2 x b) 2 cos2 x− cosx− 1 = 0

c) sin2 x+ 2 sinx+ 1 = 0 d) 4 sin2 x+ 4 sinx+ 1 = 0
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e) 2 sin2 x+ 5 sinx+ 2 = 0 f) cot3 x− 3 cotx = 0

g) sin 2x = cosx h) cos 2x = cosx

i) cos2
(x

2

)
= cosx j) tanx+ cotx = 1

7. If arctan t = x, compute sinx, cosx, tanx, cotx, sec x and cscx in
terms of t.

8. If arcsin t = x, compute sinx, cosx, tanx, cotx, sec x and cscx in terms
of t.

9. If arcsec t = x, compute sinx, cosx, tanx, cotx, sec x and cscx in
terms of t.

10. If arccos t = x, compute sinx, cosx, tanx, cotx, sec x and cscx in
terms of t.

Remark 3 Chebyshev polynomials are used extensively in approximating
functions due to their properties that minimize errors. These polynomials
are called equal ripple polynomials, since their maxima and minima alternate
between 1 and −1.

1.4 Logarithmic, Exponential and Hyperbolic

Functions

Most logarithmic tables have tables for log10 x, loge x, e
x and e−x because

of their universal applications to scientific problems. The key relationship
between logarithmic functions and exponential functions, using the same
base, is that each one is an inverse of the other. For example, for base 10,
we have

N = 10x if and only if x = log10 N.

We get two very interesting relations, namely

x = log10(10x) and N = 10(log10 N).
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For base e, we get
x = loge(e

x) and y = e(loge y).

If b > 0 and b 6= 1, then b is an admissible base for a logarithm. For such an
admissible base b, we get

x = logb(b
x) and y = b(logb y).

The Logarithmic function with base b, b > 0, b 6= 1, satisfies the following
important properties:

1. logb(b) = 1, logb(1) = 0, and logb(b
x) = x for all real x.

2. logb(xy) = logb x+ logb y, x > 0, y > 0.

3. logb(x/y) = logb x− logb y, x > 0, y > 0.

4. logb(x
y) = y logb x, x > 0, x 6= 1, for all real y.

5. (logb x)(loga b) = loga xb > 0, a > 0, b 6= 1, a 6= 1. Note that logb x =
loga x

loga b
.

This last equation (5) allows us to compute logarithms with respect to
any base b in terms of logarithms in a given base a.

The corresponding laws of exponents with respect to an admissible base
b, b > 0, b 6= 1 are as follows:

1. b0 = 1, b1 = b, and b(logb x) = x for x > 0.

2. bx × by = bx+y

3.
bx

by
= bx−y

4. (bx)y = b(xy)

Notation: If b = e, then we will express

logb(x) as ln(x) or log(x).

The notation exp(x) = ex can be used when confusion may arise.
The graph of y = log x and y = ex are reflections of each other through

the line y = x.
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graph

In applications of calculus to science and engineering, the following six
functions, called hyperbolic functions, are very useful.

1. sinh(x) =
1

2
(ex − e−x) for all real x, read as hyperbolic sine of x.

2. cosh(x) =
1

2
(ex + e−x), for all real x, read as hyperbolic cosine of x.

3. tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
, for all real x, read as hyperbolic tangent

of x.

4. coth(x) =
cosh(x)

sinh(x)
=
ex + e−x

ex − e−x
, x 6= 0, read as hyperbolic cotangent of x.

5. sech (x) =
1

coshx
=

2

ex + e−x
, for all real x, read as hyperbolic secant of

x.

6. csch (x) =
1

sinh(x)
=

2

ex − e−x
, x 6= 0, read as hyperbolic cosecant of x.

The graphs of these functions are sketched as follows:

graph

Example 1.4.1 Eliminate quotients and exponents in the following equa-
tion by taking the natural logarithm of both sides.

y =
(x+ 1)3(2x− 3)3/4

(1 + 7x)1/3(2x+ 3)3/2
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ln(y) = ln

[
(x+ 1)3(2x− 3)3/4

(1 + 7x)1/3(2x+ 3)3/2]

]
= ln[(x+ 1)3(2x− 3)3/4]− ln[(1 + 7x)1/3(2x+ 3)3/2]

= ln(x+ 1)3 + ln(2x− 3)3/4 − {ln(1 + 7x)1/3 + ln(2x+ 3)3/2}

= 3 ln(x+ 1) +
3

4
ln(2x− 3)− 1

3
ln(1 + 7x)− 3

2
ln(2x+ 3)

Example 1.4.2 Solve the following equation for x:

log3(x4) + log3 x
3 − 2 log3 x

1/2 = 5.

Using logarithm properties, we get

4 log3 x+ 3 log3 x− log3 x = 5

6 log3 x = 5

log3 x =
5

6
x = (3)5/6.

Example 1.4.3 Solve the following equation for x:

ex

1 + ex
=

1

3
.

On multiplying through, we get

3ex = 1 + ex or 2ex = 1, ex =
1

2
x = ln(1/2) = − ln(2).

Example 1.4.4 Prove that for all real x, cosh2x− sinh2 x = 1.

cosh2 x− sinh2 x =

[
1

2
(ex + e−x)

]2

−
[

1

2
(ex − e−x)

]2

=
1

4
[e2x + 2 + e−2x)− (e2x − 2 + e−2x)]

=
1

4
[4]

= 1
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Example 1.4.5 Prove that

(a) sinh(x+ y) = sinhx cosh y + coshx sinh y.

(b) sinh 2x = 2 sinhx cosh y.

Equation (b) follows from equation (a) by letting x = y. So, we work
with equation (a).

(a) sinhx cosh y + coshx sinh y =
1

2
(ex − e−x) · 1

2
(ey + e−y)

+
1

2
(ex + e−x) · 1

2
(ey − e−y)

=
1

4
[(ex+y + ex−y − e−x+y − e−x−y)

+ (ex+y − ex−y + e−x+y − e−x−y)]

=
1

4
[2(ex+y − e−(x+y)]

=
1

2
(e(x+y) − e−(x+y))

= sinh(x+ y).

Example 1.4.6 Find the inverses of the following functions:

(a) sinhx (b) coshx (c) tanhx

(a) Let y = sinhx =
1

2
(ex − e−x). Then

2exy = 2ex
(

1

2
(ex − e−x)

)
= e2x − 1

e2x − 2yex − 1 = 0

(ex)2 − (2y)ex − 1 = 0

ex =
2y ±

√
4y2 + 4

2
= y ±

√
y2 + 1

Since ex > 0 for all x, ex = y +
√

1 + y2.
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On taking natural logarithms of both sides, we get

x = ln(y +
√

1 + y2).

The inverse function of sinhx, denoted arcsinh x, is defined by

arcsinhx = ln(x+
√

1 + x2)

(b) As in part (a), we let y = coshx and

2exy = 2ex · 1

2
(ex + e−x) = e2x + 1

e2x − (2y)ex + 1 = 0

ex =
2y ±

√
4y2 − 4

2

ex = y ±
√
y2 − 1.

We observe that coshx is an even function and hence it is not one-to-
one. Since cosh(−x) = cosh(x), we will solve for the larger x. On taking
natural logarithms of both sides, we get

x1 = ln(y +
√
y2 − 1) or x2 = ln(y −

√
y2 − 1).

We observe that

x2 = ln(y −
√
y2 − 1) = ln

[
(y −

√
y2 − 1)(y +

√
y2 − 1)

y +
√
y2 − 1

]

= ln

(
1

y +
√
y2 − 1

)
= − ln(y +

√
y2 − 1) = −x1.

Thus, we can define, as the principal branch,

arccoshx = ln(x+
√
x2 − 1), x ≥ 1
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(c) We begin with y = tanhx and clear denominators to get

y =
ex − e−x

ex + e−x
, |y| < 1

ex[(ex + e−x)y] = ex[(ex − e−x)] , |y| < 1

(e2x + 1)y = e2x − 1 , |y| < 1

e2x(y − 1) = −(1 + y) , |y| < 1

e2x = −(1 + y)

y − 1
, |y| < 1

e2x =
1 + y

1− y
, |y| < 1

2x = ln

(
1 + y

1− y

)
, |y| < 1

x =
1

2
ln

(
1 + y

1− y

)
, |y| < 1.

Therefore, the inverse of the function tanhx, denoted arctanhx, is defined
by

arctanh , x =
1

2
ln

(
1 + x

1− x

)
, |x| < 1.

Exercises 1.4

1. Evaluate each of the following

(a) log10(0.001) (b) log2(1/64) (c) ln(e0.001)

(d) log10

(
(100)1/3(0.01)2

(.0001)2/3

)0.1

(e) eln(e−2)

2. Prove each of the following identities

(a) sinh(x− y) = sinhx cosh y − coshx sinh y

(b) cosh(x+ y) = coshx cosh y + sinhx sinh y
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(c) cosh(x− y) = coshx cosh y − sinhx sinh y

(d) cosh 2x = cosh2 x+ sinh2 x = 2 cosh2 x− 1 = 1 + 2 sinh2 x

3. Simplify the radical expression by using the given substitution.

(a)
√
a2 + x2, x = a sinh t (b)

√
x2 − a2, x = a cosh t

(c)
√
a2 − x2, x = a tanh t

4. Find the inverses of the following functions:

(a) cothx (b) sech x (c) csch x

5. If coshx =
3

2
, find sinhx and tanhx.

6. Prove that sinh(3t) = 3 sinh t+ 4 sinh3 t (Hint: Expand sinh(2t+ t).)

7. Sketch the graph of each of the following functions.

a) y = 10x b) y = 2x c) y = 10−x d) y = 2−x

e) y = ex f) y = e−x
2

g) y = xe−x
2

i) y = e−x

j) y = sinhx k) y = coshx l) y = tanhx m) y = cothx

n) y = sechx o) y = cschx

8. Sketch the graph of each of the following functions.

a) y = log10 x b) y = log2 x c) y = lnx d) y = log3 x

e) y = arcsinhx f) y = arccoshx g) y = arctanhx

9. Compute the given logarithms in terms log10 2 and log10 3.
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a) log10 36 b) log10

(
27

16

)
c) log10

(
20

9

)

d) log10(600) e) log10

(
30

16

)
f) log10

(
610

(20)5

)

10. Solve each of the following equations for the independent variable.

a) lnx− ln(x+ 1) = ln(4) b) 2 log10(x− 3) = log10(x+ 5) + log10 4

c) log10 t
2 = (log10 t)

2 d) e2x − 4ex + 3 = 0

e) ex + 6e−x = 5 f) 2 sinhx+ coshx = 4



Chapter 2

Limits and Continuity

2.1 Intuitive treatment and definitions

2.1.1 Introductory Examples

The concepts of limit and continuity are very closely related. An intuitive
understanding of these concepts can be obtained through the following ex-
amples.

Example 2.1.1 Consider the function f(x) = x2 as x tends to 2.

As x tends to 2 from the right or from the left, f(x) tends to 4. The
value of f at 2 is 4. The graph of f is in one piece and there are no holes or
jumps in the graph. We say that f is continuous at 2 because f(x) tends to
f(2) as x tends to 2.

graph

The statement that f(x) tends to 4 as x tends to 2 from the right is
expressed in symbols as

lim
x→2+

f(x) = 4

and is read, “the limit of f(x), as x goes to 2 from the right, equals 4.”

35
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The statement that f(x) tends to 4 as x tends to 2 from the left is written

lim
x→2−

f(x) = 4

and is read, “the limit of f(x), as x goes to 2 from the left, equals 4.”
The statement that f(x) tends to 4 as x tends to 2 either from the right

or from the left, is written
lim
x→2

f(x) = 4

and is read, “the limit of f(x), as x goes to 2, equals 4.”
The statement that f(x) is continuous at x = 2 is expressed by the

equation
lim
x→2

f(x) = f(2).

Example 2.1.2 Consider the unit step function as x tends to 0.

u(x) =

{
0 if x < 0
1 if x ≥ 0.

graph

The function, u(x) tends to 1 as x tends to 0 from the right side. So, we
write

lim
x→0+

u(x) = 1 = u(0).

The limit of u(x) as x tends to 0 from the left equals 0. Hence,

lim
x→0−

u(x) = 0 6= u(0).

Since
lim
x→0+

u(x) = u(0),

we say that u(x) is continuous at 0 from the right. Since

lim
x→0−

u(x) 6= u(0),
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we say that u(x) is not continuous at 0 from the left. In this case the jump
at 0 is 1 and is defined by

jump (u(x), 0) = lim
x→0+

u(x)− lim
x→0−

u(x)

= 1.

Observe that the graph of u(x) has two pieces that are not joined together.
Every horizontal line with equation y = c, 0 < c < 1, separates the two
pieces of the graph without intersecting the graph of u(x). This kind of
jump discontinuity at a point is called “finite jump” discontinuity.

Example 2.1.3 Consider the signum function, sign(x), defined by

sign (x) =
x

|x|
=

{
1 if x > 0

−1 if x < 0
.

If x > 0, then sign(x) = 1. If x < 0, then sign(x) = −1. In this case,

lim
x→0+

sign(x) = 1

lim
x→0−

sign(x) = −1

jump (sign(x), 0) = 2.

Since sign(x) is not defined at x = 0, it is not continuous at 0.

Example 2.1.4 Consider f(θ) =
sin θ

θ
as θ tends to 0.

graph

The point C(cos θ, sin θ) on the unit circle defines sin θ as the vertical
length BC. The radian measure of the angle θ is the arc length DC. It is
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clear that the vertical length BC and arc length DC get closer to each other
as θ tends to 0 from above. Thus,

graph

lim
θ→0+

sin θ

θ
= 1.

For negative θ, sin θ and θ are both negative.

lim
θ→0+

sin(−θ)
−θ

= lim
θ→0+

− sin θ

−θ
= 1.

Hence,

lim
θ→0

sin θ

θ
= 1.

This limit can be verified by numerical computation for small θ.

Example 2.1.5 Consider f(x) =
1

x
as x tends to 0 and as x tends to ±∞.

graph

It is intuitively clear that

lim
x→0+

1

x
= +∞

lim
x→+∞

1

x
= 0

lim
x→0−

1

x
= −∞

lim
x→−∞

1

x
= 0.
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The function f is not continuous at x = 0 because it is not defined for x = 0.
This discontinuity is not removable because the limits from the left and from
the right, at x = 0, are not equal. The horizontal and vertical axes divide
the graph of f in two separate pieces. The vertical axis is called the vertical
asymptote of the graph of f . The horizontal axis is called the horizontal
asymptote of the graph of f . We say that f has an essential discontinuity at
x = 0.

Example 2.1.6 Consider f(x) = sin(1/x) as x tends to 0.

graph

The period of the sine function is 2π. As observed in Example 5, 1/x
becomes very large as x becomes small. For this reason, many cycles of the
sine wave pass from the value −1 to the value +1 and a rapid oscillation
occurs near zero. None of the following limits exist:

lim
x→0+

sin

(
1

x

)
, lim

x→0−
sin

(
1

x

)
, lim

x→0
sin

(
1

x

)
.

It is not possible to define the function f at 0 to make it continuous. This
kind of discontinuity is called an “oscillation” type of discontinuity.

Example 2.1.7 Consider f(x) = x sin

(
1

x

)
as x tends to 0.

graph

In this example, sin

(
1

x

)
, oscillates as in Example 6, but the amplitude
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|x| tends to zero as x tends to 0. In this case,

lim
x→0+

x sin

(
1

x

)
= 0

lim
x→0−

x sin

(
1

x

)
= 0

lim
x→0

x sin

(
1

x

)
= 0.

The discontinuity at x = 0 is removable. We define f(0) = 0 to make f
continuous at x = 0.

Example 2.1.8 Consider f(x) =
x− 2

x2 − 4
as x tends to ±2.

This is an example of a rational function that yields the indeterminate
form 0/0 when x is replaced by 2. When this kind of situation occurs in
rational functions, it is necessary to cancel the common factors of the nu-
merator and the denominator to determine the appropriate limit if it exists.
In this example, x−2 is the common factor and the reduced form is obtained
through cancellation.

graph

f(x) =
x− 2

x2 − 4
=

x− 2

(x− 2)(x+ 2)

=
1

x+ 2
.

In order to get the limits as x tends to 2, we used the reduced form to get
1/4. The discontinuity at x = 2 is removed if we define f(2) = 1/4. This
function still has the essential discontinuity at x = −2.
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Example 2.1.9 Consider f(x) =

√
x−
√

3

x2 − 9
as x tends to 3.

In this case f is not a rational function; still, the problem at x = 3 is
caused by the common factor (

√
x−
√

3).

graph

f(x) =

√
x−
√

3

x2 − 9

=
(
√
x−
√

3)

(x+ 3)(
√
x−
√

3)(
√
x+
√

3)

=
1

(x+ 3)(
√
x+
√

3)
.

As x tends to 3, the reduced form of f tends to 1/(12
√

3). Thus,

lim
x→3+

f(x) = lim
x→3−

f(x) = lim
x→3

f(x) =
1

12
√

3
.

The discontinuity of f at x = 3 is removed by defining f(3) =
1

12
√

3
. The

other discontinuities of f at x = −3 and x = −
√

3 are essential discontinuities
and cannot be removed.

Even though calculus began intuitively, formal and precise definitions of
limit and continuity became necessary. These precise definitions have become
the foundations of calculus and its applications to the sciences. Let us assume
that a function f is defined in some open interval, (a, b), except possibly at
one point c, such that a < c < b. Then we make the following definitions
using the Greek symbols: ε, read “epsilon” and δ, read, “delta.”

2.1.2 Limit: Formal Definitions
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Definition 2.1.1 The limit of f(x) as x goes to c from the right is L, if and
only if, for each ε > 0, there exists some δ > 0 such that

|f(x)− L| < ε, whenever, c < x < c+ δ.

The statement that the limit of f(x) as x goes to c from the right is L, is
expressed by the equation

lim
x→c+

f(x) = L.

graph

Definition 2.1.2 The limit of f(x) as x goes to c from the left is L, if and
only if, for each ε > 0, there exists some δ > 0 such that

|f(x)− L| < ε, whenever, c− δ < x < c.

The statement that the limit of f(x) as x goes to c from the left is L, is
written as

lim
x→c−

f(x) = L.

graph

Definition 2.1.3 The (two-sided) limit of f(x) as x goes to c is L, if and
only if, for each ε > 0, there exists some δ > 0 such that

|f(x)− L| < ε, whenever 0 < |x− c| < δ.

graph
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The equation

lim
x→c

f(x) = L

is read “the (two-sided) limit of f(x) as x goes to c equals L.”

2.1.3 Continuity: Formal Definitions

Definition 2.1.4 The function f is said to be continuous at c from the right
if f(c) is defined, and

lim
x→c+

f(x) = f(c).

Definition 2.1.5 The function f is said to be continuous at c from the left
if f(c) is defined, and

lim
x→c−

f(x) = f(c).

Definition 2.1.6 The function f is said to be (two-sided) continuous at c if
f(c) is defined, and

lim
x→c

f(x) = f(c).

Remark 4 The continuity definition requires that the following conditions
be met if f is to be continuous at c:

(i) f(c) is defined as a finite real number,

(ii) lim
x→c−

f(x) exists and equals f(c),

(iii) lim
x→c+

f(x) exists and equals f(c),

(iv) lim
x→c−

f(x) = f(c) = lim
x→c+

f(x).

When a function f is not continuous at c, one, or more, of these conditions
are not met.
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Remark 5 All polynomials, sinx, cosx, ex, sinhx, coshx, bx, b 6= 1 are con-
tinuous for all real values of x. All logarithmic functions, logb x, b > 0, b 6= 1
are continuous for all x > 0. Each rational function, p(x)/q(x), is continuous
where q(x) 6= 0. Each of the functions tanx, cotx, sec x, csc x, tanhx, cothx,
sech x, and csch x is continuous at each point of its domain.

