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Chapter 5

The Definite Integral

5.1 Area Approximation

In Chapter 4, we have seen the role played by the indefinite integral in find-
ing antiderivatives and in solving first order and second order differential
equations. The definite integral is very closely related to the indefinite inte-
gral. We begin the discussion with finding areas under the graphs of positive
functions.

Example 5.1.1 Find the area bounded by the graph of the function y =
4, y=0, =0, x = 3.

graph

From geometry, we know that the area is the height 4 times the width 3 of
the rectangle.

Area = 12.

Example 5.1.2 Find the area bounded by the graphsof y =4z, y =0, z =
0, x =23.

183
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graph

1
From geometry, the area of the triangle is 3 times the base, 3, times the
height, 12.
Area = 18.

Example 5.1.3 Find the area bounded by the graphs of y = 2z, y =0, x =
1, z=4.

graph

The required area is covered by a trapezoid. The area of a trapezoid is —
times the sum of the parallel sides times the distance between the parallel
sides.

Area = — (24 8)(3) = 15.

1
2

Example 5.1.4 Find the area bounded by the curves y = v4 — 22, y =
0, z=-2, z=2.

graph

By inspection, we recognize that this is the area bounded by the upper half
of the circle with center at (0,0) and radius 2. Its equation is

4y =4 or y=vV4—a2, —2<z<2

Again from geometry, we know that the area of a circle with radius 2 is
7r? = 47. The upper half of the circle will have one half of the total area.
Therefore, the required area is 27.
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Example 5.1.5 Approximate the area bounded by y = 22, y = 0, = = 0,
and r = 3. Given that the exact area is 9, compute the error of your
approximation.

Method 1. We divide the interval [0, 3] into six equal subdivisions at the

1 .35
points 0, 3 1, 25 and 2. Such a subdivision is called a partition of [0, 3].

We draw vertical segments joining these points of division to the curve. On
each subinterval [z, 5], the minimum value of the function z? is at z?.
The maximum value z3 of the function is at the right hand end point z.
Therefore,

graph

The lower approximation, denoted L, is given by

1 1 3\? 1 1 5\ 1
L=0%Z4+12%2.2 Z) .24 (2)2. 2 Z) .2
0 5 " 2+(2) 2+() 2+(2) 2

9 25
OF TS 44+
[+ +3+ +4]

N —

~ 8- -7b.

5

This approximation is called the left-hand approximation of the area. The
error of approximation is —0.25.

The Upper approximation, denoted U, is given by

1\? 1 1 3\? 1 1 5\% 1 1
=(Z) . Z4+1%2.=2 Z) .24 (22,2 2] .z 2.2
v <2> 5 " 2+(2) 2+() 2+(2) 2+(3) 2

11 9 25
— 241+ 444+
2L+ +4+ +4+9}
191
214

1
:9—,’311-38.

8
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The error of approximation is +2.28.

This approximation is called the right-hand approximation.

Method 2. (Trapezoidal Rule) In this method, for each subinterval [z, z5],
we join the point (z1,2?) with the point (z2,23) by a straight line and find
the area under this line to be a trapezoid with area = (z3 — 1) (2% + x3). We

add up these areas as the Trapezoidal Rule approximation, 7', that is given

by

+(3))-3
SE(E) ) D ()
SED(E ) 6D 0)
:% 0% +2 <%>2+2(12)+2 (g)2+2(2)2+2 (g)2+32
:HH2+%+8+?+9
:32729-25.

The error of this Trapezoidal approximation is +0.25.

Method 3. (Simpson’s Rule) In this case we take two intervals, say [z, z2]|U
[z, 23], and approximate the area over this interval by

[f(z1) +4f(2v2) + f(x3)] - (23 — 71)

=

and then add them up. In our case, let xrg = 0, x; = o
3 5
5 Ty =2, T5 = 5 and zg = 3. Then the Simpson’s rule approximation, .5,

ZE2:1,ZIZ3:
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is given by
S:é m+4-CDQ+uf mn+% GY+4-GQQ+? (1)
+% 22+4-(g)2+32 (1)
_é 02+4(é>2+2-12+4-(g)2+2-22+4-<g>2+32
= % =9 = Exact Value!

For positive functions, y = f(z), defined over a closed and bounded interval
[a, b], we define the following methods for approximating the area A, bounded
by the curves y = f(z), y =0, x = a and x = b. We begin with a common
equally-spaced partition,

P={a=zy<m1 <x9<23<...<2, =0}

such that x; = a + ai,forizO,l,Q,...,n.

Definition 5.1.1 (Left-hand Rule) The left-hand rule approximation for A,
denoted L, is defined by

_b—a

L [f(o) + flw1) + f(22) + -+ fl@n1)].

Definition 5.1.2 (Right-hand Rule) The right-hand rule approximation for
A, denoted R, is defined by

b—a

R= f(@n) + f(@2) + flas) + -+ fan)].

Definition 5.1.3 (Mid-point Rule) The mid-point rule approximation for
A, denoted M, is defined by

b—a To + 21 Ty + To Tpno1+ Tp
e (22 (252 s (52)]
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Definition 5.1.4 (Trapezoidal Rule) The trapezoidal rule approximation
for A, denoted T, is defined by

7=’ — E (f(x0) + f (1)) + % (flw) + fl@2)) + -+ % (f(zn-1) + f<wn>>}
! — [% F(wo) + Fo) + f(w2) 4+ flana) + %f@nﬂ |

Definition 5.1.5 (Simpson’s Rule) The Simpson’s rule approximation for
A, denoted 9, is defined by

S = b;a E {f(xo)+4f(x0;xl) +f(5€1)}
3 {f<x1> vy (xf) +f<x2>}
+.”+%{ﬂ%¢+4f(ﬁigiﬁ>+f@0H

= (b_a) %- [f(xo)+4f($0;xl) +2 f(x1)+4f<w1_;x2)

n

+”gf@%g+4f<ﬁigiﬁ>+f@w}

Examples

Exercises 5.1

1. The sum of n terms ay,as,--- ,a, is written in compact form in the so
called sigma notation

Zak:a1+a2+~~+an.
k=1

The variable k is called the index, the number 1 is called the lower limit

and the number n is called the upper limit. The symbol Z ay is read
k=1
“the sum of a; from k=1 to k =n.”

Verify the following sums for n = 5:
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~  n(n+1)
) Soi= 2l

2 _n(nt D +1)
(b) Zk ;

(© Zk3 (e 0y

(d) er =t =
k=1

2. Prove the following statements by using mathematical induction:

Zk_ni—f_l

s nln+ D0+ 1)
(b) Zk -

(©) Zk3 ( (n+1))

(d) 22’“ =2t ]
k=1

3. Prove the following statements:

(a) ank =c Zak

k=1

(b) Zak—l—bk Zak—l—Zbk
k=1

(C)Z k_bk Zak_zbk

k=1

(d) Z(a ap + b by) —aZak+bek

k=1
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4. Evaluate the following sums:

6

() Y (20)

w5 ()
(c) Y (1+ (=1

(d) Y (3m—2)