Definition 2.1.7 (Algebra of functions) Let f and g be two functions that
have a common domain, say D. Then we define the following for all x in D:

1. (f + g)(x) = f(x) + g(x) (sum of f and g)

2. (f − g)(x) = f(x)− g(x) (difference of f and g)

3.

(
f

g

)
(x) =

f(x)

g(x)
, if g(x) 6= 0 (quotient of f and g)

4. (gf)(x) = g(x)f(x) (product of f and g)

If the range of f is a subset of the domain of g, then we define the
composition, g ◦ f , of f followed by g, as follows:

5. (g ◦ f)(x) = g(f(x))

Remark 6 The following theorems on limits and continuity follow from the
definitions of limit and continuity.

Theorem 2.1.1 Suppose that for some real numbers L and M , lim
x→c

f(x) = L

and lim
x→c

g(x) = M . Then

(i) lim
x→c

k = k, where k is a constant function.

(ii) lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x)

(iii) lim
x→c

(f(x)− g(x)) = lim
x→c

f(x)− lim
x→c

g(x)
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(iv) lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

(v) lim
x→c

(
f(x)

g(x)

)
=

lim
x→c

f(x)

lim
x→c

g(x)
, if lim

x→c
g(x) 6= 0

Proof.
Part (i) Let f(x) = k for all x and ε > 0 be given. Then

|f(x)− k| = |k − k| = 0 < ε

for all x. This completes the proof of Part (i).
For Parts (ii)–(v) let ε > 0 be given and let

lim
x→c

f(x) = L and lim
x→c

g(x) = M.

By definition there exist δ1 > 0 and δ2 > 0 such that

|f(x)− L| < ε

3
whenever 0 < |x− c| < δ1 (1)

|g(x)−M | < ε

3
whenever 0 < |x− c| < δ2 (2)

Part (ii) Let δ = min(δ1, δ2). Then 0 < |x− c| < δ implies that

0 < |x− c| < δ1 and |f(x)− L| < ε

3
(by (1)) (3)

0 < |x− c| < δ2 and |g(x)−M | < ε

3
(by (2)) (4)

Hence, if 0 < |x− c| < δ, then

|(f(x) + g(x))− (L+M)| = |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M |

<
ε

3
+
ε

3
(by (3) and (4))

< ε.

This completes the proof of Part (ii).
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Part (iii) Let δ be defined as in Part (ii). Then 0 < |x− c| < δ implies that

|(f(x)− g(x))− (L−M)| = |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M |

<
ε

3
+
ε

3
< ε.

This completes the proof of Part (iii).

Part (iv) Let ε > 0 be given. Let

ε1 = min

(
1,

ε

1 + |L|+ |M |

)
.

Then ε1 > 0 and, by definition, there exist δ1 and δ2 such that

|f(x)− L| < ε1 whenever 0 < |x− c| < δ1 (5)

|g(x)−M | < ε1 whenever 0 < |x− c| < δ2 (6)

Let δ = min(δ1, δ2). Then 0 < |x− c| < δ implies that

0 < |x− c| < δ1 and |f(x)− L| < ε1 (by (5)) (7)

0 < |x− c| < δ2 and |g(x)−M | < ε1 (by (6)) (8)

Also,

|f(x)g(x)− LM | = |(f(x)− L+ L)(g(x)−M +M)− LM |
= |(f(x)− L)(g(x)−M) + (f(x)− L)M + L(g(x)−M)|
≤ |f(x)− L| |g(x)−M |+ |f(x) + L| |M |+ |L| |g(x)−M |
< ε21 + |M |ε1 + |L|ε1
≤ ε1 + |M |ε1 + |L|ε1
= (1 + |M |+ |N |)ε1
≤ ε.

This completes the proof of Part (iv).

Part (v) Suppose that M > 0 and lim
x→c

g(x) = M . Then we show that

lim
x→c

1

g(x)
=

1

M
.
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Since M/2 > 0, there exists some δ1 > 0 such that

|g(x)−M | < M

2
whenever 0 < |x− c| < δ1,

−M
2

+M < g(x) <
3M

2
whenever 0 < |x− c| < δ1,

0 <
M

2
< g(x) <

3M

2
whenever 0 < |x− c| < δ1,

1

|g(x)|
<

2

M
whenever 0 < |x− c| < δ1.

Let ε > 0 be given. Let ε1 = M2ε/2. Then ε1 > 0 and there exists some
δ > 0 such that δ < δ1 and

|g(x)−M | < ε1 whenever 0 < |x− c| < δ < δ1,∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ =

∣∣∣∣M − g(x)

g(x)M

∣∣∣∣ =
|g(x)−M |
|g(x)|M

=
1

M
· 1

|g(x)|
|g(x)−M |

<
1

M
· 2

M
· ε1

=
2ε1
M2

= ε whenever 0 < |x− c| < δ.

This completes the proof of the statement

lim
x→c

1

g(x)
=

1

M
whenever M > 0.

The case for M < 0 can be proven in a similar manner. Now, we can use
Part (iv) to prove Part (v) as follows:

lim
x→c

f(x)

g(x)
= lim

x→c

(
f(x) · 1

g(x)

)
= lim

x→c
f(x) · lim

x→c

(
1

g(x)

)
= L · 1

M

=
L

M
.
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This completes the proof of Theorem 2.1.1.

Theorem 2.1.2 If f and g are two functions that are continuous on a com-
mon domain D, then the sum, f + g, the difference, f − g and the product,
fg, are continuous on D. Also, f/g is continuous at each point x in D such
that g(x) 6= 0.

Proof. If f and g are continuous at c, then f(c) and g(c) are real numbers
and

lim
x→c

f(x) = f(c), lim
x→c

g(x) = g(c).

By Theorem 2.1.1, we get

lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x) = f(c) + g(c)

lim
x→c

(f(x)− g(x)) = lim
x→c

f(x)− lim
x→c

g(x) = f(c)− g(c)

lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
)

lim
x→c

(g(x)) = f(c)g(c)

lim
x→c

(
f(x)

g(x)

)
=

limx→c f(x)

limx→c g(x)
=
f(c)

g(c)
, if g(c) 6= 0.

This completes the proof of Theorem 2.1.2.

2.1.4 Continuity Examples

Example 2.1.10 Show that the constant function f(x) = 4 is continuous at
every real number c. Show that for every constant k, f(x) = k is continuous
at every real number c.

First of all, if f(x) = 4, then f(c) = 4. We need to show that

lim
x→c

4 = 4.

graph

For each ε > 0, let δ = 1. Then

|f(x)− f(c)| = |4− 4| = 0 < ε
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for all x such that |x− c| < 1. Secondly, for each ε > 0, let δ = 1. Then

|f(x)− f(c)| = |k − k| = 0 < ε

for all x such that |x− c| < 1. This completes the required proof.

Example 2.1.11 Show that f(x) = 3x− 4 is continuous at x = 3.
Let ε > 0 be given. Then

|f(x)− f(3)| = |(3x− 4)− (5)|
= |3x− 9|
= 3|x− 3|
< ε

whenever |x− 3| < ε

3
.

We define δ =
ε

3
. Then, it follows that

lim
x→3

f(x) = f(3)

and, hence, f is continuous at x = 3.

Example 2.1.12 Show that f(x) = x3 is continuous at x = 2.
Since f(2) = 8, we need to prove that

lim
x→2

x3 = 8 = 23.

graph

Let ε > 0 be given. Let us concentrate our attention on the open interval
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(1, 3) that contains x = 2 at its mid-point. Then

|f(x)− f(2)| = |x3 − 8| = |(x− 2)(x2 + 2x+ 4)|
= |x− 2| |x2 + 2x+ 4|
≤ |x− 2|(|x|2 + 2|x|+ 4) (Triangle Inequality |u+ v| ≤ |u|+ |v|)
≤ |x− 2|(9 + 18 + 4)

= 31|x− 2|
< ε

Provided

|x− 2| < ε

31
.

Since we are concentrating on the interval (1, 3) for which |x − 2| < 1, we

need to define δ to be the minimum of 1 and
ε

31
. Thus, if we define δ =

min{1, ε/31}, then

|f(x)− f(2)| < ε

whenever |x− 2| < δ. By definition, f(x) is continuous at x = 2.

Example 2.1.13 Show that every polynomial P (x) is continuous at every
c.

From algebra, we recall that, by the Remainder Theorem,

P (x) = (x− c)Q(x) + P (c).

Thus,

|P (x)− P (c)| = |x− c||Q(x)|

where Q(x) is a polynomial of degree one less than the degree of P (x). As
in Example 12, |Q(x)| is bounded on the closed interval [c − 1, c + 1]. For
example, if

Q(x) = q0x
n−1 + q1x

n−2 + · · ·+ qn−2x+ qn−1

|Q(x)| ≤ |q0| |x|n−1 + |q1| |x|n−2 + · · ·+ |qn−2| |x|+ |qn−1|.
Let m = max{|x| : c− 1 ≤ x ≤ c+ 1}. Then

|Q(x)| ≤ |q0|mn−1 + |q1|mn−2 + · · ·+ qn−2m+ |qn−1| = M,
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for some M . Then

|P (x)− P (c)| = |x− c| |Q(x)| ≤M |x− c| < ε

whenever |x− c| < ε

M
. As in Example 12, we define δ = min

{
1,

ε

M

}
. Then

|P (x)− P (c)| < ε, whenever |x− c| < δ. Hence,

lim
x→c

P (x) = P (c)

and by definition P (x) is continuous at each number c.

Example 2.1.14 Show that f(x) =
1

x
is continuous at every real number

c > 0.
We need to show that

lim
x→c

1

x
=

1

c
.

Let ε > 0 be given. Let us concentrate on the interval |x − c| ≤ c

2
; that is,

c

2
≤ x ≤ 3c

2
. Clearly, x 6= 0 in this interval. Then

|f(x)− f(c)| =
∣∣∣∣1x − 1

c

∣∣∣∣
=

∣∣∣∣c− xcx

∣∣∣∣
= |x− c| · 1

c
· 1

|x|

< |x− c| · 1

c
· 2

c

=
2

c2
|x− c|

< ε

whenever |x− c| < c2ε

2
.

We define δ = min

{
c

2
,
c2ε

2

}
. Then for all x such that |x− c| < δ,∣∣∣∣1x − 1

c

∣∣∣∣ < ε.
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Hence,

lim
x→c

1

x
=

1

c

and the function f(x) =
1

x
is continuous at each c > 0.

A similar argument can be used for c < 0. The function f(x) =
1

x
is

continuous for all x 6= 0.

Example 2.1.15 Suppose that the domain of a function g contains an open
interval containing c, and the range of g contains an open interval containing
g(c). Suppose further that the domain of f contains the range of g. Show
that if g is continuous at c and f is continuous at g(c), then the composition
f ◦ g is continuous at c.

We need to show that

lim
x→c

f(g(x)) = f(g(c)).

Let ε > 0 be given. Since f is continuous at g(c), there exists δ1 > 0 such
that

1. |f(y)− f(g(c))| < ε, whenever, |y − g(c)| < δ1.

Since g is continuous at c, and δ1 > 0, there exists δ > 0 such that

2. |g(x)− g(c)| < δ1, whenever, |x− c| < δ.

On replacing y by g(x) in equation (1), we get

|f(g(x))− f(g(c))| < ε, whenever, |x− c| < δ.

By definition, it follows that

lim
x→c

f(g(x)) = f(g(c))

and the composition f ◦ g is continuous at c.

Example 2.1.16 Suppose that two functions f and g have a common do-
main that contains one open interval containing c. Suppose further that f
and g are continuous at c. Then show that
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(i) f + g is continuous at c,

(ii) f − g is continuous at c,

(iii) kf is continuous at c for every constant k 6= 0,

(iv) f · g is continuous at c.

Part (i) We need to prove that

lim
x→c

[f(x) + g(x)] = f(c) + g(c).

Let ε > 0 be given. Then
ε

2
> 0. Since f is continuous at c and

ε

2
> 0, there

exists some δ1 > 0 such that

(1) |f(x)− f(c)| < ε

2
, whenever, |x− c| ≤ δ1.

Also, since g is continuous at c and
ε

2
> 0, there exists some δ2 > 0 such that

(2) |g(x)− g(c)| < ε

2
, whenever, |x− c| < δ

2
.

Let δ = min{δ1, δ2}. Then δ > 0. Let |x − c| < δ. Then |x − c| < δ1 and
|x− c| < δ2. For this choice of x, we get

|{f(x) + g(x)} − {f(c) + g(c)}|
= |{f(x)− f(c)}+ {g(x)− g(c)}|
≤ |f(x)− f(c)|+ |g(x)− g(c)| (by triangle inequality)

<
ε

2
+
ε

2
= ε.

It follows that

lim
x→0

(f(x) + g(x)) = f(c) + g(c)

and f + g is continuous at c. This proves part (i).
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Part (ii) For Part (ii) we chose ε, ε/2, δ1, δ2 and δ exactly as in Part (i).
Suppose |x− c| < δ. Then |x− c| < δ1 and |x− c| < δ2. For these choices of
x we get

|{f(x)− g(x)} − {f(c)− g(c)}|
= |{f(x)− f(c)} − {g(x)− g(c)}|
≤ |f(x)− f(c)|+ |g(x)− g(c)| (by triangle inequality)

<
ε

2
+
ε

2
= ε.

It follows that

lim
x→c

(f(x)− g(x)) = f(c)− g(c)

and, hence, f − g is continuous at c.

Part (iii) For Part (iii) let ε > 0 be given. Since k 6= 0,
ε

|k|
> 0. Since f is

continuous at c, there exists some δ > 0 such that

|f(x)− f(c)| < ε

|k|
, whenever, |x− c| < δ.

If |x− c| < δ, then

|kf(x)− kf(c)| = |k(f(x)− f(c))|
= |k| |(f(x)− f(c)|

< |k| · ε
|k|

= ε.

It follows that

lim
x→c

kf(x) = kf(c)

and, hence, kf is continuous at c.

Part (iv) We need to show that

lim
x→c

(f(x)g(x)) = f(c)g(c).
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Let ε > 0 be given. Without loss of generality we may assume that ε < 1.

Let ε1 =
ε

2(1 + |f(c)|+ |g(c)|)
. Then ε1 > 0, ε1 < 1 and ε1(1 + |f |+ |g(c)|) =

ε

2
< ε. Since f is continuous at c and ε1 > 0, there exists δ1 > 0 such that

|f(x)− f(c)| < ε1 whenever, |x− c| < δ1.

Also, since g is continuous at c and ε1 > 0, there exists δ2 > 0 such that

|g(x)− g(c)| < ε1 whenever, |x− c| < δ2.

Let δ = min{δ1, δ2} and |x− c| < δ. For these choices of x, we get

|f(x)g(x)− f(c)g(c)|
= |(f(x)− f(c) + f(c))(g(x)− g(c) + g(c))− f(c)g(c)|
= |(f(x)− f(c))(g(x)− g(c)) + (f(x)− f(c))g(c) + f(c)(g(x)− g(c))|
≤ |f(x)− f(c)| |g(x)− g(c)|+ |f(x)− f(c)| |g(c)|+ |f(c)| |g(x)− g(c)|
< ε1 · ε1 + ε1|g(c)|+ ε1|f(c)|
< ε1(1 + |g(c)|+ |f(c)|) , (since ε1 < 1)

< ε.

It follows that
lim
x→c

f(x)g(x) = f(c)g(c)

and, hence, the product f · g is continuous at c.

Example 2.1.17 Show that the quotient f/g is continuous at c if f and g
are continuous at c and g(c) 6= 0.

First of all, let us observe that the function 1/g is a composition of g(x)
and 1/x and hence 1/g is continuous at c by virtue of the arguments in
Examples 14 and 15. By the argument in Example 16, the product f(1/g) =
f/g is continuous at c, as required in Example 17.

Example 2.1.18 Show that a rational function of the form p(x)/q(x) is
continuous for all c such that g(c) 6= 0.
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In Example 13, we showed that each polynomial function is continuous
at every real number c. Therefore, p(x) is continuous at every c and q(x) is
continuous at every c. By virtue of the argument in Example 17, the quotient
p(x)/q(x) is continuous for all c such that q(c) 6= 0.

Example 2.1.19 Suppose that f(x) ≤ g(x) ≤ h(x) for all x in an open
interval containing c and

lim
x→c

f(x) = lim
x→c

h(x) = L.

Then, show that,
lim
x→c

g(x) = L.

Let ε > 0 be given. Then there exist δ1 > 0, δ2 > 0, and δ = min{δ1, δ2}
such that

|f(x)− L| < ε

2
whenever 0 < |x− c| < δ1

|h(x)− L) <
ε

2
whenever 0 < |x− c| < δ2.

If 0 < |x− c| < δ1, then 0 < |x− c| < δ1, 0 < |x− c| < δ2 and, hence,

− ε
2
< f(x)− L < g(x)− L < h(x)− L < ε

2
.

It follows that

|g(x)− L| < ε

2
< ε whenever 0 < |x− c| < δ,

and
lim
x→c

g(x) = L.

Example 2.1.20 Show that f(x) = |x| is continuous at 0.
We need to show that

lim
x→0
|x| = 0.

Let ε > 0 be given. Let δ = ε. Then |x− 0| < ε implies that |x| < ε Hence,

lim
x→0
|x| = 0



2.1. INTUITIVE TREATMENT AND DEFINITIONS 57

Example 2.1.21 Show that

(i) lim
θ→0

sin θ = 0 (ii) lim
θ→0

cos θ = 1

(iii) lim
θ→0

sin θ

θ
= 1 (iv) lim

θ→0

1− cos θ

θ
= 0

graph

Part (i) By definition, the point C(cos θ, sin θ), where θ is the length of
the arc CD, lies on the unit circle. It is clear that the length BC = sin θ is
less than θ, the arclength of the arc CD, for small positive θ. Hence,

−θ ≤ sin θ ≤ θ

and
lim
θ→0+

sin θ = 0.

For small negative θ, we get

θ ≤ sin θ ≤ −θ

and
lim
θ→0−

sin θ = 0.

Therefore,
lim
θ→0

sin θ = 0.

Part (ii) It is clear that the point B approaches D as θ tends to zero. There-
fore,

lim
θ→0

cos θ = 1.

Part (iii) Consider the inequality

Area of triangle ABC ≤ Area of sector ADC ≤ Area of triangle ADE

1

2
cos θ sin θ ≤ 1

2
θ ≤ 1

2

sin θ

cos θ
.



58 CHAPTER 2. LIMITS AND CONTINUITY

Assume that θ is small but positive. Multiply each part of the inequality by
2/ sin θ to get

cos θ ≤ θ

sin θ
≤ 1

cos θ
.

On taking limits and using the squeeze theorem, we get

lim
θ→0+

θ

sin θ
= 1.

By taking reciprocals, we get

lim
θ→0+

sin θ

θ
= 1.

Since
sin(−θ)
−θ

=
sin θ

θ
,

lim
θ−0−

sin θ

θ
= 1.

Therefore,

lim
θ→0

sin θ

θ
= 1.

Part (iv)

lim
θ→0

1− cos θ

θ
= lim

θ→0

(1− cos θ)(1 + cos θ)

θ(1 + cos θ)

= lim
θ→0

1− cos2 θ

θ
· 1

(1 + cos θ)

= lim
θ→0

sin θ

θ
· sin θ

1 + cos θ

= 1 · 0

2
= 0.

Example 2.1.22 Show that

(i) sin θ and cos θ are continuous for all real θ.
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(ii) tan θ and sec θ are continuous for all θ 6= 2nπ ± π

2
, n integer.

(iii) cot θ and csc θ are continuous for all θ 6= nπ, n integer.

Part (i) First, we show that for all real c,

lim
θ→c

sin θ = sin c or equivalently lim
θ→c
| sin θ − sin c| = 0.

We observe that

0 ≤ | sin θ − sin c| =
∣∣∣∣2 cos

θ + c

2
sin

θ − c
2

∣∣∣∣
≤
∣∣∣∣2 sin

(θ − c)
2

∣∣∣∣
= |(θ − c)|

∣∣∣∣∣sin (θ−c)
2

(θ−c)
2

∣∣∣∣∣
Therefore, by squeeze theorem,

0 ≤ lim
θ−c
| sin θ − sin c| ≤ 0 · 1 = 0.

It follows that for all real c, sin θ is continuous at c.
Next, we show that

lim
x→c

cosx = cos c or equivalently lim
x→c
| cosx− cos c| = 0.

We observe that

0 ≤ | cosx− cos c| =
∣∣∣∣−2 sin

x+ c

2
sin

(x− c)
2

∣∣∣∣
≤ |θ − c|

∣∣∣∣∣sin
(
x−c

2

)(
x−c

2

) ∣∣∣∣∣ ;

(∣∣∣∣sin x+ c

2

∣∣∣∣ ≤ 1

)
Therefore,

0 ≤ lim
x→c
| cosx− cos c| ≤ 0 · 1 = 0

and cosx is continuous at c.
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Part (ii) Since for all θ 6= 2nπ ± π
2
, n integer,

tan θ =
sin θ

cos θ
, sec θ =

1

cos θ

it follows that tan θ and sec θ are continuous functions.

Part (iii) Both cot θ and csc θ are continuous as quotients of two continuous
functions where the denominators are not zero for n 6= nπ, n integer.

Exercises 2.1 Evaluate each of the following limits.

1. lim
x→1

x2 − 1

x3 − 1
2. lim

x→0

sin(2x)

x
3. lim

x→0

sin 5x

sin 7x

4. lim
x→2+

1

x2 − 4
5. lim

x→2−

1

x2 − 4
6. lim

x→2

x− 2

x2 − 4

7. lim
x→2+

x− 2

|x− 2|
8. lim

x→2−

x− 2

|x− 2|
9. lim

x→2

x− 2

|x− 2|

10. lim
x→3

x2 − 9

x− 3
11. lim

x→3

x2 − 9

x+ 3
12. lim

x→π
2

tanx

13. lim
x→π

2
+

tanx 14. lim
x→0−

csc x 15. lim
x→0+

csc x

16. lim
x→0+

cotx 17. lim
x→0−

cotx 18. lim
x→π

2
+

sec x

19. lim
x→π

2

sec x 20. lim
x→0

sin 2x+ sin 3x

x
21. lim

x→4−

√
x− 2

x− 4

22. lim
x→4+

√
x− 2

x− 4
23 lim

x→4

√
x− 2

x− 4
24. lim

x→3

x4 − 81

x2 − 9

Sketch the graph of each of the following functions. Determine all the
discontinuities of these functions and classify them as (a) removable type,
(b) finite jump type, (c) essential type, (d) oscillation type, or other types.
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25. f(x) = 2
x− 1

|x− 1|
− x− 2

|x− 2|
26. f(x) =

x

x2 − 9

27. f(x) =

{
2x for x ≤ 0
x2 + 1 for x > 0

28. f(x) =

{
sinx if x ≤ 0
sin
(

2
x

)
if x > 0

29. f(x) =
x− 1

(x− 2)(x− 3)
30. f(x) =

{
|x− 1| if x ≤ 1
|x− 2| if x > 1

Recall the unit step function u(x) =

{
0 if x < 0
1 if x ≥ 0.

Sketch the graph of each of the following functions and determine the left
hand limit and the right hand limit at each point of discontinuity of f and
g.

31. f(x) = 2u(x− 3)− u(x− 4)

32. f(x) = −2u(x− 1) + 4u(x− 5)

33. f(x) = u(x− 1) + 2u(x+ 1)− 3u(x− 2)

34. f(x) = sinx
[
u
(
x+

π

2

)
− u

(
x− π

2

)]
35. g(x) = (tanx)

[
u
(
x+

π

2

)
− u

(
x− π

2

)]
36. f(x) = [u(x)− u(x− π)] cosx

2.2 Linear Function Approximations

One simple application of limits is to approximate a function f(x), in a small
neighborhood of a point c, by a line. The approximating line is called the
tangent line. We begin with a review of the equations of a line.

A vertical line has an equation of the form x = c. A vertical line has no
slope. A horizontal line has an equation of the form y = c. A horizontal
line has slope zero. A line that is neither horizontal nor vertical is called an
oblique line.
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Suppose that an oblique line passes through two points, say (x1, y1) and
(x2, y2). Then the slope of this line is define as

m =
y2 − y1

x2 − x1

=
y1 − y2

x1 − x2

.

If (x, y) is any arbitrary point on the above oblique line, then

m =
y − y1

x− x1

=
y − y2

x− x2

.

By equating the two forms of the slope m we get an equation of the line:

y − y1

x− x1

=
y2 − y1

x2 − x1

or
y − y2

x− x2

=
y2 − y1

x2 − x1

.

On multiplying through, we get the “two point” form of the equation of the
line, namely,

y − y1 =
y2 − y1

x2 − x1

(x− x1) or y − y2 =
y2 − y1

x2 − x1

(x− x2).

Example 2.2.1 Find the equations of the lines passing through the follow-
ing pairs of points:

(i) (4, 2) and (6, 2) (ii) (1, 3) and (1, 5)
(iii) (3, 4) and (5,−2) (iv) (0, 2) and (4, 0).

Part (i) Since the y-coordinates of both points are the same, the line is
horizontal and has the equation y = 2. This line has slope 0.

Part (ii) Since the x-coordinates of both points are equal, the line is vertical
and has the equation x = 1.

Part (iii) The slope of the line is given by

m =
−2− 4

5− 3
= −3.

The equation of this line is

y − 4 = −3(x− 3) or y + 2 = −3(x− 5).
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On solving for y, we get the equation of the line as

y = −3x+ 13.

This line goes through the point (0, 13). The number 13 is called the y-
intercept. The above equation is called the slope-intercept form of the line.

Example 2.2.2 Determine the equations of the lines satisfying the given
conditions:

(i) slope = 3, passes through (2, 4)

(ii) slope = −2, passes through (1,−3)

(iii) slope = m, passes through (x1, y1)

(iv) passes through (3, 0) and (0, 4)

(v) passes through (a, 0) and (0, b)

Part (i) If (x, y) is on the line, then we equate the slopes and simplify:

3 =
y − 4

x− 2
or y − 4 = 3(x− 2).

Part (ii) If (x, y) is on the line, then we equate slopes and simplify:

−2 =
y + 3

x− 1
or y + 3 = −2(x− 1).

Part (iii) On equating slopes and clearing fractions, we get

m =
y − y1

x− x1

or y − y1 = m(x− x1).

This form of the line is called the “point-slope” form of the line.
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Part (iv) Using the two forms of the line we get

y − 0

x− 3
=

4− 0

0− 3
or y = −4

3
(x− 3).

If we divide by 4 we get
x

3
+
y

4
= 1.

The number 3 is called the x-intercept and the number 4 is called the y-
intercept of the line. This form of the equation is called the “two-intercept”
form of the line.

Part (v) As in Part (iv), the “two-intercept” form of the line has the equation

x

a
+
y

b
= 1.

In order to approximate a function f at the point c, we first define the slope
m of the line that is tangent to the graph of f at the point (c, f(c)).

graph

m = lim
x→c

f(x)− f(c)

x− c
.

Then the equation of the tangent line is

y − f(c) = m(x− c),

written in the point-slope form. The point (c, f(c)) is called the point of
tangency. This tangent line is called the linear approximation of f about
x = c.

Example 2.2.3 Find the equation of the line tangent to the graph of f(x) =
x2 at the point (2, 4).
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The slope m of the tangent line at (3, 9) is

m = lim
x→3

x2 − 9

x− 3

= lim
x→3

(x+ 3)

= 6.

The equation of the tangent line at (3, 9) is

y − 9 = 6(x− 3).

Example 2.2.4 Obtain the equation of the line tangent to the graph of
f(x) =

√
x at the point (9, 3).

The slope m of the tangent line is given by

m = lim
x→9

√
x− 3

x− 9

= lim
x→9

(
√
x− 3)(

√
x+ 3)

(x− 9)(
√
x+ 3)

= lim
x→9

x− 9

(x− 9)(
√
x+ 3)

= lim
x→9

1√
x+ 3

=
1

6
.

The equation of the tangent line is

y − 3 =
1

6
(x− 9).

Example 2.2.5 Derive the equation of the line tangent to the graph of

f(x) = sinx at

(
π

6
,
1

2

)
.

The slope m of the tangent line is given by
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m = lim
x→π

6

sinx− sin
(
π
6

)
x− π

6

= lim
x→π

6

2 cos
(
x+π/6

2

)
sin
(
x−π/6

2

)
(x− π/6)

= cos(π/6) · lim
x→π

6

sin
(
x−π/6

2

)
(
x−π/6

2

)
= cos(π/6)

=

√
3

2
.

The equation of the tangent line is

y − 1

2
=

√
3

2

(
x− π

6

)
.

Example 2.2.6 Derive the formulas for the slope and the equation of the
line tangent to the graph of f(x) = sinx at (c, sin c).

As in Example 27, replacing π/6 by c, we get

m = lim
x→c

sinx− sin c

x− c

= lim
x→c

2 cos
(
x+c

2

)
sin
(
x−c

2

)
x− c

= lim
x→c

cos

(
x+ c

2

)
· lim
x→c

sin
(
x−c

2

)(
x−c

2

)
= cos c.

Therefore the slope of the line tangent to the graph of f(x) = sinx at (c, sin c)
is cos c.

The equation of the tangent line is

y − sin c = (cos c)(x− c).
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Example 2.2.7 Derive the formulas for the slope, m, and the equation of
the line tangent to the graph of f(x) = cosx at (c, cos c). Then determine

the slope and the equation of the tangent line at

(
π

3
,
1

2

)
.

As in Example 28, we replace the sine function with the cosine function,

m = lim
x→c

cosx− cos c

x− c

= lim
x→c

−2 sin
(
x+c

2

)
sin
(
x−c

2

)
x− c

= lim
x→c

sin

(
x+ c

2

)
lim
x→c

sin
(
x−c

2

)(
x−c

2

)
= − sin(c).

The equation of the tangent line is

y − cos c = − sin c(x− c).

For c =
π

3
, slope = − sin

(π
3

)
= −
√

3

2
and the equation of the tangent line

y − 1

2
= −
√

3

2

(
x− π

3

)
.

Example 2.2.8 Derive the formulas for the slope, m, and the equation of
the line tangent to the graph of f(x) = xn at the point (c, cn), where n is a
natural number. Then get the slope and the equation of the tangent line for
c = 2, n = 4.

By definition, the slope m is given by

m = lim
x→c

xn − cn

x− c
.

To compute this limit for the general natural number n, it is convenient to
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let x = c+ h. Then

m = lim
h→0

(c+ h)n − cn

h

= lim
h→0

1

h

[(
cn + ncn−1h+

n(n− 1)

2!
cn−2h2 + · · ·+ hn

)
− cn

]
= lim

h→0

1

h

[
ncn−1h+

n(n− 1)

2!
cn−2h2 + · · ·+ hn

]
= lim

h→0

[
ncn−1 +

n(n− 1)

2!
cn−2h+ · · ·+ hn−1

]
= ncn−1.

Therefore, the equation of the tangent line through (c, cn) is

y − cn = ncn−1(x− c).

For n = 4 and c = 2, we find the slope, m, and equation for the tangent line
to the graph of f(x) = x4 at c = 2:

m = 4c3 = 32

y − 24 = 32(x− 2) or y − 16 = 32(x− 2).

Definition 2.2.1 Suppose that a function f is defined on a closed interval
[a, b] and a < c < b. Then c is called a critical point of f if the slope of the
line tangent to the graph of f at (c, f(c)) is zero or undefined. The slope
function of f at c is defined by

slope (f(x), c) = lim
h→0

f(c+ h)− f(c)

h

= lim
x→c

f(x)− f(c)

x− c
.

Example 2.2.9 Determine the slope functions and critical points of the
following functions:

(i) f(x) = sinx, 0 ≤ x ≤ 2π (ii) f(x) = cosx, 0 ≤ x ≤ 2π
(iii) f(x) = |x|, −1 ≤ x ≤ 1 (iv) f(x) = x3 − 4x, −2 ≤ x ≤ 2
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Part (i) In Example 28, we derived the slope function formula for sinx,
namely

slope (sinx, c) = cos c.

Since cos c is defined for all c, the non-end point critical points on [0, 2π]
are π/2 and 3π/2 where the cosine has a zero value. These critical points
correspond to the maximum and minimum values of sinx.

Part (ii) In Example 29, we derived the slope function formula for cosx,
namely

slope (cosx, c) = − sin c.

The critical points are obtained by solving the following equation for c:

− sin c = 0, 0 ≤ c ≤ 2π

c = 0, π, 2π.

These values of c correspond to the maximum value of cosx at c = 0 and 2π,
and the minimum value of cosx at c = π.

Part (iii) slope (|x|, c) = lim
x→c

|x| − |c|
x− c

= lim
x→c

|x| − |c|
x− c

· |x|+ |c|
|x|+ |c|

= lim
x→c

x2 − c2

(x− c)(|x|+ |c|)

= lim
x→c

x+ c

|x|+ |c|

=
2c

2|c|

=
c

|c|

=


1 if c > 0
−1 if c < 0
undefined if c = 0
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The only critical point is c = 0, where the slope function is undefined. This
critical point corresponds to the minimum value of |x| at c = 0. The slope
function is undefined because the tangent line does not exist at c = 0. There
is a sharp corner at c = 0.

Part (iv) The slope function for f(x) = x3 − 4x is obtained as follows:

slope (f(x), c) = lim
h→0

1

h
[((c+ h)3 − 4(c+ h))− (c3 − 4c)]

= lim
h→0

1

h
[c3 + 3c2h+ 3ch2 + h3 − 4c− 4h− c3 + 4c]

= lim
h→0

1

h
[3c2h+ 3ch2 + h3 − 4h]

= lim
h→0

[3c2 + 3ch+ h2 − 4]

= 3c2 − 4

graph

The critical points are obtained by solving the following equation for c:

3c2 − 4 = 0

c = ± 2√
3

At c =
−2√

3
, f has a local maximum value of

16

3
√

3
and at c =

2√
3
, f has a

local minimum value of
−16

3
√

3
. The end point (−2, 0) has a local end-point

minimum and the end point (2, 0) has a local end-point maximum.

Remark 7 The zeros and the critical points of a function are helpful in
sketching the graph of a function.
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Exercises 2.2

1. Express the equations of the lines satisfying the given information in the
form y = mx+ b.

(a) Line passing through (2, 4) and (5,−2)

(b) Line passing through (1, 1) and (3, 4)

(c) Line with slope 3 which passes through (2, 1)

(d) Line with slope 3 and y-intercept 4

(e) Line with slope 2 and x-intercept 3

(f) Line with x-intercept 2 and y-intercept 4.

2. Two oblique lines are parallel if they have the same slope. Two oblique
lines are perpendicular if the product of their slopes is −1. Using this
information, solve the following problems:

(a) Find the equation of a line that is parallel to the line with equation
y = 3x− 2 which passes through (1, 4).

(b) Solve problem (a) when “parallel” is changed to “perpendicular.”

(c) Find the equation of a line with y-intercept 4 which is parallel to
y = −3x+ 1.

(d) Solve problem (c) when “parallel” is changed to “perpendicular.”

(e) Find the equation of a line that passes through (1, 1) and is

(i) parallel to the line with equation 2x− 3y = 6.

(ii) perpendicular to the line with equation 3x+ 2y = 6

3. For each of the following functions f(x) and values c,

(i) derive the slope function, slope (f(x), c) for arbitrary c;

(ii) determine the equations of the tangent line and normal line (perpen-
dicular to tangent line) at the point (c, f(c)) for the given c;

(iii) determine all of the critical points (c, f(c)).

(a) f(x) = x2 − 2x, c = 3

(b) f(x) = x3 , c = 1
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(c) f(x) = sin(2x), c =
π

12

(d) f(x) = cos(3x), c =
π

9
(e) f(x) = x4 − 4x2, c = −2, 0, 2,−

√
2,
√

2.

2.3 Limits and Sequences

We begin with the definitions of sets, sequences, and the completeness prop-
erty, and state some important results. If x is an element of a set S, we write
x ∈ S, read “x is in S.” If x is not an element of S, then we write x /∈ S,
read “x is not in S.”

Definition 2.3.1 If A and B are two sets of real numbers, then we define

A ∩B = {x : x ∈ A and x ∈ B}

and

A ∪B = {x : x ∈ A or x ∈ B or both}.

We read “A∩B” as the “intersection of A and B.” We read “A∪B” as the
“union of A and B.” If A ∩B is the empty set, ∅, then we write A ∩B = ∅.

Definition 2.3.2 Let A be a set of real numbers. Then a number m is said
to be an upper bound of A if x ≤ m for all x ∈ A. The number m is said to
be a least upper bound of A, written lub(A) if and only if,

(i) m is an upper bound of A, and,

(ii) if q < m, then there is some x ∈ A such that q < x ≤ m.

Definition 2.3.3 Let B be a set of real numbers. Then a number ` is said
to be a lower bound of B if ` ≤ y for each y ∈ B. This number ` is said to
be the greatest lower bound of B, written, glb(b), if and only if,

(i) ` is a lower bound of B, and,
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(ii) if ` < p, then there is some element y ∈ B such that ` ≤ y < p.

Definition 2.3.4 A real number p is said to be a limit point of a set S if
and only if every open interval that contains p also contains an element q of
S such that q 6= p.

Example 2.3.1 Suppose A = [1, 10] and B = [5, 15].
ThenA∩B = [5, 10], A∪B = [1, 15], glb(A) = 1, lub(A) = 10, glb(B) = 5

and lub(B) = 15. Each element of A is a limit point of A and each element
of B is a limit point of B.

Example 2.3.2 Let S =

{
1

n
: n is a natural number

}
.

Then no element of S is a limit point of S. The number 0 is the only
limit point of S. Also, glb(S) = 0 and lub(S) = 1.
Completeness Property: The completeness property of the set R of all real
numbers states that if A is a non-empty set of real numbers and A has an
upper bound, then A has a least upper bound which is a real number.

Theorem 2.3.1 If B is a non-empty set of real numbers and B has a lower
bound, then B has a greatest lower bound which is a real number.

Proof. Let m denote a lower bound for B. Then m ≤ x for every x ∈ B.
Let A = {−x : x ∈ B}. then −x ≤ −m for every x ∈ B. Hence, A is a
non-empty set that has an upper bound −m. By the completeness property,
A has a least upper bound lub(A). Then, -lub(A) = glb(B) and the proof is
complete.

Theorem 2.3.2 If x1 and x2 are real numbers such that x1 < x2, then

x1 <
1

2
(x1 + x2) < x2.

Proof. We observe that

x1 ≤
1

2
(x1 + x2) < x2 ↔ 2x1 < x1 + x2 < 2x2

↔ x1 < x2 < x2 + (x2 − x1).

This completes the proof.
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Theorem 2.3.3 Suppose that A is a non-empty set of real numbers and
m = lub(A). If m /∈ A, then m is a limit point of A.

Proof. Let an open interval (a, b) contain m. That is, a < m < b. By the
definition of a least upper bound, a is not an upper bound for A. Therefore,
there exists some element q of A such that a < q < m < b. Thus, every open
interval (a, b) that contains m must contain a point of A other than m. It
follows that m is a limit point of A.

Theorem 2.3.4 (Dedekind-Cut Property). The set R of all real numbers is
not the union of two non-empty sets A and B such that

(i) if x ∈ A and y ∈ B, then x < y,

(ii) A contains no limit point of B, and,

(iii) B contains no limit point of A.