5. Let P={a =129 < 21 <29 < --- < x, = b} be a partition of [a,b]

b-a k, k=0,1,2,--- ,n. Let f(z) =22 Let A
n
denote the area bounded by y = f(x), y =0, = 0 and = = 2. Show

that

such that z, = a +

n—1
2
(a) Left-hand Rule approximation of A is - Z T3,
k=1
n—1

2
(b) Right-hand Rule approximation of A is - Z 3.
k=1

: . L L2 s (e
Mid-point Rul t fAis — E — .
(c) Mid-point Rule approximation of A is 02 ( 5

n—1
2
(d) Trapezoidal Rule approximation of A is - {2 + E xi}
k=1

(e) Simpson’s Rule approximation of A

n n—1
1 Teo1 + 7\ 2
—<4+14 E _ 2 E .
3 { + 2 < 5 ) + 2 x,
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In problems 6-20, use the function f, numbers a,b and n, and compute the
approximations LH, RH, M P, T, S for the area bounded by y = f(z), y =
0, x = a, © = b using the partition

n

b
P:{a:m0<x1<~~<xn:b},Wherexk:a+k( a>,and

(a) LH = - kZ:f(IEk—ﬂ
=1
() RH ="~ 3" f(xi)
k=1
b—a Tpo1 + 2
(c) MP=~— f( 12 ’“)
k=1
b—a <2 1
@ 71="" { f(xk)+§(f($o)+f($n))}
k=1
n—1 n
(€) 5 = b(;f{<f<aso>+f<xn>>+22f<xn>+4zf(‘”’“%"’“)}
k=1 k=1
— %{LH +4AMP + RH}
6. f(r)=2z,a=0,b=2 n=6
7 f(x)z;,azl,b:?),n:6
8. f(r)=2% a=0,b=3,n=6
9. f(x)=2% a=0,b=2 n=4
10. f(x)zl_ll_x,a:(),b:S,n:G
1
11. f(x):m, a=0,b=1 n=
12. f(x) = ! a=0,b=1 n=4
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1
13. f(x):m, CZ:O, bzl, n=4
1
14. f(l'>:m7 a:O, b:2, n=4
x
1

15. f(x):\/m, a=

16. f(z)=v4+2%2 a=0,b=2 n=4
17. flzx)=v4—22, a=0,b=2, n=4

18. f
s 7
cosz, a 5 2,n

20. f(x) =sin’z, a =0, b=m, n=4

19. f(x

5.2 The Definite Integral

Let f be a function that is continuous on a bounded and closed interval [a, b].
Let p = {a =2y < 21 < 23 < ... <z, = b} be a partition of [a,b], not
necessarily equally spaced. Let

m; =min{f(x) 1z, <x <z}, i=1,2,... n;
M; =max{f(z): 2y <z <z}, i=12,...,n
Ar;=x; —x_q, 1=1,2,... ,n;

A =max{Ax;:1=1,2,... ,n};

L(p) = miAzy + meAxy + ... + m, Az,
We call L(p) the lower Riemann sum. We call U(p) the upper Riemann
sum. Clearly L(p) < U(p), for every partition. Let
Ly =1lub{L(p) : p is a partition of [a, b]}
U = glb{U(p) : p is a partition of [a,b]}.
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Definition 5.2.1 If f is continuous on [a,b] and Ly = Uy = I, then we say
that:

(i) f is integrable on [a, b];
(ii) the definite integral of f(z) from x = a to z = b is I;

(iii) I is expressed, in symbols, by the equation

1= [ sy

(iv) the symbol®[” is called the “integral sign’; the number “a” is called
the “lower limit’; the number “b” is called the “upper limit’; the func-
tion “f(x)” is called the “integrand’; and the variable “z” is called the
(dummy) “variable of integration.”

(v) If f(z) > 0 for each x in [a,b], then the area, A, bounded by the curves
y= f(x), y=0, x = a and z = b, is defined to be the definite integral
of f(z) from z = a to x = b. That is,

A /  Ha)de.

(vi) For convenience, we define

/: F@)dz =0, /b Fla)de = — /ab f(w)dz.

Theorem 5.2.1 If a function f is continuous on a closed and bounded in-
terval [a, b, then f is integrable on [a, b].

Proof. See the proof of Theorem 5.6.3.

Theorem 5.2.2 (Linearity) Suppose that f and g are continuous on [a, b]
and ¢y and ¢y are two arbitrary constants. Then
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(z)/ x)+g(x dm—/f dm—l—/b()dx
(i) / (/) — gl))dr = / f(w)dz — / 9(2)ds
(iii) / o) f(2)dz = o /  Ha)d, / ' epg(@)d = o / ' (@) and

(crf(z) +cog(x))dr =1 | flz)de+cy [ g(z)dx
[ [ o [

Proof.
Part (i) Since f and g are continuous, f + g is continuous and hence by
Theorem 5.2.1 each of the following integrals exist:

/f dx/ )dz, and /ab(f(x)+g(x))dx.

Let P={a=29<x; <x9 <+ <xp_1 <z, =">0}. Foreach i, there exist
number ¢y, ¢, ¢3,dq, do, and dz on [x;_1, ;] such that
f(e1) = absolute minimum of f on [z; 1, z;],
g(cy) = absolute minimum of f on [z;_1, 2],
f(e3) + g(es) = absolute minimum of f + g on [x;_q, 4],
f(dy) = absolute maximum of f on [z;_ 1, z;],
g(dy) = absolute maximum of g on [z;_1,z],
f(d3) 4+ g(d3) = absolute maximum of f + g on [z;_1,x;].
It follows that

fler) +g(e2) < fles) + g(c3) < flds) + g(ds) < f(dr) + g(d2)

Consequently,
Ly + Ly < L(s1g) S Ugprg) <Up +U;  (Why?)
Since f and g are integrable,
b b
Ly=U;= / f(x)dx; L,=U,; = / g(x)dz.

By the squeeze principle,

b
Lp+g) = Ulpsg) = / (f(x) + g(x))dz
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and
/ab[f(x) + g(z)]dz = /abf(x)dx + /abg(x)dx,

This completes the proof of Part (i) of this theorem.
Part (iii) Let k be a positive constant and let F' be a function that is con-
tinuous on [a,b]. Let P = {a =2y < 21 < 29 < -+» < 21 < x, = b} be
any partition of [a,b]. Then for each i there exist numbers ¢; and d; such
that F(¢;) is the absolute minimum of F' on [x; 1, z;] and F(d;) is absolute
maximum of F on [z;_1,x;]. Since k is a positive constant,

kF(c;) = absolute minimum of kF on [x; 1, 7],

kF(d;) = absolute maximum of kF on [x; 1, 7],

—kF(d;) = absolute minimum of (—k)F on [z;_1, z;],

—kF(c;) = absolute maximum of (—k)F on [z;_1,x;].

Then
L(P) = F(c1)Axy + F(c2)Axg + - - - + F(cn)Azy,
U(P) = F(d)Axy + F(dg)Axy + -+ - + F(d,) Az,
kL(P) = (kF)(c1)Axy + (EF)(c2)Axg + - - - + (kF)(cn) Ay,
kU(P) = (kF)(d1)Axy + (kF)(d2)Axg + - - - + (KF)(d,) Axy,
—kU(P) = (—kF)(dy)Azy + (—kF)(dy)Azg + - - - + (—kF)(d,) Ax,,
—kL(P) = (—kF)(c1)Azy + (—kF)(c2) Azy + - - - + (—kF)(cp) Ay,

Since F' is continuous, kF' and (—k)F are both continuous and

b
Ly=U,= / F(z)dz,

b
Li_xry = (=k)Up,U—py = —kLp,

and hence

b
L(,kp) = U(,kp) = (—k‘)/ F(x)dx.
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Therefore,
/:(qf(l’) + cag(z)) = /ab o f(x)dx + /ab cag(z)dx (Part (i))
= / bf(w)dw + e / bg(:c)d:c (Why?)