Proof. Suppose that R = A ∪ B where A and B are non-empty sets that
satisfy conditions (i), (ii) and (iii). Since A and B are non-empty, there exist
real numbers a and b such that a ∈ A and b ∈ B. By property (i), a is
a lower bound for B and b is an upper bound for A. By the completeness
property and theorem 2.3.1, A has a least upper bound, say m, and B has a
greatest lower bound, say M . If m /∈ A, then m is a limit point of A. Since
B contains no limit point of A, m ∈ A. Similarly, M ∈ B. It follows that
m < M by condition (i). However, by Theorem 2.3.2,

m <
1

2
(m+M) < M.

The number
1

2
(m+M) is neither in A nor in B. This is a contradiction,

because R = A ∪B. This completes the proof.

Definition 2.3.5 An empty set is considered to be a finite set. A non-empty
set S is said to be finite if there exists a natural number n and a one-to-one
function that maps S onto the set {1, 2, 3, . . . , n}. Then we say that S has n
elements. If S is not a finite set, then S is said to be an infinite set. We say
that an infinite set has an infinite number of elements. Two sets are said to
have the same number of elements if there exists a one-to-one correspondence
between them.
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Example 2.3.3 Let A = {a, b, c}, B = {1, 2, 3}, C = {1, 2, 3, . . . }, and D =
{0, 1,−1, 2,−2, . . . }.

In this example, A and B are finite sets and contain three elements each.
The sets C and D are infinite sets and have the same number of elements. A
one-to-one correspondence f between n, C and D can be defined as f : C →
D such that

f(1) = 0, f(2n) = n and f(2n+ 1) = −n for n = 1, 2, 3, . . . .

Definition 2.3.6 A set that has the same number of elements as C =
{1, 2, 3, . . . } is said to be countable. An infinite set that is not countable
is said to be uncountable.

Remark 8 The set of all rational numbers is countable but the set of all real
numbers is uncountable.

Definition 2.3.7 A sequence is a function, say f , whose domain is the set
of all natural numbers. It is customary to use the notation f(n) = an, n =
1, 2, 3, . . . . We express the sequence as a list without braces to avoid confusion
with the set notation:

a1, a2, a3, . . . , an, . . . or, simply, {an}∞n=1.

The number an is called the nth term of the sequence. The sequence is said
to converge to the limit a if for every ε > 0, there exists some natural number,
say N , such that |am − a| < ε for all m ≥ N . We express this convergence
by writing

lim
n→∞

an = a.

If a sequence does not converge to a limit, it is said to diverge or be divergent.

Example 2.3.4 For each natural number n, let

an = (−1)n, bn = 2−n, cn = 2n, dn =
(−1)n

n
.

The sequence {an} does not converge because its terms oscillate between −1
and 1. The sequence {bn} converges to 0. The sequence {cn} diverges to ∞.
The sequence {dn} converges to 0.
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Definition 2.3.8 A sequence {an}∞n=1 diverges to ∞ if, for every natural
number N , there exists some m such that

am+j ≥ N for all j = 1, 2, 3, · · · .

The sequence {an}∞n=1 is said to diverge to −∞ if, for every natural number
N , there exists some m such that

am+j ≤ −N , for all j = 1, 2, 3, . . . .

Theorem 2.3.5 If p is a limit point of a non-empty set A, then every open
interval that contains p must contain an infinite subset of A.

Proof. Let some open interval (a, b) contain p. Suppose that there are only
two finite subsets {a1, a2, . . . , an} and {b1, b2, . . . , bm} of distinct elements of
A such that

a < a1 < a2 < · · · < an < p < bm < bm−1 < · · · < b1 < b.

Then the open interval (an, bm) contains p but no other points of A distinct
from p. Hence p is not a limit point of A. The contradiction proves the
theorem.

Theorem 2.3.6 If p is a limit point of a non-empty set A, then there exists
a sequence {pn}∞n=1, of distinct points pn of A, that converges to p.

Proof. Let a1 = p− 1

2
, b1 = p+

1

2
. Choose a point p1 of A such that p1 6= p

and a1 < p1 < p < b1 or a1 < p < p1 < b1. If a1 < p1 < p < b1, then define

a2 = max

{
p1, p−

1

22

}
and b2 = p+

1

22
. Otherwise, define a2 = p− 1

22
and

b2 = min

{
p1, p+

1

22

}
. Then the open interval (a2, b2) contains p but not p1

and b2 − a2 ≤
1

2
. We repeat this process indefinitely to select the sequence

{pn}, of distinct points pn of A, that converges to p. The fact that {pn} is an
infinite sequence is guaranteed by Theorem 2.3.5. This completes the proof.

Theorem 2.3.7 Every bounded infinite set A has at least one limit point p
and there exists a sequence {pn}∞n=1, of distinct points of A, that converges
to p.
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Proof. We will show that A has a limit point. Since A is bounded, there
exists an open interval (a, b) that contains all points of A. Then either(
a,

1

2
(a+ b)

)
contains an infinite subset of A or

(
1

2
(a+ b), b

)
contains an

infinite subset of A. Pick one of the two intervals that contains an infinite
subset of A. Let this interval be denoted (a1, b1). We continue this process
repeatedly to get an open interval (an, bn) that contains an infinite subset of

A and |bn − an| =
|b− a|

2n
. Then the lub of the set {an, a2, . . . } and glb of

the set {b1, b2, . . . } are equal to some real number p. It follows that p is a
limit point of A. By Theorem 2.3.6, there exists a sequence {pn}, of distinct
points of A, that converges to p. This completes the proof.

Definition 2.3.9 A set is said to be a closed set if it contains all of its limit
points. The complement of a closed set is said to be an open set. (Recall
that the complement of A is {x ∈ R : x /∈ A}.)

Theorem 2.3.8 The interval [a, b] is a closed and bounded set. Its comple-
ment (−∞, a) ∪ (b,∞) is an open set.

Proof. Let p ∈ (−∞, a) ∪ (b,∞). Then −∞ < p < a or b < p < ∞. The

intervals

(
p− 1

2
,

1

2
(a+ p)

)
or

(
1

2
(b+ p), p+

1

2

)
contain no limit point of

[a, b]. Thus [a, b] must contain its limit points, because they are not in the
complement.

Theorem 2.3.9 If a non-empty set A has no upper bound, then there exists
a sequence {pn}∞n=1, of distinct points of A, that diverges to∞. Furthermore,
every subsequence of {pn}∞n=1 diverges to ∞

Proof. Since 1 is not an upper bound of A, there exists an element p1 of A
such that 1 < p1. Let a1 = max{2, p1}. Choose a point, say p2, of A such
that a1 < p2. By repeating this process indefinitely, we get the sequence
{pn} such that pn > n and p1 < p2 < p3 < . . . . Clearly, the sequence
{pn}∞n=1 diverges to ∞. It is easy to see that every subsequence of {pn}∞n=1

also diverges to ∞.

Theorem 2.3.10 If a non-empty set B has no lower bound, then there exists
a sequence {qn}∞n=1, of distinct points of B, that diverges to −∞. Further-
more, every subsequence of {qn}∞n=1 diverges to −∞.
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Proof. Let A = {−x : x ∈ B}. Then A has no upper bound. By Theorem
2.3.9, there exists a sequence {pn}∞n=1, of distinct points of A, that diverges to
∞. Let qn = −pn. Then {qn}∞n=1 is a sequence that meets the requirements
of the Theorem 2.3.10. Also, every subsequence of {qn}∞n=1 diverges to −∞.

Theorem 2.3.11 Let {pn}∞n=1 be a sequence of points of a closed set S that
converges to a point p of S. If f is a function that is continuous on S, then
the sequence {f(pn)}∞n=1 converges to f(p). That is, continuous functions
preserve convergence of sequences on closed sets.

Proof. Let ε > 0 be given. Since f is continuous at p, there exists a δ > 0
such that

|f(x)− f(p)| < ε whenever |x− p| < δ, and x ∈ S.

The open interval (p− δ, p+ δ) contains the limit point p of S. The sequence
{pn}∞n=1 converges to p. There exists some natural numbers N such that for
all n ≥ N ,

p− δ < pn < p+ δ.

Then
|f(pn)− f(p)| < ε whenever n ≥ N.

By definition, {f(pn)}∞n=1 converges to f(p). We write this statement in the
following notation:

lim
n→∞

f(pn) = f
(

lim
n→∞

pn

)
.

That is, continuous functions allow the interchange of taking the limit and
applying the function. This completes the proof of the theorem.

Corollary 1 If S is a closed and bounded interval [a, b], then Theorem 2.3.11
is valid for [a, b].

Theorem 2.3.12 Let a function f be defined and continuous on a closed
and bounded set S. Let Rf = {f(x) : x ∈ S}. Then Rf is bounded.

Proof. Suppose that Rf has no upper bound. Then there exists a sequence
{f(xn)}∞n=1, of distinct points of Rf , that diverges to ∞. The set A =
{x1, x2, . . . } is an infinite subset of S. By Theorem 2.3.7, the set A has
some limit point, say p. Since S is closed, p ∈ S. There exists a sequence
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{pn}∞n=1, of distinct points of A that converges to p. By the continuity of
f, {f(pn)}∞n=1 converges to f(p). Without loss of generality, we may assume
that {f(pn)}∞n=1 is a subsequence of {f(xn)}∞n=1. Hence {f(pn)}∞n=1 diverges
to∞, and f(p) =∞. This is a contradiction, because f(p) is a real number.
This completes the proof of the theorem.

Theorem 2.3.13 Let a function f be defined and continuous on a closed
and bounded set S. Let Rf = {f(x) : x ∈ S}. Then Rf is a closed set.

Proof. Let q be a limit point of Rf . Then there exists a sequence {f(xn)}∞n=1,
of distinct points of Rf , that converges to q. As in Theorem 2.3.12, the set
A = {x1, x2, . . . } has a limit point p, p ∈ S, and there exists a subsequence
{pn}∞n=1, of {xn}∞n=1 that converges to p. Since f is defined and continuous
on S,

q = lim
n→∞

f(pn) = f
(

lim
n→∞

pn

)
= f(p).

Therefore, q ∈ Rf and Rf is a closed set. This completes the proof of the
theorem.

Theorem 2.3.14 Let a function f be defined and continuous on a closed
and bounded set S. Then there exist two numbers c1 and c2 in S such that
for all x ∈ S,

f(c1) ≤ f(x) ≤ f(c2).

Proof. By Theorems 2.3.12 and 2.3.13, the range, Rf , of f is a closed and
bounded set. Let

m = glb(Rf ) and M = lub(Rf ).

Since Rf is a closed set, m and M are in Rf . Hence, there exist two numbers,
say c1 and c2, in S such that

m = f(c1) and M = f(c2).

This completes the proof of the theorem.

Definition 2.3.10 A set S of real numbers is said to be compact, if and
only if S is closed and bounded.

Theorem 2.3.15 A continuous function maps compact subsets of its domain
onto compact subsets of its range.
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Proof. Theorems 2.3.13 and 2.3.14 together prove Theorem 2.1.15.

Definition 2.3.11 Suppose that a function f is defined and continuous on
a compact set S. A number m is said to be an absolute minimum of f on S
if m ≤ f(x) for all x ∈ S and m = f(c) for some c in S.

A number M is said to be an absolute maximum of f on S if M ≥ f(x)
for all x ∈ S and M = f(d) for some d in S.

Theorem 2.3.16 Suppose that a function f is continuous on a compact set
S. Then there exist two points c1 and c2 in S such that f(c1) is the absolute
minimum and f(c2) is the absolute maximum of f on S.

Proof. Theorem 2.3.14 proves Theorem 2.3.16.

Exercises 2.3

1. Find lub(A), glb(A) and determine all of the limit points of A.

(a) A = {x : 1 ≤ x2 ≤ 2}
(b) A = {x : x sin(1/x), x > 0}
(c) A = {x2/3 : −8 < x < 8}
(d) A = {x : 2 < x3 < 5}
(e) A = {x : x is a rational number and 2 < x3 < 5}

2. Determine whether or not the following sequences converge. Find the
limit of the convergent sequences.

(a)

{
n

n+ 1

}∞
n=1

(b)
{ n
n2

}∞
n=1

(c)

{
(−1)n

n

3n+ 1

}∞
n=1

(d)

{
n2

n+ 1

}∞
n=1

(e) {1 + (−1)n}∞n=1
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3. Show that the Dedekind-Cut Property is equivalent to the completeness
property.

4. Show that a convergent sequence cannot have more than one limit point.

5. Show that the following principle of mathematical induction is valid: If
1 ∈ S, and k + 1 ∈ S whenever k ∈ S, then S contains the set of all
natural numbers. (Hint: Let A = {n : n /∈ S}. A is bounded from below
by 2. Let m = glb(A). Then k = m− 1 ∈ S but k + 1 = m /∈ S. This is
a contradiction.)

6. Prove that every rational number is a limit point of the set of all rational
numbers.

7. Let {an}∞n=1 be a sequence of real numbers. Then

(i) {an}∞n=1 is said to be increasing if an < an+1, for all n.

(ii) {an}∞n=1 is said to be non-decreasing if an ≤ an+1 for all n.

(iii) {an}∞n=1 is said to be non-increasing if an ≥ an+1 for all n.

(iv) {an}∞n=1 is said to be decreasing if an > an+1 for all n.

(v) {an}∞n=1 is said to be monotone if it is increasing, non-decreasing,
non-increasing or decreasing.

(a) Determine which sequences in Exercise 2 are monotone.

(b) Show that every bounded monotone sequence converges to some
point.

(c) A sequence {bm}∞m=1 is said to be a subsequence of the {an}∞n=1 if and
only if every bm is equal to some an, and if

bm1 = an1 and bm2 = an2 and n1 < n2, then m1 < m2.

That is, a subsequence preserves the order of the parent sequence.
Show that if {an}∞n=1 converges to p, then every subsequence of
{an}∞n=1 also converges to p

(d) Show that a divergent sequence may contain one or more convergent
sequences.
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(e) In problems 2(c) and 2(e), find two convergent subsequences of each.
Do the parent sequences also converge?

8. (Cauchy Criterion) A sequence {an}∞n=1 is said to satisfy a Cauchy Crite-
rion, or be a Cauchy sequence, if and only if for every ε > 0, there exists
some natural number N such that (an − am) < ε whenever n ≥ N and
m ≥ N . Show that a sequence {an}∞n=1 converges if and only if it is a
Cauchy sequence. (Hint: (i) If {an} converges to p, then for every ε > 0
there exists some N such that if n ≥ N , then |an − p| < ε/2. If m ≥ N
and n ≥ N , then

|an − am| = |(an − p) + (p− am)|
≤ |an − p|+ |am − p| (why?)

<
ε

2
+
ε

2
= ε.

So, if {an} converges, then it is Cauchy.

(ii) Suppose {an} is Cauchy. Let ε > 0. Then there exists N > 0 such
that

|an − am| < ε whenever n ≥ N and m ≥ N.

In particular,
|an − aN | < ε whenever n ≥ N.

Argue that the sequence {an} is bounded. Unless an element is repeated
infinitely many times, the set consisting of elements of the sequence has a
limit point. Either way, it has a convergent subsequence that converges,
say to p. Then show that the Cauchy Criterion forces the parent sequence
{an} to converge to p also.)

9. Show that the set of all rational numbers is countable. (Hint: First show
that the positive rationals are countable. List them in reduced form
without repeating according to denominators, as follows:

0

1
,
1

1
,
2

1
,
3

1
,
4

1
, · · · .

1

2
,
3

2
,
5

2
,
2

2
, · · · .

1

3
,
2

3
,
4

3
,
5

3
,
7

3
,
8

3
,
10

3
, · · · .
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Count them as shown, one-by-one. That is, list them as follows:{
0, 1,

1

2
,

1

3
,

3

2
, 2, 3,

5

2
,

2

3
,

1

4
,

1

5
, · · ·

}
.

Next, insert the negative rational right after its absolute value, as follows:{
0, 1,−1,

1

2
, −1

2
,

1

3
, −1

3
, · · ·

}
.

Now assign the even natural numbers to the positive rationals and the
odd natural numbers to the remaining rationals.)

10. A non-empty set S has the property that if x ∈ S, then there is some
open interval (a, b) such that x ∈ (a, b) ⊂ S. Show that the complement
of S is closed and hence S is open.

11. Consider the sequence

{
an =

π

2
+

(−1)n

n

}∞
n=1

. Determine the conver-

gent or divergent properties of the following sequences:

(a) {sin(an)}∞n=1

(b) {cos(an)}∞n=1

(c) {tan(an)}∞n=1

(d) {cot(an)}∞n=1

(e) {sec(an)}∞n=1

(f) {csc(an)}∞n=1

12. Let

(a) f(x) = x2,−2 ≤ x ≤ 2

(b) g(x) = x3,−2 ≤ x ≤ 2

(c) h(x) =
√
x, 0 ≤ x ≤ 4

(d) p(x) = x1/3,−8 ≤ x ≤ 8

Find the absolute maximum and absolute minimum of each of the func-
tions f, g, h, and p. Determine the points at which the absolute maximum
and absolute minimum are reached.
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13. A function f is said to have a fixed point p if f(p) = p. Determine all of
the fixed points of the functions f, g, h, and p in Exercise 12.

14. Determine the range of each of the functions in Exercise 12, and show
that it is a closed and bounded set.

2.4 Properties of Continuous Functions

We recall that if two functions f and g are defined and continuous on a
common domain D, then f + g, f − g, af + bg, g · f are all continuous on
D, for all real numbers a and b. Also, the quotient f/g is continuous for all
x in D where g(x) 6= 0. In section 2.3 we proved the following:

(i) Continuous functions preserve convergence of sequences.

(ii) Continuous functions map compact sets onto compact sets.

(iii) If a function f is continuous on a closed and bounded interval [a, b], then
{f(x) : x ∈ [a, b]} ⊆ [m,M ], where m and M are absolute minimum and
absolute maximum of f , on [a, b], respectively.

Theorem 2.4.1 Suppose that a function f is defined and continuous on
some open interval (a, b) and a < c < b.

(i) If f(c) > 0, then there exists some δ > 0 such that f(x) > 0 whenever
c− δ < x < c+ δ.

(ii) If f(c) < 0, then there exists some δ > 0 such that f(x) < 0 whenever
c− δ < x < c+ δ.

Proof. Let ε =
1

2
|f(c)|. For both cases (i) and (ii), ε > 0. Since f is

continuous at c and ε > 0, there exists some δ > 0 such that a < (c − δ) <
c < (c+ δ) < b and

|f(x)− f(c)| < ε whenever |x− c| < δ.
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We observe that

|f(x)− f(c)| < ε↔ |f(x)− f(c)| < 1

2
|f(c)|

↔ −1

2
|f(c)| < f(x)− f(c) <

1

2
|f(c)|

↔ f(c)− 1

2
|f(c)| < f(x) < f(c) +

1

2
|f(c)|.

We note also that the numbers f(c)− 1

2
|f(c)| and f(c) +

1

2
|f(c)| have the

same sign as f(c). Therefore, for all x such that |x−c| < δ, we have f(x) > 0
in part (i) and f(x) < 0 in part (ii) as required. This completes the proof.

Theorem 2.4.2 Suppose that a function f is defined and continuous on
some closed and bounded interval [a, b] such that either

(i) f(a) < 0 < f(b) or (ii) f(b) < 0 < f(a).

Then there exists some c such that a < c < b and f(c) = 0.

Proof. Part (i) Let A {x : x ∈ [a, b] and f(x) < 0}. Then A is non-
empty because it contains a. Since A is a subset of [a, b], A is bounded. Let
c1 = lub(A). We claim that f(c1) = 0. Suppose f(c1) 6= 0. Then f(c1) > 0
or f(c1) < 0. By Theorem 2.4.1, there exists δ > 0 such that f(x) has the
same sign as f(c1) for all x such that c1 − δ < x < c1 + δ.

If f(c1) < 0, then f(x) < 0 for all x such that c1 < x < c1 + δ and hence
c1 6= lub(A). If f(c1) > 0, then f(x) > 0 for all x such that c1 − δ < x < c1

and hence c1 6= lub(A). This contradiction proves that f(c1) = 0.

Part (ii) is proved by a similar argument.

Example 2.4.1 Show that Theorem 2.4.2 guarantees the validity of the fol-
lowing method of bisection for finding zeros of a continuous function f :

Bisection Method: We wish to solve f(x) = 0 for x.

Step 1. Locate two points such that f(a)f(b) < 0.

Step 2. Determine the sign of f

(
1

2
(a+ b)

)
.
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(i) If f

(
1

2
(a+ b)

)
= 0, stop the procedure;

1

2
(a+ b) is a zero of f .

(ii) If f

(
1

2
(a+ b)

)
· f(a) < 0, then let a1 = a, b1 =

1

2
(a+ b).

(iii) If f

(
1

2
(a+ b)

)
· f(b) < 0, then let a1 =

1

2
(a+ b), b1 = b.

Then f(a1) · f(b1) < 0, and |b1 − a1| =
1

2
(b− a).

Step 3. Repeat Step 2 and continue the loop between Step 2 and Step 3 until

|bn − an|/2n < Tolerance Error.

Then stop.

This method is slow but it approximates the number c guaranteed by
Theorem 2.4.2. This method is used to get close enough to the zero. The
switchover to the faster Newton’s Method that will be discussed in the next
section.

Theorem 2.4.3 (Intermediate Value Theorem). Suppose that a function
is defined and continuous on a closed and bounded interval [a, b]. Suppose
further that there exists some real number k such that either (i) f(a) < k <
f(b) or (ii) f(b) < k < f(a). Then there exists some c such that a < c < b
and f(c) = k.

Proof. Let g(x) = f(x) − k. Then g is continuous on [a, b] and either (i)
g(a) < 0 < g(b) or (ii) g(b) < 0 < g(a). By Theorem 2.4.2, there exists some
c such that a < c < b and g(c) = 0. Then

0 = g(c) = f(c)− k

and

f(c) = k

as required. This completes the proof.
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Theorem 2.4.4 Suppose that a function f is defined and continuous on a
closed and bounded interval [a, b]. Then there exist real numbers m and M
such that

[m,M ] = {f(x) : a ≤ x ≤ b}.

That is, a continuous function f maps a closed and bounded interval [a, b]
onto a closed and bounded interval [m,M ].

Proof. By Theorem 2.3.14, there exist two numbers c1 and c2 in [a, b] such
that for all x ∈ [a, b],

m = f(c1) ≤ f(x) ≤ f(c2) = M.

By the Intermediate Value Theorem (2.4.3), every real value between m and
M is in the range of f contained in the interval with end points c1 and c2.
Therefore,

[m,M ] = {f(x) : a ≤ x ≤ b}.

Recall that m = absolute minimum and M = absolute maximum of f on
[a, b]. This completes the proof of the theorem.

Theorem 2.4.5 Suppose that a function f is continuous on an interval [a, b]
and f has an inverse on [a, b]. Then f is either strictly increasing on [a, b]
or strictly decreasing on [a, b].

Proof. Since f has in inverse on [a, b], f is a one-to-one function on [a, b].
So, f(a) 6= f(b). Suppose that f(a) < f(b). Let

A = {x : f is strictly increasing on [a, x] and a ≤ x ≤ b}.

Let c be the least upper bound of A. If c = b, then f is strictly increasing on
[a, b] and the proof is complete. If c = a, then there exists some d such that
a < d < b and f(d) < f(a) < f(b). By the intermediate value theorem there
must exist some x such that d < x < b and f(x) = f(a). This contradicts the
fact that f is one-to-one. Then a < c < b and there exists some d such that
c < d < b and f(a) < f(d) < f(c). By the intermediate value theorem there
exists some x such that a < x < c and f(x) = f(c) and f is not one-to-one.
It follows that c must equal b and f is strictly increasing on [a, b]. Similarly,
if f(a) > f(b), f will be strictly decreasing on [a, b]. This completes the
proof of the theorem.
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Theorem 2.4.6 Suppose that a function f is continuous on [a, b] and f
is one-to-one on [a, b]. Then the inverse of f exists and is continuous on
J = {f(x) : a ≤ x ≤ b}.

Proof. By Theorem 2.4.4, J = [m,M ] where m and M are the absolute
minimum and the absolute maximum of f on [a, b]. Also, there exist numbers
c1 and c2 on [a, b] such that f(c1) = m and f(c2) = M . Since f is either
strictly increasing or strictly decreasing on [a, b], either a = c1 and b = c2

or a = c2 and b = c1. Consider the case where f is strictly increasing and
a = c1, b = c2. Let m < d < M and d = f(c). Then a < c < b. We show
that f−1 is continuous at d. Let ε > 0 be such that a < c− ε < c < c+ ε2b.
Let d1 = f(c − ε), d2 = f(c + ε). Since f is strictly increasing, d1 < d <
d2. Let δ = min(d − d1, d2 − d). It follows that if 0 < |y − d| < δ, then
|f−1(y)−f−1(d)| < ε and f−1 is continuous at d. Similarly, we can prove the
one-sided continuity of f−1 at m and M . A similar argument will prove the
continuity of f−1 if f is strictly decreasing on [a, b].

Theorem 2.4.7 Suppose that a function f is continuous on an interval I
and f is one-to-one on I. Then the inverse of f exists and is continuous on
I.

Proof. Let J = {f(x) : x is in I}. By the intermediate value theorem
J is also an interval. Let d be an interior point of J . Then there exists a
closed interval [m,M ] contained in I and m < d < M . Let c1 = f−1(m), c2 =
f−1(b), a = min{c1, c2} Since the theorem is valid on [a, b], f−1 is continuous
at d. The end points can be treated in a similar way. This completes the
proof of the theorem. (See the proof of Theorem 2.4.6).

Theorem 2.4.8 (Fixed Point Theorem). Let f satisfy the conditions of
Theorem 2.4.4. Suppose further that a ≤ m ≤ M ≤ b, where m and M are
the absolute minimum and absolute maximum, respectively, of f on [a, b].
Then there exists some p ∈ [a, b] such that f(p) = p. That is, f has a fixed
point p on [a, b].

Proof. If f(a) = a, then a is a fixed point. If f(b) = b, then b is a fixed
point. Suppose that neither a nor b is a fixed point of f . Then we define

g(x) = f(x)− x

for all x ∈ [a, b].
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We observe that g(b) < 0 < g(a). By the Intermediate Value Theorem
(2.4.3) there exists some p such that a < p < b and g(p) = 0. Then

0 = g(p) = f(p)− p

and hence,
f(p) = p

and p is a fixed point of f on [a, b]. This completes the proof.

Remark 9 The Fixed Point Theorem (2.4.5) is the basis of the fixed point
iteration methods that are used to locate zeros of continuous functions. We
illustrate this concept by using Newton’s Method as an example.

Example 2.4.2 Consider f(x) = x3 + 4x− 10.
Since f(1) = −5 and f(2) = 6, by the Intermediate Value Theorem (2.4.3)

there is some c such that 1 < c < 2 and f(c) = 0. We construct a function g
whose fixed points agree with the zeros of f . In Newton’s Method we used
the following general formula:

g(x) = x− f(x)

slope(f(x), x)
.

Note that if f(x) = 0, then g(x) = x, provided slope (f(x), x) 6= 0. We first
compute

Slope(f(x), x) = lim
h→0

1

h
[f(x+ h)− f(x)]

= lim
h→0

1

h
[{(x+ h)3 + 4(x+ h)− 10} − {x3 + 4x− 10}]

= lim
h→0

1

h
[3x2h+ 3xh2 + h3 + 4h]

= lim
h→0

[3x2 + 3xh+ h2 + 4]

= 3x2 + 4.

We note that 3x2 + 4 is never zero. So, Newton’s Method is defined.
The fixed point iteration is defined by the equation

xn+1 = g(xn) = xn −
f(xn)

slope(f(x), xn)
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or

xn+1 = xn −
x3
n + 4xn − 10

3x2
n + 4

.

Geometrically, we draw a tangent line at the point (xn, f(xn)) and label the
x-coordinate of its point of intersection with the x-axis as xn+1.

graph

Tangent line: y − f(xn) = m(x− xn)

0− f(xn) = m(xn+1 − xn)

xn+1 = xn −
f(xn)

m
,

where m = slope (f(x), xn) = 3x2
n + 4.

To begin the iteration we required a guess x0. This guess is generally
obtained by using a few steps of the Bisection Method described in Example
36. Let x0 = 1.5. Next, we need a stopping rule. Let us say that we will
stop when a few digits of xn do not change anymore. Let us stop when

|xn+1 − xn| < 10−4.

We will leave the computation of x1, x2, x3, . . . as an exercise.

Remark 10 Newton’s Method is fast and quite robust as long as the initial
guess is chosen close enough to the intended zeros.

Example 2.4.3 Consider the same equation (x3 + 4x − 10 = 0) as in the
preceding example.

We solve for x in some way, such as,

x =

(
10

4 + x

)1/2

= g(x).
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In this case the new equation is good enough for positive roots. We then
define

xn+1 = g(xn), x0 = 1.5

and stop when

|xn+1 − xn| < 10−4.

We leave the computations of x1, x2, x3 . . . as an exercise. Try to compare the
number of iterations needed to get the same accuracy as Newton’s Method
in the previous example.

Exercises 2.4

1. Perform the required iterations in the last two examples to approximate
the roots of the equation x3 + 4x− 10 = 0.

2. Let f(x) = x − cosx. Then slope (f(x), x) = 1 + sinx > 0 on
[
0,
π

2

]
.

Approximate the zeros of f(x) on
[
0,
π

2

]
by Newton’s Method:

xn+1 = xn −
xn − cosxn
1 + sinxn

, x0 = 0.8

and stop when

|xn+1 − xn| < 10−4.

3. Let f(x) = x − 0.8 − 0.4 sinx on
[
0,
π

2

]
. then slope (f(x), x) = 1 −

0.4 cosx > 0 on
[
0,
π

2

]
. Approximate the zero of f using Newton’s

Iteration

xn+1 = xn −
xn − 0.8− 0.4 sin(xn)

1− 0.4 cos(xn)
, x0 = 0.5

4. To avoid computing the slope function f , the Secant Method of iter-
ation uses the slope of the line going through the previous two points
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(xn, f(xn)) and (xn+1, f(xn+1)) to define xn+2 as follows: Given x0 and
x1, we define

xn+2 = xn+1 −
f(xn+1)(

f(xn+1)−f(xn)
xn+1−xn

)

xn+2 = xn+1 −
f(xn+1)(xn+1 − xn)

f(xn+1 − f(xn)

This method is slower than Newton’s Method, but faster than the Bi-
section. The big advantage is that we do not need to compute the slope
function for f . The stopping rule can be the same as in Newton’s Method.
Use the secant Method for Exercises 2 and 3 with x0 = 0.5, x1 = 0.7 and
|xn+1 − xn| < 10−4. Compare the number of iterations needed with
Newton’s Method.

5. Use the Bisection Method to compute the zero of x3+4x−10 on [1, 2] and
compare the number of iterations needed for the stopping rule |xn+1 −
xn| < 10−4.

6. A set S is said to be connected if S is not the union of two non-empty
sets A and B such that A contains no limit point of B and B contains
no limit point of A. Show that every closed and bounded interval [a, b]
is connected.

(Hint: Assume that [a, b] is not connected and [a, b] = A∪B, a ∈ A,B 6=
∅ as described in the problem. Let m = lub(A), M = glb(B). Argue

that m ∈ A and m ∈ B. Then
1

2
(m+M) /∈ (A ∪B). The contradiction

proves the result.

7. Show that the Intermediate Value Theorem (2.4.3) guarantees that con-
tinuous functions map connected sets onto connected sets. (Hint: Let
S be connected and f be continuous on S. Let Rf = {f(x) : x ∈ S}.
Suppose Rf = A ∪B,A 6= ∅, B 6= ∅, such that A contains no limit point
of B and B contains no limit point of A. Let U = {x ∈ S : f(x) ∈ A},
V = {x ∈ S : f(x) ∈ B}. Then S = U ∪ V, U 6= ∅ and V 6= ∅. Since S
is connected, either U contains a limit point of V or V contains a limit
point of U . Suppose p ∈ V and p is a limit point of U . Then choose a
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sequence {un} that converges to p, un ∈ U . By continuity, {f(un)} con-
verges to f(p). But f(un) ∈ A and f(p) ∈ B. This is a contradiction.)

8. Find all of the fixed points of the following:

(a) f(x) = x2, −4 ≤ x ≤ 4

(b) f(x) = x3, −2 ≤ x ≤ 2

(c) f(x) = x2 + 3x+ 1

(d) f(x) = x3 − 3x, −4 ≤ x ≤ 4

(e) f(x) = sinx

9. Determine which of the following sets are

(i) bounded, (ii) closed, (iii) connected.

(a) N = {1, 2, 3, . . . , }
(b) Q = {x : x is rational number}
(c) R = {x : x is a real number}
(d) B1 = {sinx : −π ≤ x ≤ π}
(e) B2 = {sinx : −π < x < π}

(f) B3 =

{
sinx :

−π
2

< x <
π

2

}
(g) B4 =

{
tanx :

−π
2

< x <
π

2

}
(h) C1 = [(−1, 0) ∪ (0, 1]

(i) C2 =

{
f(x) : −π ≤ x ≤ π, f(x) =

sinx

x
, x 6= 0; f(0) = 2

}
(j) C3 =

{
g(x) : −π ≤ x ≤ π, g(x) =

1− cosx

x
, g(0) = 1

}
10. Suppose f is continuous on the set of all real numbers. Let the open

interval (c, d) be contained in the range of f . Let

A = {x : c < f(x) < d}.
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Show that A is an open set.

(Hint: Let p ∈ A. Then f(p) ∈ (c, d). Choose ε > 0 such that c <
p − ε < p + ε < d. Since f is continuous at p, there is δ > 0 such that
|f(x)−f(p)| < ε whenever |x−p| < δ. This means that the open interval
(p − δ, p + δ) is contained in A. By definition, A is open. This proves
that the inverse of a continuous function maps an open set onto an open
set.)

2.5 Limits and Infinity

The convergence of a sequence {an}∞n=1 depends on the limit of an as n tends
to ∞.

Definition 2.5.1 Suppose that a function f is defined on an open interval
(a, b) and a < c < b. Then we define the following limits:

(i) lim
x→c−

f(x) = +∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) > M
whenever c− δ < x < c.

(ii) lim
x→c+

f(x) = +∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) > M
whenever c < x < c+ δ.

(iii) lim
x→c

f(x) = +∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) > M
whenever 0 < |x− c| < δ.

(iv) lim
x→c

f(x) = −∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) <
−M whenever 0 < |x− c| < δ.

(v) lim
x→c+

f(x) = −∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) <
−M whenever c < x < c+ δ.
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(vi) lim
x→c−

f(x) = −∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) <
−M whenever c− δ < x < c.

Definition 2.5.2 Suppose that a function f is defined for all real numbers.

(i) lim
x→+∞

f(x) = L

if and only if for every ε > 0 there exists some M > 0 such that |f(x)−
L| < ε whenever x > M .

(ii) lim
x→−∞

f(x) = L

if and only if for every ε > 0 there exists some M > 0 such that |f(x)−
L| < ε whenever x < −M .

(iii) lim
x→+∞

f(x) =∞

if and only if for every M > 0 there exists some N > 0 such that
f(x) > M whenever x > N .

(iv) lim
x→+∞

f(x) = −∞

if and only if for every M > 0 there exists some N > 0 such that
f(x) < −M whenever x > M .

(v) lim
x→−∞

f(x) =∞

if and only if for every M > 0 there exists some N > 0 such that
f(x) > M whenever x < −N .

(vi) lim
x→−∞

f(x) = −∞

if and only if for every M > 0 there exists some N > 0 such that
f(x) < −M whenever x < −N .

Definition 2.5.3 The vertical line x = c is called a vertical asymptote to
the graph of f if and only if either

(i) lim
x→c

f(x) =∞ or −∞; or

(ii) lim
x→c−

f(x) =∞ or −∞; or both.
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Definition 2.5.4 The horizontal line y = L is a horizontal asymptote to the
graph of f if and only if

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, or both.

Example 2.5.1 Compute the following limits:

(i) lim
x→∞

sinx

x
(ii) lim

x→∞

cosx

x

(iii) lim
x→∞

x2 + 1

3x3 + 10
(iv) lim

x→−∞

x3 − 2

3x3 + 2x− 3

(v) lim
x→−∞

3x3 + 4x− 7

2x2 + 5x+ 2
(vi) lim

x→−∞

−x4 + 3x− 10

2x2 + 3x− 5

(i) We observe that −1 ≤ sinx ≤ 1 and hence

0 = lim
x→∞

−1

x
≤ lim

x→∞

sinx

x
≤ lim

x→∞

1

x
= 0.

Hence, y = 0 is the horizontal asymptote and

lim
x→∞

sinx

x
= 0.

(ii) −1 ≤ cosx ≤ 1 and, by a similar argument as in part (i),

lim
x→∞

cosx

x
= 0.

(iii) We divide the numerator and denominator by x2 and then take the limit
as follows:

lim
x→∞

x2 + 1

3x3 + 10
= lim

x→∞

1 + 1/x2

3x+ 10/x2
= 0.
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(iv) We divide the numerator and denominator by x3 and then take the limit
as follows:

lim
x→−∞

x3 − 2

3x3 + 2x− 3
= lim

x→−∞

1− 2/x3

3 + 2/x2 − 3/x3
=

1

3
.

(v) We divide the numerator and denominator by x2 and then take the limit
as follows:

lim
x→−∞

3x3 + 4x− 7

2x2 + 5x− 2
= lim

x→−∞

3x+ 4/x− 7/x2

2 + 5/x+ 2/x2
= −∞.

(vi) We divide the numerator and denominator by x2 and then take the limit
as follows:

lim
x→−∞

−x4 + 3x− 10

2x2 + 3x− 5
= lim

x→−∞

−x2 + 3/x− 10/x2

2 + 3/x− 5/x2
= −∞.

Example 2.5.2

(i) lim
n→∞

(−1)n + 1

n
= 0

(ii) lim
n→∞

{
n2

n+ 3
− n2

n+ 4

}
= lim

n→∞

n3 + 4n2 − n3 − 3n2

n2 + 7n+ 12

= lim
n→∞

n2

n2 + 7n+ 12

= lim
n→∞

1

1 + 7/n+ 12/n2

= 1

(iii) lim
n→∞

(
√
n+ 4− n) = lim

n→∞

(
√
n+ 4−

√
n)(
√
n+ 4 +

√
n)

(
√
n+ 4 +

√
n)

= lim
n→∞

4

(
√
n+ 4 +

√
n)

= 0
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(vi) lim
n→∞

{
n2

1 + n2
sin
(nπ

2

)}
does not exist because it oscillates:

sin
(nπ

2

)
=


0 if n = 2m
1 if n = 2m+ 1
−1 if n = 2m+ 3

(v) lim
n→∞

3n

4 + 3n
= lim

h→∞

1

4 · e−n + 1
= 1

(vi) lim
n→∞
{cos(nπ)} = lim

n→∞
(−1)n does not exist.