This completes the proof of Part (iii) of this theorem.
Part (ii) is a special case of Part (iii) where ¢; = 1 and ¢ = —1. This
completes the proof of the theorem.

Theorem 5.2.3 (Additivity) If f is continuous on [a,b] and a < ¢ < b,

then
/f m_/f m+/f

Proof.  Suppose that f is continuous on [a,b] and a < ¢ < b. Then f is
continuous on [a,c|] and on [c,b] and, hence, f is integrable on [a,b], |a, c|
and [c,b]. Let P = {a = 2y < ¥y < 3y < ---x, = b}. Suppose that
i <c<gx;forsomei. Let P ={a=0¢p<a <3< ---<x;_1 <c}
and P, = {¢ < z; < ;31 < -+ < x, = b}. Then there exist numbers
1, Ca, C3,d1, do, and dsz such that

f(c1) = absolute minimum of f on [z;_4, ¢,
= absolute maximum of f on [z;_1,c],

fdy) =
f(c2) = absolute minimum of f on [c, x;],
f(d2) = absolute maximum of f on [c, x;],
f(e3) = absolute minimum of f on [z; 1, z;],
f(d3) = absolute maximum of f on [z; 1, z;],

Also,
fles) < fler), fles) < flea), f(dr) < f(ds) and  f(d2) < f(ds).

It follows that

L(P) < L(P) + L(P) < U(P,) + U(P,) < U(P).

[ 0= [ 1w [ s

This completes the proof of the theorem.

It follows that
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Theorem 5.2.4 (Order Property) If f and g are continuous on |a,b] and
f(z) < g(x) for all x in [a,b], then

[ e < [ g

Proof. Suppose that f and g are continuous on [a,b] and f(z) < g(x) for
all z in [a,b]. Let P ={a =129 < 21 < 23 < --- < x,, = b} be a partition of
[a,b]. For each i there exists numbers ¢;, ¢f, d; and df such that

f(c;) = absolute minimum of f on [x;_1, z;],

f(d;) = absolute maximum of f on [z;_1,z],

g(cf) = absolute minimum of g on [z;_1, 7],

g(d}) = absolute maximum of g on [z;_1,x;].
By the assumption that f(x) < g(z) on [a,b], we get

flei) <g(cf) and  f(di) < g(dy).

Hence
Lf S Lg and Uf S Ug.

/abf(x)dx < /abg(x)dx.

This completes the proof of this theorem.

It follows that

Theorem 5.2.5 (Mean Value Theorem for Integrals) If f is continuous
on la,bl], then there exists some point ¢ in [a,b] such that

| #ardn = 100~ a)

Proof. Suppose that f is continuous on [a,b], and a < b. Let
m = absolute minimum of f on [a, b], and
M = absolute maximum of f on [a,b].

Then, by Theorem 5.2.4,

m(b—a)§/abmd:rg/abf(a:)dxg/abde:M(b—a)
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and

b
< bia/a f(z)dz < M.

By the intermediate value theorem for continuous functions, there exists some
¢ such that

and

/f F()b—a).

For a = b, take ¢ = a. This completes the proof of this theorem.

Definition 5.2.2 The number f(c) given in Theorem 5.2.6 is called the av-
erage value of f on [a,b], denoted fy,[a,b]. That is

favla,b] =

Theorem 5.2.6 (Fundamental Theorem of Calculus, First Form) Suppose
that f is continuous on some closed and bounded interval [a,b] and

_ / o

for each x in [a,b]. Then g(z) is continuous on [a,b], differentiable on (a,b)
and for all x in (a,b),¢'(x) = f(x). That is

o[ o] = s
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Proof. Suppose that f is continuous on [a,b] and a < x < b. Then

lg(x + 1) — g()]

/ F(t)dt— / f(t)dt]

z+h T
/ ft)dt + f(t)dt—/ f(t)dt} (Why?)

N
= lim

m [f(c)(x+h—x)] by Theorem 5.2.5)
=lim f(c)

h—0

Lo
g'(x) = lim

= lim
h—0

= lim
h—0

= lim
h—0

S e Bl e~ ;“|>—‘

for some ¢ between x and = + h.
Since f is continuous on [a,b] and ¢ is between x and x + h, it follows
that

o) =lm f(c) = f(x)

for all x such that a < x < b.
At the end points a and b, a similar argument can be used for one sided
derivatives, namely,

1+ — 1
g'(a™) i Y
e . glx+h)—g(x)
b)) = 1
g ( ) hi%l— h

We leave the end points as an exercise. This completes the proof of this
theorem.

Theorem 5.2.7 (Fundamental Theorem of Calculus, Second Form) If f
and g are continuous on a closed and bounded interval [a,b] and ¢'(x) = f(z)

on la,bl, then
/ f()ds = (6) ~ gla).

We use the notation: [g(x)]% = g(b) — g(a).
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Proof. Let f and g be continuous on the closed and bounded interval [a, b]
and for each z in [a, b], let
_ / F(t)dt

Then, by Theorem 5.2.6, G'(z) = f(x) on [a,b]. Since G'(z) = g(z) for all x
on [a, b], there exists some constant C' such that

G(z) =g(z)+C
for all z on [a, b]. Since G(a) =0, we get C' = —g(a). Then

b

This completes the proof of Theorem 5.2.7.

Theorem 5.2.8 (Leibniz Rule) If a(z) and B(x) are differentiable for all
x and f is continuous for all x, then

d B(z)
- [/a(x) F(t)dt

Proof. Suppose that f is continuous for all z and a(z) and B(x) are differ-
entiable for all x. Then

d B(x) d 0 B(x)
- [/ It )dt] 2 [ (w)f(t)dt+/0 f(t)dt]
d ﬁ(:v) a(@)
d_[ [ i [ s
d

3(a) , o() ol
)) (/ ﬂt)dt) ' d(igc ) d(acéa:)) (/0 f(a:)dt) & di: §

) B'(x) — f(a(x))d/(x) (by Theorem 5.2.6)

= [(B(@)) - F'(z) = flalz)) - o (z).

d(B(x))
f(B(x
This completes the proof of Theorem 5.2.8.
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Example 5.2.1 Compute each of the following definite integrals and sketch
the area represented by each integral:

(i) /0 4x2d:c (ii) /0 “ing de

w/2 10
(iii) / cosx dx (iv) / e’dx
0

—7/2
w/3 /2
(v) / tanz dx (vi) / cotx dx
0 /6
/4 3n/4
(vii) / secx dx (viii) / cscx dx
—7/4 /4

1 1
(xi) / sinhz dx (x) / coshz dx
0 0

We note that each of the functions in the integrand is positive on the re-
spective interval of integration, and hence, represents an area. In order to
compute these definite integrals, we use the Fundamental Theorem of Cal-
culus, Theorem 5.2.2. As in Chapter 4, we first determine an anti-derivative
g(x) of the integrand f(x) and then use

b
/ f(@)dz = g(b) — g(a) = [g(z)]".

graph
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graph

(ii) /Owsinx dr =[—cosz]g =1—(—-1)=2

graph

w/2
(iii) /_ﬂ/2 cosx dr = [sin:zt}’i/j/2 =1-(-1)=2

graph
10
(iv) / e dr =" = - =€’ —1
0

graph

/3 /3 T
(v) / tanz dr = [In|secx|]y’” = In ‘sec <§>‘ =1In2
0

graph
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w/2 1
(vi) / cot z dr = [In|sin :L‘H:% = In(1) — In (_) — n?2
w/6 2

graph

w/4
(vii) / secz dr = [In|secx +tanx|]7_rér4/4 =In|vV2+1|—In|vV2—1|
—7/4

graph
3r/4
(viii) //4 cscx dr = [—1In|cscx + cot x|]i%4
= —In|v2—1|+In|v2+1|
graph

1
(ix) / sinhx dr = [coshz]j = cosh1 — cosh0 = cosh 1 — 1
0

graph

203
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1
(x) / coshz dr = [sinhz]; = sinh 1
0

graph

Example 5.2.2 Evaluate each of the following integrals:

(i /1 midx (i) /0 " )
(i) /O " os(3e)dr (iv) /0 C = 3?4 20— 1)
) /0 " ginh(4r)dr (vi) /0 ' cosh(22)dz

N d 1
(i) Since e (In|z|) = e

10 1
/ — dx = [In|z|];° = In(10)
.

(i) Since % (‘7%08(2:5)) — sin(22),

7r/2 _1 71'/2
/ sin 2z dx = [— COS(QCL‘):| =
0 2
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2

2
(iv) / (2" — 3% + 22 — 1)dw = [—175 — P+ % - x}
0 0

i (cosh(12) — 1)

4

(i) /0 ' cosh(2e)dr = E sinh(Qx)} = 5 cosh(s)

0

Example 5.2.3 Verify each of the following:

4 3 4
(i) / xgdx:/ xgdx+/ ridx
0 0 3
4 4
(ii) / ridx </ idx
1 1

(iii) % / (t2+3t+1)dt] =2 +3x+1
LJ O

d [ 3
(iv) o / cos(t)dt| = 3% cos(x®) — 2z cos(x?).
xT 22

(v) If f(z) = sinz, then f,,[0,7] = %

4 374
64
i dex:{x—} = —
”/0 3l 3

3 4 373 374
/ x2d:z:+/ 22dr = {x—] + [x—}
0 3 3lo L31;
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(2, (5 2my e
S \3 3 3) 3
Therefore,
1 3 4
/ vidr = / z*dx +/ ridz.
1 0 3
4 374
64 1
m)/a&mz[ﬁ]:————:m
1 3], 73 3
4 474
/ ridr = {x—] = (64— 1)
: 1], 1
1 4
Therefore, / ridr < / x3dz. We observe that 22 < z° on (1, 4].
1 1

x t3 t2 x
(m)/(ﬁ+&+mm:l—+3—+4
0

3 2 0
P,
=g tyete
3
% (%—i—%f—f—x) =22 +3x+1.
d | [ d
. . x3
(iv) I [/12 CcoS tdt] = [[smt]ﬁ}
= i[sin(ac‘g) — sin(x?)]
dz

= cos(z?) - 3z% — cos(z?) - 2x

= 322 cos(z?) — 2z cos(x?).

Using the Leibniz Rule, we get

3

d €T
— (/ cos tdt) = cos(2?) - 32 — cos(2?) - 2w
dx 22

= 322 cos 23 — 2z cos 2.
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(v) The average value of sinz on [0, 7] is given by

Basic List of Indefinite Integrals:

. 1
1. /x‘sdx = 13:4+c

—dr=In|x|+¢c

@

11.

13.

15.

17.

19.

— Y Y — —

efdr=—-e"+c
sinhz dx = coshx + ¢
tanhz dz = In|coshz| + ¢

1
sinh(az) dx = = cosh(az) + ¢
a

1 s
(/ sin x d£>
™—0\Jo

207
1 -
;[—cosx}o
1
S (=1)+ 1
(-1 +1
2
—
2. /x”dx—
4. /smxd:v——coszv—i-c

6. /cos:p dr =sinx + ¢

8. /tanxdm =In|secz|+¢

10.

12.

14.

e dx =

18.

20. cosh(ar)

/
/e
/
/
/

cotx dr =1In|sinz|+ ¢

e dr=¢e"+c

cothz dr = In|sinhz| + ¢

1
= — sinh(ax) + ¢
a
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1 1
21. tanh(ax) dz = . In|coshaz|+c¢ 22. /Coth(ax) dx = . In |sinh(az)| + ¢

23. secx dr = In|secz + tanx| + ¢ 24. /cscx dx = —1In|cscx + cotz| + ¢

1
25. /SGC(CLZL‘) dr = — In|sec(ax) + tan(az)| + ¢
a
—1
26. /csc(ax) dr = — In|csc(ax) + cot(ax)| + ¢
a
2 2 1
27. /sec r dr =tanz +c 28. /sec (axz) dx = — tan(ax) + ¢
a
29. /cchx de = —cotz + ¢ 30. /CSCQ<CLQZ) dz = — cot(ax) + ¢
a
31. /tanzxdx—tanx—x—i-c 32. /cothdx——cotx—x+c
. 9 : 2 1 :
33. /Sln x dr = 3 (x —sinzcosx) +c¢ 34, /cos x dr = 5 (x 4+ sinzcosx) + ¢
35. /seca:tanx dx =secx + ¢ 36. /cscm dr =—cscx +c

Exercises 5.2 Using the preceding list of indefinite integrals, evaluate the
following:

5 1 3r/2 3r/2
1. / — dt 2. / sinx dx 3. / cosz dx
1t 0 0

10 /10 w/6
4. / e’ dx 5. / sin(5zx) dz 6. / cos(hz) dx
0 0 0
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/6 1
7. / cot(3z) dx 8. / e “dx 9. /
/12 -1 0
2 4 1
10. / sinh(2z) dx 11. / cosh(3z) dz 12. / tanh(2z)
0 0 0
2 /6
13. / coth(3z) dx 14. / sec(2z)dx 15. / csce(2x)
1 w/12 w/12
™/8 n/6
16. / sec?(2r) dx 17. / csc?(2x) 18. / tan® x
0 /12 0
w/4 T
19. / cot’ x dx 20. / sin’ zdx 21. / cos® x
/6 0 /2
w/4 w/4
22. / secrtanx dr  23. / cscx cotx dx 24. / = dx
/6 w/6 0
Compute the average value of each given f on the given interval.
25. f(z) =sinz, |:_77T,7T:| 26. f(z)=ax3]0,8
27. f(z) = cosz, [%ﬂ, g} 28. f(z) =sin’x, [0, 7]
29. f(x) = cos®x, [0, 7] 30. f(x)=e"[-2,2]
Compute ¢'(x) without computing the integrals explicitly.
T 423
31. g(x) = / (14 t%)*3at 32. g(x) = / arctan(x) dx
0 x2

22

209

dz

dz

arcsinh x
33. g(a:):/s (1+t3HY3at 34. g(a;):/ (1+t3)32at

rcsin x



210 CHAPTER 5. THE DEFINITE INTEGRAL

T 1 sin 3z
35. g(x) = / (g) dt 36. g(x) = / (14 t*)2at
1 sin 2x

sin(z?) 4z 1
37. = 1+ )3t 38. / — dt
9(2) /sm(zz)< 1) e

3 T

39. / arcsin(x) dx 40. / 2'dt
T 1

2 nx

5.3 Integration by Substitution

Many functions are formed by using compositions. In dealing with a com-
posite function it is useful to change variables of integration. It is convenient
to use the following differential notation:

If u= g(z), then du = ¢'(x) dz.
The symbol “du” represents the “differential of u,” namely, ¢'(z)dz.