Exercises 2.5 Evaluate the following limits:

1. lim
x→2

x

x2 − 4
2. lim

x→2+

x

x2 − 4

3. lim
x→1−

x

x2 − 1
4. lim

x→π
2
−

tan(x)

5. lim
x→π

2
+

sec x 6. lim
x→0+

cotx

7. lim
x→0−

csc x 8. lim
x→∞

3x2 − 7x+ 5

4x2 + 5x− 7

9. lim
x→−∞

x2 + 4

4x3 + 3x− 5
10. lim

x→∞

−x4 + 2x− 1

x2 + 3x+ 2

11. lim
x→∞

cos(nπ)

n2
12. lim

x→∞

1 + (−1)n

n3

13. lim
x→∞

sin(n)

n
14. lim

x→∞

1− cosn

n

15. lim
x→∞

cos
(
nπ
2

)
n

16. lim
x→∞

tan
(nπ
n

)



Chapter 3

Differentiation

In Definition 2.2.2, we defined the slope function of a function f at c by

slope(f(x), c) = lim
x→c

f(x)− f(c)

x− c

= lim
h→0

f(c+ h)− f(c)

h
.

The slope (f(x), c) is called the derivative of f at c and is denoted f ′(c).
Thus,

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
.

Link to another file.

3.1 The Derivative

Definition 3.1.1 Let f be defined on a closed interval [a, b] and a < x < b.
Then the derivative of f at x, denoted f ′(x), is defined by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

whenever the limit exists. When f ′(x) exists, we say that f is differentiable
at x. At the end points a and b, we define one-sided derivatives as follows:

(i) f ′(a+) = lim
x→a+

f(x)− f(a)

x− a
= lim

h→0+

f(a+ h)− f(a)

h
.

99
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We call f ′(a+) the right-hand derivative of f at a.

(ii) f ′(b−) = lim
x→b−

f(x)− f(b)

x− b
= lim

h→0−

f(b+ h)− f(b)

h
.

We call f ′(b) the left-hand derivative of f at b.

Example 3.1.1 In Example 28 of Section 2.2, we proved that if f(x) = sinx,
then f ′(c) = slope (sinx, c) = cos c. Thus, f ′(x) = cosx if f(x) = sinx.

Example 3.1.2 In Example 29 of Section 2.2, we proved that if f(x) =
cosx, then f ′(c) = − sin c. Thus, f ′(x) = − sinx if f(x) = cosx.

Example 3.1.3 In Example 30 of Section 2.2, we proved that if f(x) = xn

for a natural number n, then f ′(c) = ncn−1. Thus f ′(x) = nxn−1, when
f(x) = xn, for any natural number n.

In order to find derivatives of functions obtained from the basic elemen-
tary functions using the operations of addition, subtraction, multiplication
and division, we state and prove the following theorem.

Theorem 3.1.1 If f is differentiable at c, then f is continuous at c. The
converse is false.

Proof. Suppose that f is differentiable at c. Then

lim
x→c

f(x)− f(c)

x− c
= f ′(c)

and f ′(c) is a real number. So,

lim
x→c

f(x) = lim
x→c

[(
f(x)− f(c)

x− c

)
(x− c) + f(c)

]
= lim

x→0

f(x)− f(c)

x− c
· lim
x→c

(x− c) + f(c)

= f ′(c) · 0 + f(c)

= f(c).
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Therefore, if f is differentiable at c, then f is continuous at c.

To prove that the converse is false we consider the function f(x) = |x|.
This function is continuous at x = 0. But

f ′(x) = lim
h→0

[
|x+ h| − |x|

h

]
= lim

h→0

(|x+ h| − |x|)(|x+ h|+ |x|)
h(|x+ h|+ |x|)

= lim
h→0

x2 + 2xh+ h2 − x2

h(|x+ h|+ |x|)

= lim
h→0

2x+ h

|x+ h| |x|
=

x

|x|

=


1 for x > 0

−1 for x < 0

undefined for x = 0.

Thus, |x| is continuous at 0 but not differentiable at 0. This completes the
proof of Theorem 3.1.1.

Theorem 3.1.2 Suppose that functions f and g are defined on some open
interval (a, b) and f ′(x) and g′(x) exist at each point x in (a, b). Then

(i) (f + g)′(x) = f ′(x) + g′(x) (The Sum Rule)

(ii) (f − g)′(x) = f ′(x)− g′(x) (The Difference Rule)

(iii) (kf)′(x) = kf ′(x), for each constant k. (The Multiple Rule)

(iv) (f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x) (The Product Rule)

(v)

(
f

g

)′
(x) =

g(x)f ′(x)− f(x)g′(x)

(g(x))2
, if g(x) 6= 0. (The Quotient Rule)

Proof.
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Part (i) (f + g)′(x) = lim
h→0

[f(x+ h) + g(x+ h)]− [f(x) + g(x)]

h

= lim
h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h

= f ′(x) + g′(x).

Part (ii) (f − g)′(x) = lim
h→0

[f(x+ h)− g(x+ h)]− [f(x)− g(x)]

h

= lim
h→0

f(x+ h)− f(x)

h
− lim

h→0

g(x+ h)− g(x)

h
= f ′(x)− g′(x).

Part (iii) (kf)′(x) = lim
h→0

kf(x+ h)− kf(x)

h

= k · lim
h→0

f(x+ h)− f(x)

h

= kf ′(x).

Part (iv)

(f · g)′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

1

h
[(f(x+ h)− f(x))g(x+ h) + f(x)(g(x+ h)− g(x))]

= lim
h→0

f(x+ h)− f(x)

h
· lim
h→0

g(x+ h) + f(x) lim
h→0

g(x+ h)− g(x)

h
= f ′(x)g(x) + f(x)g′(x).
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Part (v)

(
f

g

)′
(x) = lim

h→0

1

h

[
f(x+ h)

g(x+ h)
− f(x)

g(x)

]

= lim
h→0

1

h

[
f(x+ h) · g(x)− g(x+ h)f(x)

g(x+ h)g(x)

]

=
1

(g(x))2
lim
h→0

[
(f(x+ h)− f(x))

h
g(x)− f(x)

(g(x+ h)− g(x))

h

]

=
1

(g(x))2
· [f ′(x)g(x)− f(x)g′(x)]

=
g(x)f ′(x)− g(x)g′(x)

(g(x))2
, if g(x) 6= 0.

To emphasize the fact that the derivatives are taken with respect to the
independent variable x, we use the following notation, as is customary:

f ′(x) =
d

dx
(f(x)).

Based on Theorem 3.1.2 and the definition of the derivative, we get the
following theorem.

Theorem 3.1.3

(i)
d(k)

dx
= 0, where k is a real constant.

(ii)
d

dx
(xn) = nxn−1, for each real number x and natural number n.

(iii)
d

dx
(sinx) = cosx, for all real numbers (radian measure) x.

(iv)
d

dx
(cosx) = − sinx, for all real numbers (radian measure) x.

(v)
d

dx
(tanx) = sec2 x, for all real numbers x 6= (2n+ 1)

π

2
, n = integer.
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(vi)
d

dx
(cotx) = − csc2 x, for all real numbers x 6= nπ, n = integer.

(vii)
d

dx
(secx) = secx tanx, for all real numbers x 6= (2n+1)

π

2
, n = integer.

(viii)
d

dx
(cscx) = − csc x cotx, for all real numbers x 6= nπ, n = integer.

Proof.

Part(i)
d(k)

dx
(k) = lim

h→0

k − k
h

= lim
h→0

0

h

= 0.

Part (ii) For each natural n, we get

d

dx
(xn) = lim

h→0

(x+ h)n − xn

h
(Binomial Expansion)

= lim
h→0

1

h

[
xn + nxn−1h+

n(n− 1)

2!
xn−2h2 + · · ·+ hn − xn

]
= lim

h→0

[
nxn−1 +

n(n− 1)

2!
xn−2h+ · · ·+ hn−1

]
= nxn−1.

Part (iii) By definition, we get

d

dx
(sinx) = lim

h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= lim
h→0

[
cosx

sinh

h
− sinx

(
1− cosh

h

)]
= cosx · 1− sinx · 0
= cosx
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since

lim
h→0

sinh

h
= 1, lim

h→0

1− cosh

h
= 0. (Why?)

Part (iv) By definition, we get

d

dx
(cosx) = lim

h→0

cos(x+ h)− cosx

h

= lim
h→0

1

h
[cosx cosh− sinx sinh− cosx]

= lim
h→0

[
− sinx · sinh

h
− cosx

(
1− cosh

h

)]
= − sinx · 1− cosx · 0 (Why?)

= − sinx.

Part (v) Using the quotient rule and parts (iii) and (iv), we get

d

dx
(tanx) =

d

dx

(
sinx

cosx

)
=

cosx(sinx)′ − sinx(cosx)′

(cosx)2

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
(Why?)

= sec2 x, x 6= (2n+ 1)
π

2
, n = integer.
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Part (vi) Using the quotient rule and Parts (iii) and (iv), we get

d

dx
(cotx) =

d

dx

(cosx

sinx

)
=

(sinx)(cosx)′ − (cosx)(sinx)′

(sinx)2

=
− sin2 x− cos2 x

(sinx)2
(Why?)

=
−1

(sinx)2
(why?)

= − csc2 x, x 6= nπ, n = integer.

Part (vii) Using the quotient rule and Parts (iii) and (iv), we get

d

dx
(secx) =

d

dx

(
1

cosx

)
=

(cosx) · 0− 1 · (cosx)′

(cosx)2

=
1

cosx
· sinx

cosx
(Why?)

= secx tanx, x 6= (2n+ 1)
π

2
, n = integer.

Part (viii) Using the quotient rule and Parts (iii) and (iv), we get

d

dx
(cscx) =

d

dx

(
1

sinx

)
=

sinx · 0− 1 · (sinx)′

(sinx)2

=
1

sinx
· − cosx

sinx
(Why?)

= − csc x cotx, x 6= nπ, n = integer.

This concludes the proof of Theorem 3.1.3.
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Example 3.1.4 Compute the following derivatives:

(i)
d

dx
(4x3 − 3x2 + 2x+ 10) (ii)

d

dx
(4 sinx− 3 cosx)

(iii)
d

dx
(x sinx+ x2 cosx) (iv)

d

dx

(
x3 + 1

x2 + 4

)

Part (i) Using the sum, difference and constant multiple rules, we get

d

dx
(4x3 − 3x2 + 2x+ 10) = 4

d

dx
(x3)− 3

d

dx
(x2) + 2

d

dx
+ 0

= 12x2 − 6x+ 2.

Part (ii)
d

dx
(4 sinx− 3 cosx) = 4

d

dx
(sinx)− 3

d

dx
(cosx)

= 4 cosx− 3(− sinx)

= 4 cosx+ 3 sinx.

Part (iii) Using the sum and product rules, we get

d

dx
(x sinx+ x2 cosx) =

d

dx
(x sinx) +

d

dx
(x2 cosx) (Sum Rule)

=

[
d

dx
sinx+ x

d

dx
(sinx)

]
+

[
d

dx
(x2) cosx+ x2 d

dx
(cosx)

]
= 1 · sinx+ x cosx+ 2x cosx+ x2(− sinx)

= sinx+ 3x cosx− x2 sinx.
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Part (iv). Using the sum and quotient rules, we get

d

dx

(
x3 + 1

x2 + 4

)
=

(x2 + 4) d
dx

(x3 + 1)− (x3 + 1) d
dx

(x2 + 4)

(x2 + 4)2
(Why?)

=
(x2 + 4)(3x2)− (x3 + 1) = x

(x2 + 4)2
(Why?)

=
3x4 + 12x2 − 2x3 − 2x

(x2 + 4)2
(Why?)

=
3x4 − 2x3 + 12x2 − 2x

(x2 + 4)2
.

Exercises 3.1

1. From the definition, prove that
d

dx
(x3) = 3x2.

2. From the definition, prove that
d

dx

(
1

x

)
=
−1

x2
.

Compute the following derivatives:

3.
d

dx
(x5 − 4x2 + 7x− 2) 4.

d

dx
(4 sinx+ 2 cosx− 3 tanx)

5.
d

dx

(
2x+ 1

x2 + 1

)
6.

d

dx

(
x4 + 2

3x+ 1

)

7.
d

dx
(3x sinx+ 4x2 cosx) 8.

d

dx
(4 tanx− 3 secx)

9.
d

dx
(3 cotx+ 5 cscx) 10.

d

dx
(x2 tanx+ x cotx)

Recall that the equation of the line tangent to the graph of f at (c, f(c)) has
slope f ′(c) and equations.

Tangent Line: y − f(c) = f ′(c)(x− c)

The normal line has slope −1/f ′(c), if f ′(c) 6= 0 and has the equation:
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Normal Line: y − f(c) =
−1

f ′(c)
(x− c).

In each of the following, find the equation of the tangent line and the equation
of the normal line for the graph of f at the given c.

11. f(x) = x3 + 4x− 12, c = 1 12. f(x) = sinx, c = π/6

13. f(x) = cosx, c = π/3 14. f(x) = tanx, c = π/4

15. f(x) = cotx, c = π/4 16. f(x) = secx, c = π/3

17. f(x) = cscx, c = π/6 18. f(x) = 3 sinx+ 4 cosx, c = 0.

Recall that Newton’s Method solves f(x) = 0 for x by using the fixed point
iteration algorithm:

xn+1 = g(xn) = xn −
f(xn)

f ′(xn)
, x0 = given,

with the stopping rule, for a given natural number n,

|xn+1 − xn| < 10−n.

In each of the following, set up Newton’s Iteration and perform 3 calculations
for a given x0.

19. f(x) = 2x− cosx , x0 = 0.5

20. f(x) = x3 + 2x+ 1 , x0 = −0.5

21. f(x) = x3 + 3x2 − 1 = 0, x0 = 0.5

22. Suppose that f ′(c) exists. Compute each of the following limits in terms
of f ′(c)

(a) lim
x→c

f(x)− f(c)

x− c
(b) lim

h→0

f(c+ h)− f(c)

h

(c) lim
h→0

f(c− h)− f(c)

h
(d) lim

t→c

f(c)− f(t)

t− c

(e) lim
h→0

f(c+ h)− f(c− h)

2h
(f) lim

h→0

f(c+ 2h)− f(c− 2h)

h
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23. Suppose that g is differentiable at c and

f(t) =

{
g(t)−g(c)
t−c if t 6= c

g′(c) if t = c.

Show that f is continuous at c.

Suppose that a business produces and markets x units of a commercial
item. Let

C(x) = The total cost of producing x-units.

p(x) = The sale price per item when x-units are on the market.

R(x) = xp(x) = The revenue for selling x-units.

P (x) = R(x)− C(x) = The gross profit for selling x-items.

C ′(x) = The marginal cost.

R′(x) = The marginal revenue.

P ′(x) = The marginal profit.

In each of the problems 24–26, use the given functions C(x) and p(x) and
compute the revenue, profit, marginal cost, marginal revenue and marginal
profit.

24. C(x) = 100x− (0.2)x2, 0 ≤ x ≤ 5000, p(x) = 10− x

25. C(x) = 5000 +
2

x
, 1 ≤ x ≤ 5000, p(x) = 20 +

1

x

26. C(x) = 1000 + 4x− 0.1x2, 1 ≤ x ≤ 2000, p(x) = 10− 1

x

In exercises 27–60, compute the derivative of the given function.

27. f(x) = 4x3 − 2x2 + 3x− 10 28. f(x) = 2 sinx− 3 cosx+ 4

29. f(x) = 3 tanx− 4 secx 30. f(x) = 2 cotx+ 3 cscx

31. f(x) = 2x2 + 4x+ 5 32. f(x) = x2/3 − 4x1/3 + 5

33. f(x) = 3x−4/3 + 3x−2/3 + 10 34. f(x) = 2
√
x+ 4
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35. f(x) =
2

x2
36. f(x) =

4

x3
− 3

x2
+

2

x
+ 1

37. f(x) = x4 − 4x2 38. f(x) = (x2 + 2)(x2 + 1)

39. f(x) = (x+ 2)(x− 4) 40. f(x) = (x3 + 1)(x3 − 1)

41. y = (x2 + 1) sinx 42. y = x2 cosx

43. y = (x2 + 1)(x10 − 5) 44. y = x2 tanx

45. y = (x1/2 + 4)(x1/3 − 5) 46. y = (2x+ sinx)(x2 + 4)

47. y = x5 sinx 48. y = x4(2 sinx− 3 cosx)

49. y = x2 cotx− 2x+ 5 50. y = (x+ sinx)(4 + cscx)

51. y = (secx+ tanx)(sinx+ cosx) 52. y = x2(2 cotx− 3 cscx)

53. y =
x2 + 1

x2 + 4
54. y =

1 + sinx

1 + cosx

55. y =
x1/2 + 1

3x3/2 + 2
56. y =

sinx− cosx

sinx+ cosx

57. y =
t2 + 3t+ 2

t3 + 1
58. y =

x2ex

1 + ex

59. y =
3 + sin t cos t

4 + sec t tan t
60. y =

t2 sin t

4 + t2

3.2 The Chain Rule

Suppose we have two functions, u and y, related by the equations:

u = g(x) and y = f(u).



112 CHAPTER 3. DIFFERENTIATION

Then y = (f ◦ g)(x) = f(g(x)).
The chain rule deals with the derivative of the composition and may be

stated as the following theorem:

Theorem 3.2.1 (The Chain Rule). Suppose that g is defined in an open
interval I containing c, and f is defined in an open interval J containing
g(c), such that g(x) is in J for all x in I. If g is differentiable at c, and f is
differentiable at g(c), then the composition (f ◦ g) is differentiable at c and

(f ◦ g)′(c) = f ′(g(c)) · g′(c).

In general, if u = g(x) and y = f(u), then

dy

dx
=
dy

du
· du
dx.

Proof. Let F be defined on J such that

F (u) =

{
f(u)−f(g(c))

u−g(c) if u 6= g(c)

f ′(g(c)) if u = g(c)

since f is differentiable at g(c),

lim
u→g(c)

F (u) = lim
u→g(c)

f(u)− f(g(c))

u− g(c)

= f ′(g(c))

= F (g(c)).

Therefore, F is continuous at g(c). By the definition of F ,

f(u)− f(g(c)) = F (u)(u− g(c))

for all u in J . For each x in I, we let y = g(x) on I. Then

(f ◦ g)′(c) = lim
x→c

(f ◦ g)(x)− (f ◦ g)(c)

x− c

= lim
x→c

f(g(x))− f(g(c))

g(x)− g(c)
· g(x)− g(c)

x− c

= lim
u→g(c)

F (u) · lim
x→c

g(x)− g(c)

x− c
= f ′(g(c)) · g′(c).
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It follows that f ◦g is differentiable at c. The general result follows by replac-
ing c by the independent variable x. This completes the proof of Theorem
3.2.1.

Example 3.2.1 Let y = u2 + 1 and u = x3 + 4. Then

dy

du
= 2u and

du

dx
= 3x2.

Therefore,

dy

dx
=
dy

du
· du
dx

= 2u · 3x2

= 6x2(x3 + 4) .

Using the composition notation, we get

y = (x3 + 4)2 + 1 = x6 + 8x3 + 17

and

dy

dx
= 6x5 + 24x2

= 6x2(x3 + 4) .

Using
(f ◦ g)′(x) = f ′(g(x)) · g′(x),

we see that
(f ◦ g)(x) = (x3 + 4)2 + 1

and

(f ◦ g)′(x) = f ′(g(x)) · g′(x)

= 2(x3 + 4)1 · (3x2)

= 6x2(x3 + 4) .
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Example 3.2.2 Suppose that y = sin(x2 + 3).
We let u = x2 + 3, and y = sinu. Then

dy

dx
=
dy

du
· du
dx

= (cosu)(2x)

= (cos(x2 + 3)) · (2x).

Example 3.2.3 Suppose that y = w2, w = sinu + 3, and u = (4x + 1).
Then

dy

dx
=
dy

dw
· dw
du
· du
dx

= (2w) · (cosu) · 4
= 8w cosu

= 8[sin(4x+ 1) + 3] · cos(4x+ 1) · 4
= 8(sin(4x+ 1) + 3) · cos(4x+ 1).