Theorem 5.3.1 (Change of Variable) If f,g and ¢’ are continuous on an
open interval containing [a,b], then

o | " Flo(e)) - o (@) da = / f(u
(i) [ Ho(e) dz = [ fu)du

where u = g(x) and du = ¢'(x) dz.

Proof. Let f,g, and ¢’ be continuous on an open interval containing [a, b].

For each z in [a, b], let
— [ Hol@)g @)tz

and
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Then, by Leibniz Rule, we have

and

for all = on [a, b].
It follows that there exists some constant C such that

F(z)=G(x)+C
for all  on [a,b]. For z = a we get
0=F(a)=G(a)+C=0+C

and, hence,

C=0.
Therefore, F(x) = G(z) for all x on [a, b], and hence

/ f(g())g (x)dz = F(b)

This completes the proof of this theorem.

Remark 18 We say that we have changed the variable from z to u through
the substitution u = g(x).

Example 5.3.1

(1 —cos6),

Wl =

2 6 1 1
(i) / sin(3z) dx = / = sinudu = - [~ cosu]j =
0 0 3 3

du.

1
where u = 3x, du =3 dx, dx = 3
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2 4 3
(ii) / 3z cos(x?) dx = / cosu (— du>
0 0 2
[sin u],
sin 4,

3
where u = 22, du = 2z dz, 3z dr = 3 du.

(i) /3 T ‘/9 i3 = (-1
111 — — — —
06 T axr 062 U 5 € 1o 5 e y

1
where u = 22, du =2z dz, = dv = 3 dzx.

Definition 5.3.1 Suppose that f and g are continuous on [a,b]. Then the

area bounded by the curves y = f(z), y = g(z), y = a and z = b is defined
to be A, where

Az/Wﬂw—g@MMa

If f(z) > g(z) for all z in [a,b], then

Azjkﬂ@—gw»Ma

If g(z) > f(z) for all z in [a,b], then

Az/kmw—fw»Ma

Example 5.3.2 Find the area, A, bounded by the curves y = sinz, y =
cosx, r=0and xr = 7.

graph
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7 T
We observe that cosz > sinx on [0, Z} and sinx > cosx on [Z’ w]. There-

fore, the area is given by

™
A :/ |sinx — cos x| dx
0

w/4 T
= / (cosx —sinx) dr + / (sinz — cosx)dx
0 s

/4
= [sinz + cos x]g/4 + [~ cosz —sinz|7 ),

(L) ]

2 2
= 2V/2.

Example 5.3.3 Find the area, A, bounded by y = 22, y = 2%, v = 0 and
r=2.

graph

We note that * < 2% on [0, 1] and 2® > 22 on [1,2]. Therefore, by definition,

A:/Ol(xQ—x?’) x+/12(x3—:p2) da

d
1 1 0 1 .7
SR T A

Example 5.3.4 Find the area bounded by y = 23 and y = z. To find the

interval over which the area is bounded by these curves, we find the points
of intersection.
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graph

=12 -r=0c20°-1)=0

<—>J}:O,l':1, r=—1.

The curve y = x is below y = z® on [—1,0] and the curve y = 23 is below
the curve y = x on [0, 1]. The required area is A, where

Exercises 5.3 Find the area bounded by the given curves.

1. y=2a2% y=2a3 2. y=at y=2a°
3. y=2% y=+x 4. y=8—2% y=2a°
5. y=3—2a2% y=2z 6. y:sinx,yzcosa:,x:%ﬁ,x:g
. m
7. y=a*+4x, y=1x 8. y251n2m,y:x,x:§
9 s
9. y*"=4dx, z—y=0 10. y:x+3,y:cosx,x:0,x:§

Evaluate each of the following integrals:
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11. /sin 3z dx 12. /cos Sz dx
13. /6“2$ dx 14. /xsin(a:2) dx
15. /:ﬁ tan(z® + 1) dw 16. /8602(3x +1) dx
17. /0562(295 —1) dx 18. /xsinh(xz) dx
19. /x2 cosh(z® + 1) dx 20. /sec(Sx +5) dx
21. /csc(5a: —7) dx 22. /:L'tanh(at2 +1) do
23. /x2 coth(z?) dx 24. /sin3 zrcosx dx
25. /tan5 rsec? z dx 26. / cot® wesc? x dx
27. /sec3 rtanz dz 28. /CSC3 xcotx dx
(arcsinx)? /(arctanx)3
29. —d 30. —d
/ V1 — 22 v 1+ 22 v
1 ) /6
31. / ze” dx 32. / sin(3z)dx
0 0
w/4 3 1
33. 4dz) d 34. d
/0 cos(4z) dx /0 Grt D) x
w/2 /6
35. / sin® x cos x dw 36. / cos®(3z) sin 3z dx
0 0
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5.4 Integration by Parts

The product rule of differentiation yields an integration technique known as
integration by parts. Let us begin with the product rule:

d  du(x) dv(z)
77 (w@)v(z)) = == v(z) +u(@)—>

On integrating each term with respect to x from x = a to x = b, we get

/ab% (u(z)v(z)) dx:/abv(x) (d‘:g)> dx—i—/abu(x) (dz—i’”)) dz.

By using the differential notation and the fundamental theorem of calculus,
we get

[u(z)v(z))? = /abv(x)u’(x) dr + /ab u(x)v' (z) dz.

The standard form of this integration by parts formula is written as

(ii) /udv = uv — /vdu

We state this result as the following theorem:

Theorem 5.4.1 (Integration by Parts) If u(z) and v(x) are two functions
that are differentiable on some open interval containing |a,b], then

for definite integrals and

(i) /udv o /vdu

for indefinite integrals.
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Proof. Suppose that u and v are differentiable on some open interval con-
taining [a, b]. For each x on [a, b], let

F(x) = /xu(a:)v’(x)dx + /ﬂﬁ v(z)u' (z)d.
Then, for each x on |[a, b],

F'(x) = u(z)v'(z) + v(x)u'(x)
d
= - (u@)v(@)).
Hence, there exists some constant C' such that for each x on |[a, b],

F(x) = u(z)v(x) + C.

For x = a, we get
and, hence,

Then,

Consequently,

/ w(z)v'(x)dr = [u(b)v(b) — u(a)v(a)] —/ v(x)u'(z)dx.

This completes the proof of Theorem 5.4.1.

7

Remark 19 The “two parts” of the integrand are “u(x)” and “v'(z)dz” or
“u” and “dv”. It becomes necessary to compute «'(x) and v(z) to make the
integration by parts step.

Example 5.4.1 Evaluate the following integrals:
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(i) /xsina: dx (ii) /aze‘x dx (iii) /(ln:c) dx

v arcsin x dx v arccosr dx vi 22 dx
(iv) (v) (vi)

(i) We let u =z and dv = sinz dz. Then du = dz and

v(x) = /sinx dx

= —cosT +c.

We drop the constant ¢, since we just need one v(x). Then, by the
integration by parts theorem, we get

/xsinx dx:/udv
:uv—/vdu

— 2(—cosz) — /(—cosx) da

= —xcosx +sinx + c.

(ii)) We let u =z, du = dx, dv =e *dzx, v = /ex dr = —e™*. Then,

/:Ue_x dr = x(—e™") — /(—e‘”ﬁ) dx

=—ge ¥ —e*+ec

1
(iii) We let uw = (Inz), du = — dz, dv = dz, v =x. Then,
x

/lnxdx—xlnx—/x~ldx
T

=xhz—z+c
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1

(iv) We let u = arcsinz, du = ——— dz, dv = dz, v =z. Then,

V1— 22
/ inzd ' / T4
arcsinxr axr — xr arcsinxr — — aAX
V1— 22

219

To evaluate the last integral, we make the substitution y = 1 — 2. Then,

dy = —2xdx and = dx = (—1/2)du and hence

x (=1/2)du
Ve

Therefore,

/arcsinx dr = rarcsinez — V1 — 22 +c.

(v) Part (v) is similar to part (iv) and is left as an exercise.

(vi) First we let u = 22, du = 2z dz, dv = € dx, v—/exdx:ex. Then,

/.132696 dr = x%e® — /Qxe”" dx
= p2e® — 2/3:6“” dz.

To evaluate the last integral, we let u = z, du = dx, dv = e*dx, v = €*.

Then
/xew dx:xe’”—/ex dx
=ze® —e" +c.
Therefore,
/m2ez dr = 2%e” — 2(ze” — " + ¢)

= 22" — 2xe” + 2e% — 2¢
=e"(2® — 2v +2) + D.
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Example 5.4.2 Evaluate the given integrals in terms of integrals of the
same kind but with a lower power of the integrand. Such formulas are called
the reduction formulas. Apply the reduction formulas for n = 3 and n = 4.

(i) / sin" x dw (ii) / csc™ Py dx (iii) / cos" x dx (iv)

/ sec™ 2 ¢ dx

(i) We let

u= (sinz)", du= (n—1)(sinz)" *cosx dx
dv=sinx dx, v= /sinm dxr = — cos x.
Then
/sin"x dx = /(sin z)" (sinz dx)
= (sinx)" ' (—cosx) — /(— cos)(n — 1)(sinz)" ? cosx dx
= —(sinz)" 'cosx + (n — 1) /(sin z)"*(1 —sin*z) dx

= —(sinz)" 'cosx + (n — 1) /(sin z)" " 2dx

—(n—1) /sin”aj dx.

We now use algebra to solve the integral as follows:

/Sin”m dr + (n—1) /sin”x dr = —(sinz)" ' cosx + (n — 1) /sin"2 z dz

" / sin” z dz = —(sinx)" " cosx + (n — 1) / sin" 2z da

—1 -1
/sin”x dx = — (sinx)" ' cosz + z /sin”2 xdr|. (1)
n n
We have reduced the exponent of the integrand by 2. For n = 3, we get
—1 2
/sin3x dx = 3 (sinz)? cos x + 3 /sinx dx
—1 —2

=3 (sin:v)Qcos x? cos T + c.
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For n = 2, we get
L, 1 1
sinx dx = 5 (sinx) cosz + 3 1 dx

J— . T
= — sinzcosx + —+c

2 2
1 :
=3 (x —sinz cosx) + c.
For n =4, we get
.4 —L 3 .2
sin®x dr = T (sinx)® cosx + sin“ x dx

—1
=7 (sinz)? cos x +

Q0 W

(x —sinz cosx) + c.

N —

221

In this way, we have a reduction formula by which we can compute the
integral of any positive integral power of sinz. If n is a negative integer,

then it is useful to go in the direction as follows:

Suppose n = —m, where m is a positive integer. Then, from equation

(1) we get

—1 1
n /sin”_Q:B dr =~ (sinz)" ' cosx + /(sin )" dx
n n

1
/sin”2 T dr = — (sinz)" ' cosx + - ﬁ : /(sin z)" dv

1
. —m—=2 : —m—1
dr =
/sm zdy=—— (sinx) cos
T— (sinz)™™ dx
_m —
m+2 —1 m m m
csc™ " x dv = —— (cscx)™ cotw + ——— [ (escx)™ dx|.
m+1 m+1

This gives us the reduction formula for part (iii). Also,

n—1 n —

—1 -2
/csc"x dx = (csc 2™ %) cot x + n . /(CSC 2"?) da.
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(iii) We can derive a formula by a method similar to part (i). However, let

us make use of a trigonometric reduction formula to get it. Recall that
T T
cosx = sin (5 — a:) and cos (5 — x) =sinz. Then

/COSnJZ d:p:/sin” (g—x> dx (letu:g—x, duz—dm)

_ / sin™ (1) (—du)

= — / sin™ udu

1 -1
/cosnx dr = — (cosz)" 'sinz + n /cos"_Qx dx|. (3)

To get part (iv) we replace n by —m and get

_ 1 el -m—1 .
/cos ™y dr = —— (cosx) ™ tsinz + cos " 2 dx
-m —m

-1 m+1
/secmx dx = — (secz)™ tanx + mrl sec” ™ dz.
m m

On solving for the last integral, we get

1
/secm+2 x dr = 1 (secz)™ tanz + Ll /secm xdr|. (4)

m + m +

n— n—
In parts (ii), (iii) and (vi) we leave the cases for n = 3 and 4 as an exercise.
These are handled as in part (i).

1 -2
Also, /sec”:r; dr = ] sec" 2z tanz + o 1 /sec”2 x dx.

Example 5.4.3 Develop the reduction formulas for the following integrals:
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(i) /tan”xdw (ii) /cot”xdx (iii) /sinh”xdx (iv) /cosh”;vd:v

(i) First, we break tan® x = sec’ z — 1 away from the integrand:

/tan” T dr = /t&m”_2 x - tan’®z dx

= /tan”_2 w(secz — 1) do

/tan” T dx = /tan"2 xsec’x dx — /tan"2 z dx.

For the middle integral, we let u = tan x as a substitution.

/tan”x dr = /u”_zdu — /tam"_2 x dx

un—l
= — /tan"_Qx dx

T n—1
t n—1
= % — /tan"_zx dx.
n—1
Therefore,
t n—1
/tan”xdzz%—/tannqxdl‘ n#1|. (5)
n —

/tanx dr =In|secz| + ¢ for n = 1.
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(ii) We use the reduction formula tan (g - x) = cotx in (5).

/cot"x dr = /tan” (g — :c> dx; (let U= g —x, du = —da:‘)

__ /tan”u(—du)

= —/tan”u du

= — [M—/tann_%L du] ,n#1

n—1

cot" g

_ - /cot”_Qx(—dx), n#1

n—1
cot" gz

= 1 +/cot”2xd:c,n7£1

n —

/cotx dx =In|sinz| + ¢, for n = 1.

Therefore,

cot"

/cot”(x) dr = — + /Co‘c”2 xrdr,n #1 (6)

n—1

/Cotx dr =In|sinz| + c.