If we express y in terms of x explicitly, then we get

y = (sin(4x+ 1) + 3)2

and

dy

dx
= 2(sin(4x+ 1) + 3)1 · ((cos(4x+ 1)) · 4 + 0)

= 8(sin(4x+ 1) + 3) cos(4x+ 1).

Example 3.2.4 Suppose that y = (cos(3x+ 1))5. Then

dy

dx
= 5(cos(3x+ 1))4 · (− sin(3x+ 1)) · 3

= −15(cos(3x+ 1))4 sin(3x+ 1).
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Example 3.2.5 Suppose that y = tan3(2x2 + 1). Then

dy

dx
= 3(tan2(2x2 + 1)) · (sec2(2x2 + 1)) · 4x

= 12x · tan2(2x2 + 1) · sec2(2x2 + 1).

Example 3.2.6 Suppose that y = cot

(
x+ 1

x2 + 1

)
. Then

dy

dx
=

[
− csc2

(
x+ 1

x2 + 1

)] [
(x2 + 1) · 1− (x+ 1)2x

(x2 + 1) · 2x

]
=
x2 + 2x− 1

(x2 + 1)2
csc2

(
x+ 1

x2 + 1

)
.

Example 3.2.7 Suppose that y = sec

(
x2 + 1

x4 + 2

)3

.

Since the function y has a composition of several functions, let us define
some intermediate functions. Let

y = secw, w = u3, and u =
x2 + 1

x4 + 2
.

Then

dy

dx
=
dy

dw
· dw
du
· du
dx

= [sec(w) tan(w)] · [3u2] · (x4 + 2) · 2x− (x2 + 1) · 4x3

(x4 + 2)2

= 3u2(secw tanw) · 4x− 4x3 − 2x5

(x4 + 2)2

= 3

(
x2 + 1

x4 + 2

)2

sec

(
x2 + 1

x4 + 2

)3

tan

(
x2 + 1

x4 + 2

)3

· 4x− 4x3 − 2x5

(x4 + 2)5
.
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Example 3.2.8 Suppose that y = csc(2x+ 5)4. Then

dy

dx
= [− csc(2x+ 5)4 cot(2x+ 5)4] · 4(2x+ 5)3 · 2

= −8(2x+ 5)3 csc(2x+ 5)4 cot(2x+ 5)4.

Exercises 3.2 Evaluate
dy

dx
for each of the following:

1. y = (2x− 5)10 2. y =

(
x2 + 2

x5 + 4

)3

3. y = sin(3x+ 5) 4. y = cos(x3 + 1)

5. y = tan5(3x+ 1) 6. y = sec2(x2 + 1)

7. y = cot4(2x− 4) 8. y = csc3(3x2 + 2)

9. y =

(
3x+ 1

x2 + 2

)5

10. y =

(
x2 + 1

x3 + 2

)4

11. y = sin(w), w = u3, u = (2x− 1)

12. y = cos(w), w = u2 + 1, u = (3x+ 5)

13. y = tan(w), w = v2, v = u3 + 1, u =

(
1

x

)

14. y = secw, w = v3, v = 2u2 − 1, u =
x

x2 + 1

15. y = cscw, w = 3v + 2, v = (u+ 1)3, u = (x2 + 3)2

In exercises 16–30, compute the derivative of the given function.

16. y =

(
x3 + 1

x2 + 4

)3

17. y = (x2 − 1)10
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18. y = (x2 + x+ 2)100 19. y = (2 sin t− 3 cos t)3

20. y = (x2/3 + x4/3)2 21. y = (x1/2 + 1)50

22. y = sin(3x+ 2) 23. y = cos(3x2 + 1)

24. y = sin(2x) cos(3x) 25. y = sec 2x+ tan 3x

26. y = sec 2x tan 3x 27. y = (x2 + 1)2 sin 2x

28. y = x sin(1/x2) 29. y = sin2(3x) + sec2(5x)

30. y = cot(x2) + csc(3x)

In exercises 31–60, assume that

(a)
d

dx
(ex) = ex (b)

d

dx
(e−x) = −e−x (c)

d

dx
(lnx) =

1

x

(d)
d

dx
(bx) = bx ln b (e)

d

dx
(logb x) =

1

x ln b
for b > 0 and b 6= 1.

Compute the derivative of the given function.

31. y = sinhx 32. y = coshx

33. y = tanhx 34. y = cothx

35. y = sechx 36. y = cschx

37. y = ln(1 + x) 38. y = ln(1− x)

39. y =
1

2
ln

(
1− x
1 + x

)
40. y = ln

(
x+
√
x2 + 1

)
41. y = ln

(
x+
√
x2 − 1

)
42. y = xe−x

2

43. y = esin 3x 44. y = e2x sin 4x
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45. y = ex
2
(2 sin 3x− 4 cos 5x) 46. y = xe−x

2
+ 4e−x

47. y = 4x
2

48. y = 10(x2+4)

49. y = 10sin 2x 50. y = 3cos 3x

51. y = log10(x2 + 10) 52. y = log3(x2 sinx+ x)

53. y = ln(sin(e2x)) 54. y = ln(1 + e−x)

55. y = ln(cosx+ 2) 56. y = ln(ln(x2 + 4))

57. y =

{
ln

(
x4 + 3

x2 + 10

)}3

58. y = (1 + sin2 x)3/2

59. y = ln(sec 2x+ tan 2x) 60. y = ln(csc 3x− cot 3x)

3.3 Differentiation of Inverse Functions

One of the applications of the chain rule is to compute the derivatives of
inverse functions. We state the exact result as the following theorem:

Theorem 3.3.1 Suppose that a function f has an inverse, f−1, on an open
interval I. If u = f−1(x), then

(i)
du

dx
=

1(
dx
du

)
(ii) (f−1)′(x) =

1

f ′(f−1(x))
=

1

f ′(u)

Proof. By comparison, x = f(f−1(x)) = x. Hence, by the chain rule

1 =
dx

dx
= f ′(f−1(x)) · (f−1)′(x)
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and

(f−1)′(x) =
1

f ′(f−1(x))
.

In the u = f−1(x) notation, we have

du

dx
=

1(
dx
du

) .
Remark 11 In Examples 76–81, we assume that the inverse trigonometric
functions are differentiable.

Example 3.3.1 Let u = arcsinx, −1 ≤ x ≤ 1, and −π
2
≤ u ≤ π

2
. Then

x = sinu and by the chain rule, we get

1 =
dx

dx
=
d(sinu)

du
· du
dx

= cosu · du
dx

du

dx
=

1

cosu
.

Therefore,

d

dx
(arcsinx) =

1

cosu
, −π

2
< u <

π

2
,

=
1√

1− sin2 u
(Why?)

=
1√

1− x2
, −1 < x < 1. (Why?)

Thus,
d

dx
(arcsinx) =

1√
1− x2

, −1 < x < 1.

We note that x = ±1 are excluded.
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Example 3.3.2 Let u = arccosx, −1 ≤ x ≤ 1, and 0 ≤ u ≤ π. Then
x = cosu and

1 =
dx

dx
= − sinu

du

dx
du

dx
= − 1

sinu
, 0 < u < π

= − 1√
1− cos2 u

, 0 < u < π (Why?)

= − 1√
1− x2

, −1 < x < 1. (Why?)

We note again that x = ±1 are excluded.
Thus,

d

dx
(arccosx) =

−1√
1− x2

, −1 < x < 1.

Example 3.3.3 Let u = arctanx, −∞ < x <∞, and −π
2
< u <

π

2
. Then,

x = tanu, −π
2
< u <

π

2

1 =
dx

dx
= (sec2 u),

du

dx
, −π

2
< u <

π

2
du

dx
=

1

sec2 u

=
1

1 + tan2 u
, −π

2
< u <

π

2

=
1

1 + x2
, −∞ < x <∞

Therefore,
d

dx
(arctanx) =

1

1 + x2
, −∞ < x <∞.
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Example 3.3.4 Let u = arcsec x, x ∈ (−∞,−1] ∪ [1,∞) and

u ∈
[
0,
π

2

)
∪
(π

2
, π
]
. Then,

x = secu

1 =
dx

dx
= secu tanu · du

dx
, u ∈

[
0,
π

2

)
∪
(π

2
, π
]

du

dx
=

1

secu tanu
, u ∈

(
0,
π

2

)
∪
(π

2
, π
)

=
1

| secu|
√

sec2 u− 1
(Why the absolute value?)

=
1

|x|
√
x2 − 1

, x ∈ (−∞,−1) ∪ (1,∞).

Thus,
d

dx
(arcsecx) =

1

|x|
√
x2 − 1

, x ∈ (−∞,−1) ∪ (1,∞).

Example 3.3.5 Let u = arccsc x, x ∈ (−∞,−1] ∪ [1,∞), and

u ∈
[
−π

2
, 0
)
∪
(

0,
π

2

]
. Then,

x = cscu , u ∈
[
−π

2
, 0
)
∪
(

0,
π

2

]
1 =

dx

dx
= − cscu cotu · du

dx
, u ∈

[
−π

2
, 0
)
∪
(

0,
π

2

]
du

dx
=

−1

cscu cotu
, u ∈

(
−π
2
, 0

)
∪
(

0,
π

2

)
, (Why?)

=
1

| cscu|
√

csc2 u− 1
(Why?)

=
1

|x|
√
x2 − 1

, x ∈ (−∞,−1) ∪ (1,∞).

Note that x = ±1 are excluded.
Thus,

d

dx
(arccscx) =

−1

x
√
x2 − 1

, x ∈ (−∞, 1] ∪ (1,∞).
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Example 3.3.6 Let u = arccot x, x ∈ (−∞, 0] ∪ [0,∞) and

u ∈
(

0,
π

2

]
∪
[π

2
, π
)

. Then

x = cotu, u ∈
(

0,
π

2

]
∪
[π

2
, π
)

and

1 =
dx

dx
= − csc2(u) · du

dx
, u ∈

(
0,
π

2

]
∪
[π

2
, π
)

du

dx
=
−1

csc2 u
, u ∈

(
0,
π

2

]
∪
[π

2
, π
)

=
−1

1 + cot2 u
, u ∈

(
0,
π

2

]
∪
[π

2
, π
)

=
−1

1 + x2
, x ∈ (−∞, 0] ∪ [0,∞).

Therefore,

d

dx
(arccotx) =

−1

1 + x2
, x ∈ (−∞, 0] ∪ [0,∞).

The results of these examples are summarized in the following theorem:

Theorem 3.3.2 (The Inverse Trigonometric Functions) The following dif-
ferentiation formulas are valid for the inverse trigonometric functions:

(i)
d

dx
(arcsinx) =

1√
1− x2

, −1 < x < 1.

(ii)
d

dx
(arccosx) =

−1√
1− x2

, −1 < x < 1.

(iii)
d

dx
(arctanx) =

1

1 + x2
, −∞ < x <∞.

(iv)
d

dx
(arccot x) =

−1

1 + x2
, −∞ < x <∞.

(v)
d

dx
(arcsec x) =

1

|x|
√
x2 − 1

, −∞ < x < −1 or 1 < x <∞.
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(vi)
d

dx
(arccsc x) =

−1

|x|
√
x2 − 1

, −∞ < x < −1 or 1 < x <∞.

Proof. Proof of Theorem 3.3.2 is outlined in Examples 76–80.

Theorem 3.3.3 (Logarithmic and Exponential Functions)

(i)
d

dx
(lnx) =

1

x
for all x > 0.

(ii)
d

dx
(ex) = ex for all real x.

(iii)
d

dx
(logb x) =

1

x ln b
for all x > 0 and b 6= 1.

(iv)
d

dx
(bx) = bx(ln b) for all real x, b > 0 and b 6= 1.

(v)
d

dx
(u(x)v(x) = (u(x))v(x)

[
v′(x) ln(u(x)) + v(x)

u′(x)

u(x)

]
.

Proof. Proof of Theorem 3.3.3 is outlined in the proofs of Theorems 5.5.1–
5.5.5. We illustrate the proofs of parts (iii), (iv) and (v) here.

Part (iii) By definition for all x > 0, b > 0 and b 6= 1,

logb x =
lnx

ln b
.

Then,

d

dx
(logb x) =

d

dx

((
1

ln b

)
lnx

)
=

(
1

ln b

)
· 1

x

=
1

x ln b
.

Part (iv) By definition, for real x, b > 0 and b 6= 1,

bx = ex ln b.
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Therefore,

d

dx
(bx) =

d

dx
(ex ln b)

= ex ln b,
d

dx
(x ln b) (by the chain rule)

= bx ln b. (Why?)

Part (v)

d

dx
(u(x))v(x) =

d

dx

{
ev(x) ln(u(x))

}
= ev(x) ln(u(x))

{
v′(x) ln(u(x)) + v(x)

u′(x)

u(x)

}
= (u(x))v(x)

{
v′(x) lnu(x) + v(x)

u′(x)

u(x)

}

Example 3.3.7 Let y = log10(x2 + 1). Then

d

dx
(log10(x2 + 1)) =

d

dx

(
ln(x2 + 1)

ln 10

)
=

1

ln 10

(
1

x2 + 1
· 2x
)

(by the chain rule)

=
2x

(x2 + 1) ln 10
.

Example 3.3.8 Let y = ex
2+1. Then, by the chain rule, we get

dy

dx
= ex

2+1 · 2x

= 2xex
2+1.
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Example 3.3.9 Let y = 10(x3+2x+1). By definition and the chain rule, we
get

dy

dx
= 10(x3+2x+1) · (ln 10) · (3x2 + 2).

Example 3.3.10

dx

dx
(x2 + 1)sinx = (x2 + 1)sinx

{
cosx ln(x2 + 1) + sinx · 2x

x2 + 1

}
d

dx
(x2 + 1)sinx =

d

dx

[
esinx ln(x2+1)

]
= 3sinx ln(x2+1) ·

[
cosx ln(x2 + 1) + sinx · 2x

x2 + 1

]
= (x2 + 1)sinx

[
cosx ln(x2 + 1) +

2x sinx

x2 + 1

]
.

Theorem 3.3.4 (Differentiation of Hyperbolic Functions)

(i)
d

dx
(sinhx) = coshx (ii)

d

dx
(coshx) = sinhx

(iii)
d

dx
(tanhx) = sech2x (iv)

d

dx
(cothx) = −csch2x

(v)
d

dx
(sech x) = −sech x tanhx (vi)

d

dx
(csch x) = −csch x coth x.

Proof.

Part (i)

d

dx
(sinhx) =

d

dx

(
1

2
(ex − e−x)

)
=

1

2
(ex − e−x(−1)) (by the chain rule)

=
1

2
(ex + e−x)

= coshx.
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Part (ii)

d

dx
(coshx) =

d

dx

(
1

2
(ex + e−x)

)
=

1

2
(ex + e−x(−1)) (by the chain rule)

=
1

2
(ex − e−x)

= sinhx.

Part (iii)

d

dx
(tanhx) =

d

dx

(
ex − e−x

ex + e−x

)
=

(ex + e−x)(ex + e−x)− (ex − e−x)(ex − e−x)
(ex + e−x)2

=
4

(ex + e−x)2

=

(
2

ex + e−x

)2

= sech2x.

Part (iv)

d

dx
(sech x) =

d

dx

(
2

ex + e−x

)
=

(ex + e−x) · 0− 2(ex − e−x)
(ex + e−x)2

= − 2

ex + e−x
· e

x − e−x

ex + e−x

= −sechx tanhx.
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Part (v)

d

dx
(cothx) =

d

dx

(
ex + e−x

ex − e−x

)
, x 6= 0

=
(ex − e−x)(ex − e−x)− (ex + e−x)(ex + e−x)

(ex − e−x)2
x 6= 0

=
−4

(ex − e−x)2
, x 6= 0

= −
(

2

ex − e−x

)2

, x 6= 0

= −csch2x , x 6= 0.

Part (vi)

d

dx
(cschx) =

d

dx

(
2

ex − e−x

)
, x 6= 0

=
(ex − e−x) · 0− 2(ex + e−x)

(ex − e−x)2
, x 6= 0

= − 2

ex − e−x
· e

x + e−x

ex − e−x
, x 6= 0

= −cschx cothx, x 6= 0.

Theorem 3.3.5 (Inverse Hyperbolic Functions)

(i)
d

dx
(arcsinhx) =

1√
1 + x2

(ii)
d

dx
(arccoshx) =

1√
x2 − 1

, x > 1

(iii)
d

dx
(arctanhx) =

1

1− x2
, |x| < 1

Proof.
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Part (i)

d

dx
(arcsinhx) =

d

dx
ln(x+

√
1 + x2)

=
1

x+
√

1 + x2
·
[
1 +

x√
1 + x2

]
(by chain rule)

=
1

x+
√

1 + x2
·
√

1 + x2 + x√
1 + x2

=
1√

1 + x2
.

Part (ii)

d

dx
(arccoshx) =

d

dx
ln(x+

√
x2 − 1) , x ≥ 1

=
1

x+
√
x2 − 1

·
(

1 +
x√

x2 − 1

)
, x > 0

=
1

x+
√
x2 − 1

·
√
x2 − 1 + x√
x2 − 1

, x > 0

=
1√

x2 − 1
, x > 0.

Part (iii)

d

dx
(arctanhx) =

d

dx

[
1

2
ln

(
1 + x

1− x

)]
, |x| < 1

=
d

dx

[
1

2
ln(1 + x)− ln(1− x)

]
, |x| < 1

=
1

2

[
1

1 + x
− −1

1− x

]
, |x| < 1

=
1

2

[
1

1 + x
+

1

1− x

]
, |x| < 1

=
1

2

[
1− x+ 1 + x

1− x2

]
, |x| < 1

=
1

1− x2
, |x| < 1.
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Exercises 3.3 Compute
dy

dx
for each of the following:

1. y = ln(x2 + 1) 2. y = ln

(
1− x
1 + x

)
, −1 < x < 1

3. y = log2(x) 4. y = log5(x3 + 1)

5. y = log10(3x+ 1) 6. y = log10(x2 + 4)

7. y = 2e−x 8. y = ex
2

9. y =
1

2
(ex

2 − e−x2

) 10. y =
1

2
(ex

2

+ e−x
2

)

11. y =
ex

2 − e−x2

ex2 + e−x2 12. y =
2

ex2 + e−x2

13. y =
2

ex3 − e−x3 14. y =
2

ex4 + e−x4

15. y = arcsin
(x

2

)
16. y = arccos

(x
3

)
17. y = arctan

(x
5

)
18. y = arccot

(x
7

)
19. y = arcsec

(x
2

)
20. y = arccsc

(x
3

)
21. y = 3 sinh(2x) + 4 cosh 3x 22. y = ex(3 sin 2x+ 4 cos 2x)

23. y = e−x(4 sin 3x− 3 cos 3x) 24. y = 4 sinh 2x+ 3 cosh 2x

25. y = 3 tanh(2x)− 7 coth (2x) 26. y = 3 sech (5x) + 4 csch (3x)

27. y = 10x
2

28. y = 2(x3+1)

29. y = 5(x4+x2) 30. y = 3sinx
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31. y = 4cos(x2) 32. y = 10tan(x3)

33. y = 2cotx 34. y = 10sec(2x)

35. y = 4csc(x2) 36. y = e−x(2 sin(x2) + 3 cos(x3))

37. y = arcsinh
(x

2

)
38. y = arccosh

(x
3

)
39. y = arctan

(x
4

)
40. y = x arcsinh

(x
3

)
In exercises 41–50, use the following procedure to compute the derivative of
the given functions:

d

dx
[(f(x)g(x)] =

d

dx
[eg(x) ln(f(x))]

= eg(x) ln(f(x)) ·
[
g′(x) ln(f(x)) + g(x)

f ′(x)

f(x)

]

= (f(x))g(x) ·
[
g′(x) ln(f(x)) + g(x)

f ′(x)

f(x)

]
.