(iii) /sinh” xrdr = /(sinhn_1 z)(sinhx dr);u = sinh" 'z, dv =sinhz dx
= sinh" !z coshz — /coshx - (n — 1) sinh™ 2 z cosh zdx
=sinh" 'z coshz — (n — 1) /sinh"2 z(cosh? z) da
= sinh" 'z coshz — (n — 1) /S.inh"2 z(1 + sinh®7) dz

= sinh" 'z coshz — (n — 1) /sinh712 rdr—(n—1) /sinhnx dz.
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On bringing the last integral to the left, we get

n/sinh” x dr = sinh" 'z coshz — (n — 1) /S.inh"2 x dx

1 —1
/sinh" z dr = — sinh" ' cosha — = /sinh”_2 x dz|. (7)

n n

(iv) /cosh” xdr = /(cosh”1 x)(coshx dr); w=cosh" 'z, dv=coshx dr,v =sinhz
= cosh” ! () sinhx — /sinh x(n — 1) cosh” 2 z sinh xdx
= cosh" ' xsinha — (n — 1) /cosh"_2 xsinh? z da
— cosh" ' xsinhz — (n — 1) /cosh”_2 z(cosh? z — 1) dz

— cosh" ' zsinhz — (n — 1) /cosh” x dx
+(n—1) [cosh"*z dx
/cosh" zdr +(n—1) /cosh” x dx = cosh” ' xsinh
+(n —1) [cosh"?z dx

n / cosh” z dr = cosh” ' xsinhz + (n — 1) /cosh"_2 x dx

n n

1 —1
/cosh” ¢ de =~ cosh™ ' zsinhz + ~ /cosh"_2 x dx (8)

Example 5.4.4 Develop reduction formulas for the following:
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(i) /x”e”C dx (ii) /93" Inz dx (iii) /(lnx)” dx
(iv) /x" sinx (v) /:U” cosx dx (vi) /e‘” sin(lnz) dz

(vii) / e cos(Inz) dz

(i) We let u = 2", dv = €® dz, du = nz" ‘dx, v = €. Then

/x”ex dr = z"e” — /e”"(nx”_l) dx

=" — n/x”_lex dzx.

/x”er dx = z"e® — n/ﬁn_lex dx|. (9)

(i) We let u =1Inx, du = (1/z) dx, dv = 2" dv, v=2""1/(n+ 1). Then,
n+1 n+1 1
/x”lnx d:E:(lnx)x /ﬂlj Ed:v

n—l—l_ n—l—l.
n+11
o (nx)_ 1 /x"dx
n+1 n+1
xn-i—l(lnx) 2+l

T Taxl et ©

Therefore,

Therefore,

/x” Inx de = 1) [(n+1)In(z) — 1]+ ¢|. (10)

1
(iii) We let u = (Inz)", du = n(lnz)" '~ dv, dv = dz, v = 2. Then,
x

/(mg;)” dz = 2(nz)" — /x n(inz)L i dz
—a(nz)" —n / (Inz)™! da
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Therefore,

/(m)” dz = 2(lnz)" — n/(lm)n—l dz|. (1)

(iv) We let u = 2™, du = nz" 'dx, dv =sinx dr, v = —cosz. Then,

/:c" sinz de = 2" (—cosx) — /(— cosz)nz" ! dx

= —z"cosr = n/x”_l cosx dr.

Again in the last integral we let u = 2" !, du = (n — 1)2"2dz, dv =
cosx dr, v =sinx. Then

/x”l cosw dr = 2" siny — /sin x(n — 1)a" *dx

= 2" tsinz — (n — 1) /x"‘Z sinx dz.

By substitution, we get the reduction formula

/m” sinx dv = —z" cosx +n [x”l sinz — (n —1) /x”2 sin x dm}

/m” sinz dv = —a" cosx +na" 'sinz —n(n — 1) /x”2 sinx d£12)

(v) We can use (*) and (x) in part (iv) to get the following:
/x”l cosx dr = 2" 'sinz — (n — 1) /x”2 sinx dz by ()

= 2" tsinz — (n — 1) [—x”_Q cosz + (n —2) /x”_g COS T dx] by ()
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/:E”_l cosz dr = 2" *o+(n—1)2""? cosx—(n—1)(n—2) /:1:”_3 cosz dx.

If we replace n by n + 1 throughout the last equation, we get

/.75" cosz dx = x"sinx + na" " cosx —n(n — 1) /x”2 cosx dx

(13)
1
(vi) We let dv = €** dx, v = . e, u =sin(bzx), du = bcos(bzx) dx. Then
: 1 _ b
e sin(bx) de = — e sin(bx) — — [ €* cos(br) dx. (% % %)
a a

1
In the last integral, we let dv = e*"dx, v = — €™, u = cosbx. Then
a
1 b _
e cos(bx) de = — e cosbr + — | e*®sinbx dx (% s k)
a a

First we substitute (x * %) into (x * %) and then solve for

/ e™ sin bx dzx.

1 b [1 b
/e‘m sinbr dr = — e sinbxr — — [— e*® cosbr + — / e sin bx dx]
a a |la a
eaz ) bQ )
= — (asinbr —bcosbz) — — [ axsinbz dx
a a

bQ ax
(1 + —) /e“x sinbx dr = 6—2 (asinbx — beosbx dx)

a

axr

/e‘” sinbx dv = a?e—W (asinbx — bcosbz) + c|. (14)
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(vii) We start with (% * xx) and substitute in (14) without the constant ¢ and

get

/ e cosbx dx =

Therefore,

b }

e cosbr + — | e*sinbx dx
a

axr

22

@|,_. Q| =

Y cosbr + — b {

1 1 . b2
=e* |~ cosbr + ——— | bsinbz — — cosbzx
a a? + b? a

=R [bsinb + a cosbx] + ¢

/e‘” cosbr dz = ——— [bsinbz + acosbz| + ¢
a® 4 b2

(asinbx — bcos bx)] +c

)] +e

(15)

Exercises 5.4 Evaluate the following integrals and check your answers by
differentiation. You may use the reduction formulas given in the examples.

1. /xe‘zx dx

4. / (Inz)? dx 5.

—

— — —

2% sin 2z dx 8.

arcsin(2z) dx

22Inz dx 17.

2, /x31n:v 3. /ﬁ
/ 30
/

sin 3z dx 6.

—

x” cos 3z dx 9. /xln(:v+

arccos 2:c 12.

3

z°sinx dx 18. 3

sec x dx 14. /Sec T dx 15. /tan5x dx

e’ cos 2z dx

1) dx

arctan(2z) dx

z° cosx dx
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19. xsinhz dz 20. /azcosh:z: dx 21. /x(lnx)?’da:

22. rarctanx dz 23. xarccot x dx 24. sin®z dx

25. cos® x dx 26. sintz dx 27. cos* x dx

28. sinh? z dx 29. cosh? z dx 30. sinh® z dz

31 r?sinh x dx 32. x? coshx dx 33. r3sinhx dr
23 coshx dx 35. r2e* dx 36.

37. xsin(3z) dx 38. zcos(x + 1)dx 39. xln(z + 1)dx
40. [ x 2°dx 41, [ = 10*da 42. [ 2? 10°"dx
43. 2% (Inz)3dx 44. arcsinh (3z)dx 45. arccosh (2x)dx

46. zarcsec x dx

— S S S S S S e —
\\\\?\\\\
:

arctanh (2x)dx  47. arccoth (3z)dx 48.

zarcescx dx

50.

£
— S S S S S e e~

5.5 Logarithmic, Exponential and Hyperbolic
Functions

With the Fundamental Theorems of Calculus it is possible to rigorously de-
velop the logarithmic, exponential and hyperbolic functions.
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Definition 5.5.1 For each z > 0 we define the natural logarithm of x, de-
noted Inx, by the equation

1
ln(x):/—dt , x>0.
1t

Theorem 5.5.1 (Natural Logarithm) The natural logarithm, Inz, has the
following properties:

o d 1
(1) e (lnx)—5>0f0rall:c>0.