41. y = (x2 + 4)3x 42. y = (2 + sinx)cosx

43. y = (3 + cosx)sin 2x 44. y = (x2 + 4)x
2+1

45. y = (1 + x)1/x 46. y = (1 + x2)cos 3x

47. y = (2 sinx+ 3 cosx)x
3

48. y = (1 + lnx)1/x2

49. y = (1 + sinhx)coshx 50. y = (sinh2 x+ cosh2 x)x
2+3

3.4 Implicit Differentiation

So far we have dealt with explicit functions such as x2, sinx, cosx, lnx, ex, sinhx
and coshx etc. In applications, two variables can be related by an equation
such as
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(i) x2 +y2 = 16 (ii) x3 +y3 = 4xy (iii) x sin y+cos 3y = sin 2y.

In such cases, it is not always practical or desirable to solve for one variable
explicitly in terms of the other to compute derivatives. Instead, we may
implicitly assume that y is some function of x and differentiate each term of
the equation with respect to x. Then we solve for y′, noting any conditions
under which the derivative may or may not exist. This process is called
implicit differentiation. We illustrate it by examples.

Example 3.4.1 Find
dy

dx
if x2 + y2 = 16.

Assuming that y is to be considered as a function of x, we differentiate
each term of the equation with respect to x.

graph

d

dx
(x2) +

d

dx
(y2) =

d

dx
(16)

2x+ 2y

(
dy

dx

)
= 0 (Why?)

2y
dy

dx
= −2x

dy

dx
= −x

y
, provided y 6= 0.

We observe that there are two points, namely (4, 0) and (−4, 0) that satisfy
the equation. At each of these points, the tangent line is vertical and hence,
has no slope.

If we solve for y in terms of x, we get two solutions, each representing a
function of x:

y = (16− x2)1/2 or y = −(16− x2)1/2.
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On differentiating each function with respect to x, we get, respectively,

dy

dx
=

1

2
(16− x2)−1/2(−2x) ; or

dy

dx
= −1

2
(16− x2)−1/2(−2x)

dy

dx
= − x

(16− x2)1/2
; or

x

−(16− x2)1/2

dy

dx
= −x

y
, y 6= 0; or

dy

dx
= −x

y
, y 6= 0.

In each case, the final form is the same as obtained by implicit differentiation.

Example 3.4.2 Compute
dy

dx
for the equation x3 + y3 = 4xy.

As in Example 2.4.1, we differentiate each term with respect to x, assum-
ing that y is a function of x.

dy

dx
(x3) +

d

dx
(y3) =

d

dx
(4xy)

3x2 + 3y2

(
dy

dx

)
= 4

[
dx

dx
y + x

dy

dx

]
(Why?)

(3y2)
dy

dx
− 4x

dy

dx
= 4y − 3x2 (Why?)

(3y2 − 4x)
dy

dx
= 4y − 3x2 (Why?)

dy

dx
=

4y − 3x2

3y2 − 4x
, if 3y2 − 4x 6= 0. (Why?)

This differentiation formula is valid for all points (x, y) on the given curve,
where 3y2 − 4x 6= 0.

Example 3.4.3 Compute
dy

dx
for the equation x sin y + cos 3y = sin 2y. In

this example, it certainly is not desirable to solve for y explicitly in terms of
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x. We consider y to be a function of x, differentiate each term of the equation
with respect to x and then algebraically solve for y in terms of x and y.

d

dx
(x sin y) +

d

dx
(cos 3y) =

d

dx
(sin 2y)[(

dx

dx

)
(sin y) + x

d

dx
(sin y)

]
+ (−3 sin 3y)

dy

dx
= (cos 2y)

(
2
dy

dx

)
sin y + x(cos y)

dy

dx
− 3 sin(3y)

dy

dx
= (2 cos 2y)

dy

dx
.

Upon collecting all terms containing
dy

dx
on the left-side, we get

[x cos y − 3 sin 3y − 2 cos 2y]
dy

dx
= − sin y

dy

dx
= − sin y

x cos y − 3 sin 3y − 2 cos 2y

whenever
x cos y − 3 sin 3y − 2 cos 2y 6= 0.

Example 3.4.4 Find
dy

dx
for

(x− 2)2

9
+

(y − 3)2

16
= 1.

On differentiating each term with respect to x, we get

graph

d

dx

(
(x− 2)2

9

)
+

d

dx

(
(y − 3)2

16

)
=

d

dx
(1)

2

9
(x− 2) +

2

16
(y − 3)

dy

dx
= 0

dy

dx
= − 2(x− 2)/9

2(y − 3)/16
, if y 6= 3

= −16(x− 2)

9(y − 3)
, if y = 3.
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The tangent lines are vertical at (−1, 3) and (5, 3). The graph of this equation
is an ellipse.

Example 3.4.5 Find
dy

dx
for the astroid x2/3 + y2/3 = 16.

graph

d

dx
(x2/3) +

d

dx
(y2/3) = 0

2

3
x−1/3 +

2

3
y−1/3 dy

dx
= 0, if x 6= 0 and y 6= 0

dy

dx
= −y

−1/3

x−1/3
= −

(
x

y

)1/3

, if x 6= 0 and y 6= 0.

Example 3.4.6 Find
dy

dx
for the lemniscate with equation (x2 + y2)2 =

4(x2 − y2).

graph
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d

dx
((x2 + y2)2) = 4

d

dx
(x2 − y2)

2(x2 + y2)

(
2x+ 2y

dy

dx

)
= 4

[
2x− 2y

dy

dx

]
[4y(x2 + y2) + 8y]

dy

dx
= 8x− 4x(x2 + y2) (Why?)

dy

dx
=

8x− 4x(x2 + y2)

4y(x2 + y2) + 8y
, if 4y(x2 + y2) + 8y 6= 0, y 6= 0.

Example 3.4.7 Find the equations of the tangent and normal lines at (x0, y0)
to the graph of an ellipse of the form

(x− k)2

a2
+

(y − k)2

b2
= 1.

First, we find
dy

dx
by implicit differentiation as follows:

d

dx

(
(x− h)2

a2

)
+

d

dx

(
(y − k)2

b2

)
=

d

dx
(1)

2

a2
(x− h) +

2

b2
(y − k)

dy

dx
= 0

dy

dx
= − 2

a2
(x− h) · b2

2(y − k)
, if y 6= k

=
−b2

a2

(
x− h
y − k

)
, y 6= k.

It is clear that at (a + h, k) and (−a + h, k), the tangent lines are vertical
and have the equations

x = a+ h and x = −a+ h.

Let (x0, y0) be a point on the ellipse such that y0 6= k. Then the equation of
the line tangent to the ellipse at (x0, y0) is

y − y0 =
−b2

a2

(
x0 − h
y0 − k

)
(x− x0).
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We may express this in the form

(y − y0)(y0 − k)

b2
+

(x− x0)(x0 − h)

a2
= 0.

By rearranging some terms, we can simplify the equation in the following
traditional form:

(y − k) + (k − y0)

b2
· (y0 − k) +

(x− h) + (h− x0)

a2
(x0 − h) = 0

(y − k)(y0 − k)

b2
+

(x− h)(x0 − h)

a2
=

(x0 − h)2

a2
+

(y0 − k)2

b2
= 1.

(y − k)(y0 − k)

b2
+

(x− h)(x0 − h)

a2
= 1 .

Exercises 3.4 In each of the following, find
dy

dx
by implicit differentiation.

1. y2 + 3xy + 2x2 = 16 2. x3/4 + y3/4 = 103/4

3. x5 + 4x3y2 + 3y4 = 8 4. sin(x− y) = x2y cosx

5.
x2

4
− y2

9
= 1 6.

x2

16
+
y2

9
= 1

Find the equation of the line tangent to the graph of the given equation at
the given point.

7.
x2

9
+
y2

4
= 1 at

(
2,

2
√

5

3

)

8.
x2

9
− y2

4
= 1 at

(
3

2

√
5, 1

)

9. x2y2 = (y + 1)2(9− y2) at

(
3

2

√
5, 2

)
10. y2 = x3(4− x) at (2, 4)
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Two curves are said to be orthogonal at each point (x0, y0) of their intersection
if their tangent lines are perpendicular. Show that the following families of
curves are orthogonal.

11. x2 + y2 = r2, y +mx = 0

12. (x− h)2 + y2 = h2, x2 + (y − k)2 = k2

Compute y′ and y′′ in exercises 13–20.

13. 4x2 + 9y2 = 36 14. 4x2 − 9y2 = 36

15. x2/3 + y2/3 = 16 16. x3 + y3 = a3

17. x2 + 4xy + y2 = 6 18. sin(xy) = x2 + y2

19. x4 + 2x2y2 + 4y4 = 26 20. (x2 + y2)2 = x2 − y2

3.5 Higher Order Derivatives

If the vertical height y of an object is a function f of time t, then y′(t) is
called its velocity, denoted v(t). The derivative v′(t) is called the acceleration
of the object and is denoted a(t). That is,

y(t) = f(t), y′(t) = v(t), v′(t) = a(t).

We say that a(t) is the second derivative of y, with respect to t, and write

y′′(t) = a(t) or
d2y

dt2
= a(t).

Derivatives of order two or more are called higher derivatives and are repre-
sented by the following notation:

y′(x) =
dy

dx
, y′′(x) =

d2y

dx2
, y′′′(x) =

d3y

dx3
, . . . , y(n)(x) =

dny

dxn
.

The definition is given as follows by induction:

d2f

dx2
=

d

dx

(
df

dx

)
and

dnf

dxn
=

d

dx

(
dn−1f

dxn−1

)
, n = 2, 3, 4, · · · .
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A convenient notation is

f (n)(x) =
dnf

dxn

which is read as “the nth derivative of f with respect to x.”

Example 3.5.1 Compute the second derivative y′′ for each of the following
functions:

(i) y = sin(3x) (ii) y = cos(4x2) (iii) y = tan(3x)

(iv) y = cot(5x) (v) y = sec(2x) (vi) y = csc(x2)

Part (i) y′ = 3 cos(3x), y′′ = −9 sin(3x)

Part (ii) y′ = −8x sin(4x2), y′′ = −8[sin(4x2) + x · (8x) · cos(4x2)]

Part(iii) y′ = 3 sec2(3x), y′′ = 3[2 sec(3x) · sec(3x) tan(3x) · 3]

y′′ = 18 sec2(3x) tan(3x)

Part(iv) y′ = −5 csc2(5x), y′′ = −10 csc(5x)[(− csc 5x cot 5x) · 5]

y′′ = 50 csc2(5x) cot(5x)

Part(v) y′ = 2 sec(2x) tan(2x)

y′′ = 2[(2 sec(2x) tan(2x)) · tan(2x) + sec(2x) · (2 sec2(2x))]

y′′ = 4 sec(2x) tan2(2x) + 4 sec3(2x)

Part(vi) y′ = −2x csc(x2) cot(x2)

y′′ = −2[1 · csc(x2) cot(x2) + x(−2x csc(x2) cot(x2)) · cot(x2)
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+ x csc(x2) · (−2x csc2(x2))]

= −2 csc(x2) cot(x2) + 4x2 csc(x2) cot2(x2) + 4x2 csc3(x2)

Example 3.5.2 Compute the second order derivative of each of the follow-
ing functions:

(i) y = sinh(3x) (ii) y = cosh(x2) (iii) y = tanh(2x)

(iv) y = coth(4x) (v) y = sech(5x) (vi) y = csch(10x)

Part (i) y′ = 3 cosh(3x), y′′ = 9 sinh(3x)

Part (ii) y′ = 2x sinh(x2), y′′ = 2 sinh(x2) + 2x(2x coshx2) or

y′′ = 2 sinh(x2) + 4x2 cosh(x2)

Part (iii) y′ = 2 sech2(2x), y′′ = 2 · (2 sech(2x) · (−sech(2x) tanh(2x) · 2)),

y′′ = −8 sech2(2x) tanh(2x)

Part (iv) y′ = −4 csch2(4x), y′′ = −4(2(csch(4x)) · (−csch(4x) coth(4x) · 4))

y′′ = 32 csch2(4x) coth(4x)

Part (v) y′ = −5 sech (5x) tanh(5x)

y′ = −5[−5 sech(5x) tanh(5x) · tanh(5x) + sech(5x) · sech2(5x) · 5]

y′ = 25 sech(5x) tanh2(5x)− 25 sech3(5x).

Part (vi) y′ = −10 csch(10x) coth(10x)

y′′ = −10[−10 csch(10x) coth(10x) · coth(10x)
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+ csch(10x)(−10 csch2(10x))]

y′′ = 100 csch(10x) coth2(10x) + 100 csch3(10x)

Example 3.5.3 Compute the second order derivatives for the following func-
tions:

(i) y = ln(x2) (ii) y = ex
2

(iii) log10(x2 + 1)

(iv) y = 10x
2

(v) y = arcsinx (vi) y = arctanx

Part (i) y′ =
2x

x2
=

2

x
= 2x−1

y′′ = −2x−2 =
−2

x2
.

Part (ii) y′ = 2xex
2
, y′′ = 2ex

2
+ 4x2ex

2
= (2 + 4x2)ex

2
.

Part (iii) y′ =
1

ln 10
· 2x

x2 + 1
, y′′ =

2

ln 10

[
(x2 + 1) · 1− x · 2x

(x2 + 1)2

]
,

y′′ =
2

ln 10
·
[

1− x2

(x2 + 1)2

]
Part (iv) y′ = 10x

2 · (ln 10) · 2x

y′′ = 2 ln 10[10x
2

+ x · 10x
2

ln 10 · 2x]

y′′ = 10x
2
[2 ln 10 + (2 ln 10)2x2]

Part (v) y′ =
1√

1− x2
= (1− x2)−1/2
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y′′ =
−1

2
(1− x2)−3/2(−2x)

y′′ =
x

(1− x2)3/2
.

Part (vi) y′ =
1

1 + x2
= (1 + x2)−1

y′′ = −1(1 + x2)−2 · 2x =
−2x

(1 + x2)2

Example 3.5.4 Compute the second derivatives of the following functions:

(i) y = arcsinhx (ii) y = arccoshx (iii) y = arctanhx

From Section 1.4, we recall that

arcsinh x = ln(x+
√

1 + x2)

arccosh x = ln(x+
√
x2 − 1) , x ≥ 1

arctanh x =
1

2
ln

(
1 + x

1− x

)
=

1

2
[ln(1 + x)− ln(1− x)], |x| < 1.

Then

Part (i)

y′ =
1√

1 + x2

d2

dx2
(arcsinhx) =

d

dx
(1 + x2)−1/2

=
−1

2
(2x)(1 + x2)−3/2

= − x

(1 + x2)3/2
.
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Part (ii)

y′ =
1√

x2 − 1
, x > 1

d2

dx2
(arccoshx) =

d

dx
(x2 − 1)−1/2

=
−1

2
(2x)(x2 − 1)−3/2

= − x

(x2 − 1)3/2
, x > 1

Part (iii)

y′ =
1

1− x2
, |x| < 1.

d2

dx
(arctanhx) =

d

dx
(1− x2)−1

= (−1)(1− x2)−2(−2x)

=
x

(1− x2)2
, |x| < 1.

Example 3.5.5 Find y′′ for the equation x2 + y2 = 4.
First, we find y′ by implicit differentiation.

2x+ 2yy′ = 0→ y′,
x

y
.

Now, we differentiate again with respect to x.

y′′ =
y · 1− xy′

y2

= −y − x(−x/y)

y2
(replace y′ by −x/y)

= −y
2 + x2

y3
(Why?)

= − 4

y3
(since x2 + y2 = 4)
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Example 3.5.6 Compute y′′ for x3 + y3 = 4xy.
From Example 25 in the last section we found that

y′ =
4y − 3x2

3y2 − 4x
if 3y2 − 4x 6= 0.

To find y′′, we differentiate y′ with respect to x to get

y′′ =
(3y2 − 4x)(4y′ − 3x2)− (4y − 3x2)(6yy′ − 4)

3y2 − 4x
, 3y2 − 4x 6= 0.

In order to simplify any further, we must first replace y′ by its computed
value. We leave this as an exercise.

Example 3.5.7 Compute f (n)(c) for the given f and c and all natural num-
bers n:

(i) f(x) = sinx, c = 0 (ii) f(x) = cosx, x = 0 (iii) f(x) = ln(x), c = 1

(iv) f(x) = ex, c = 0 (v) f(x) = sinhx, x = 0 (vi) f(x) = coshx, x = 0

To compute the general nth derivative formula we must discover a pattern
and then generalize the pattern.

Part (i) f(x) = sinx, f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = cosx, f4(x) =
sinx. Then the next four derivatives are repeated and so on. We get

f (4n)(n) = sinx, f (4n+1)(x) = cosx, f (4n+2)(x) = − sinx, f (4n+3)(x) = − cosx.

By evaluating these at c = 0, we get

f (4n)(0) = 0, f (4n+2)(0); f (4n+1)(0) = 1 and f (4n+3)(0) = −1,

for n = 0, 1, 2, · · ·

Part (ii) This part is similar to Part (i) and is left as an exercise.

Part (iii) f(x) = lnx, f ′(x) = x−1, f ′′(x) = (−1)x−2, f (3)(x) = (−1)(−2)x−3, . . . .,
f (n)(x) = (−1)(−2) . . . (−(n − 1))x−n = (−1)n−1(n − 1)!x−n, f (n)(1) =
(−1)n−1(n− 1)!, n = 1, 2, . . .
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Part (iv) f(x) = ex, f ′(x) = ex, f ′′(x) = ex, . . . , f (n)(x) = ex, f (n)(0) =
1, n = 0, 1, 2, . . .

Part (v) f(x) = sinhx, f ′(x) = coshx, f ′′(x) = sinhx, . . . f (2n)(x) = sinhx,
f (2n+1)(x) = coshx, f (2n)(0) = 0, f (2n+1)(0) = 1, n = 0, 1, 2, . . .

Part (vi) f(x) = coshx, f ′(x) = sinhx, f ′′(x) = coshx, . . . , f (2n)(x) =
coshx, f (2n+1)(x) = sinhx, f (2n)(0) = 1, f (2n+1)(0) = 0, n = 0, 1, 2, . . .

Exercises 3.5 Find the first two derivatives of each of the following func-
tions f .

1. f(t) = 4t3 − 3t2 + 10 2. f(x) = 4 sin(3x) + 3 cos(4x)

3. f(x) = (x2 + 1)3 4. f(x) = x2 sin(3x)

5. f(x) = e3x sin 4x 6. f(x) = e2x cos 4x

7. f(x) =
x2

2x+ 1
8. f(x) = (x2 + 1)10

9. f(x) = ln(x2 + 1) 10. f(x) = log10(x4 + 1)

11. f(x) = 3 sinh(4x) + 5 cosh(4x) 12. f(x) = tanh(3x)

13. f(x) = x tanx 14. f(x) = x2ex

15. f(x) = arctan(3x) 16. f(x) = arcsinh (2x)

17. f(x) = cos(nx) 18. f(x) = (x2 + 1)100

Show that the given y(x) satisfies the given equation:

19. y = A sin(4x) +B cos(4x) satisfies y′′ + 16y = 0

20. y = A sinh(4x) +B cosh(4x) satisfies y′′ − 16y = 0
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21. y = e−x(a sin(2x) + b cos(2x)) satisfies y′′ − 2y′ + 2y = 0

22. y = ex(a sin(3x) + b cos(3x)) satisfies y′′ − 2y′ + 10y = 0

Compute the general nth derivative for each of the following:

23. f(x) = e2x 24. f(x) = sin 3x

25. f(x) = cos 4x 26. f(x) = ln(x+ 1)

27. f(x) = sinh(2x) 28. f(x) = cosh(3x)

29. f(x) = (x+ 1)100 30. f(x) = ln
(

1+x
1−x

)
Find y′ and y′′ for the following equations:

31. x4 + y4 = 20 32. x2 + xy + y2 = 16