The natural logarithm is an increasing, continuous and differentiable
function on (0, 00).

(1t) If a >0 and b > 0, then In(ab) = In(a) + In(b).

(i1i) If a > 0 and b > 0, then In(a/b) = In(a) + In(b).

(iv) If a > 0 and n is a natural number, then In(a™) = nlna.
(v) The range of Inz is (—o0,00).

(vi) Inz is one-to-one and has a unique inverse, denoted €.

Proof.

(i) Since 1/t is continuous on (0, c0), (i) follows from the Fundamental The-
orem of Calculus, Second Form.

(ii) Suppose that a > 0 and b > 0. Then

abl
ln(ab):/ — dt
1t
aq abl
= — dt —dt
[ ]
b
1 1 1
=lna+ — adu ; (u:—t, du:—dt)
a a

1 au
=Ina+ Inb.
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(iii) If @ > 0 and b > 0, then

n (@)= [

|
S8
~

=1Ina—1nb.

(iv) If @ > 0 and n is a natural number, then

as required.

(v) From the partition {1,2,3,4,---}, we get the following inequality using
upper and lower sum approximations:

graph

B_L bl ety !
12 23 4> 2 3
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Hence, In4 > 1. In(4") = nln4 > n and In4™™ = —nln4d < —n. By
the intermediate value theorem, every interval (—n,n) is contained in
the range of Inxz. Therefore, the range of Inx is (—o00,0), since the
derivative of Inx is always positive, Inz is increasing and hence one-to-
one. The inverse of In x exists.

(vi) Let e denote the number such that In(e) = 1. Then we define y = e” if
and only if x = In(y) for 2 € (—00,00),y > 0.

This completes the proof.

Definition 5.5.2 If x is any real number, we define y = e if and only if
x =Iny.

Theorem 5.5.2 (Exponential Function) The function y = €® has the fol-
lowing properties:

(i) €® =1, In(e”) = x for every real x and % (") =e".
(ii) e - e’ = e®*® for all real numbers a and b.
(iii) % = ¢ for all real numbers a and b.
(iv) (e®)™ = e™® for all real numbers a and natural numbers n.

Proof.

(i) Since In(1) =0, €® = 1. By definition y = €* if and only if z = In(y) =
In(e”). Suppose y = €®. Then x = Iny. By implicit differentiation, we

get
1 dy dy z
1 = — —y — = €.
y dr’ dx
Therefore,
d
()=
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(ii) Since Inz is increasing and, hence, one-to-one,

ea . €b — ea-l—b PN

In(e” - e) = In(e**?) «
In(e®) +In(e®) =a+b
a+b=a+b.

It follows that for all real numbers a and b,

e e =e€
a
(i) S =eto
e
a
In <e_b> = In(e*?) =
e

e_b — ea—b
e
(IV) (ea)n —_ ena PEN

na = na.
Therefore, for all real numbers a and natural numbers n, we have

(ea)n — ena.
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Definition 5.5.3 Suppose b > 0 and b # 1. Then we define the following:
(i) For each real number z, b* = e*!n?,

. Inz
(ii) y =log, x = s

Theorem 5.5.3 (General Exponential Function) Suppose b > 0 and b # 1.
Then

(i) In(b*) = xInb, for all real numbers x.
(1) o (%) = b"1Inb, for all real numbers x.
(1ii) b*' - b*2 = b1 T22 for all real numbers x1 and ;.
(iv) Z% = b"17"2 for all real numbers xy and x5.
(v) (b"1)*2 = b"*2 for all real numbers x; and 5.
b
(vi) /bx dr = m+c.
Proof.
(i) In(b*) = In(e*™™?) = x1Inb

d d
(ii) o (b*) = — (e*™%) =™ . (Inb)  (by the chain rule)
T

dx
=b"Inb.
(ili) b7t - b7 = emilnb . pr2lnb
— e(xllnb-i-l? Inb)

— e(:):1+x2) Inb

— pl@1tz2)



236 CHAPTER 5. THE DEFINITE INTEGRAL

pet et Inbd
(IV) b2 = er2 Inbd
= %1 Inb—z21nb

— 6({171 —z2)Inb

_ pler=ea),

(v) By Definition 5.5.3 (i), we get
(b:z;l)xg — %2 In(b*1)

_ €x2 ln(exl In b)

— eT2:T1 Inb

z122)Inb

:6(

— prrez,

(vi) Since

d
— (") =0"1Inb
— (") = " Inb,
we get

/bx(ln b) de =b" + ¢,

lnb/bm dr =b" +c,

bl‘
LA
/e T b

where D is some constant. This completes the proof.

Theorem 5.5.4 [f u(x) > 0 for all z, and u(z) and v(x) are differentiable
functions, then we define

y = (u($))v(x) _ ev(x)ln(u(x))'
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Then y is a differentiable function of x and

Proof. This theorem follows by the chain rule and the product rule as follows

u ul
it evlnu] — 6vlnu {v’lnu—kv _:| = uv {v’lnu—i-v —1 .
U u

Theorem 5.5.5 The following differentiation formulas for the hyperbolic
functions are valid.

Lodo od .
(i) e (sinh z) = coshx (i1) e (coshz) = sinhx
(111) 4 (tanhz) = sech’z (iv) 4 (cothz) = —csch®x
dz B dz B
d Lo d
(v) o (sech x) = —sech x tanh z (vi) o (eschz) = —csch z coth
x x

Proof. We use the definitions and properties of hyperbolic functions given
in Chapter 1 and the differentiation formulas of this chapter.

(i) % (sinhz) = % (%) B cosh x.

. d d (e +e* er —e " ,
(ii) . (coshzx) = p < ) = = sinh x.

(iii) % (tanhz) = % <

sinhx> _ (coshz)(coshz) — sinh(sinh z)

cosh x (cosh x)?

cosh? z — sinh? x 1

= = h?
(cosh x)? cosh x)? s
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_d -1 _ -2 2
o (cothzx) = o (tanhx)™" = —1(tanhx)™* - sech“z

(iv)

cosh? z 1 1

12 2 T T T2

sinh“z cosh”x sinh” z
— —cschx.

(v)

_d -1 _ 2
. (sechzx) = p (coshx)™ = —1(coshz)™* - sinh x

= — sech x tanh x.

(vi)

. d . -1 _ . —9
p (cschx) = . (sinhx)™ = —1(sinhz) ™" - coshx

= —cothx cschz.

This completes the proof.

Theorem 5.5.6 The following integration formulas are valid:

(i) /sinhx dr = coshx + ¢ (1) /coshx dx =sinhx + ¢
(iii) /tanhx dr = In(coshz) + ¢ (iv) /cothxdm =In|sinhz| + ¢
(v) / sechz dr = 2arctan(e®) + ¢ (vi) / cschx dr =1In ’tanh (g)‘ +c

Proof. Each formula can be easily verified by differentiating the right-hand
side to get the integrands on the left-hand side. This proof is left as an
exercise.

Theorem 5.5.7 The following differentiation and integration formulas are
valid:
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Lod ) 1 . dzx ]
(i) p (arcsmhx):ﬁ (1) /m: arcsinh x + ¢

d
(111) o (arccoshz) = = arccoshz + ¢
T

= W [ =

d 1 1
(v) e (arctanh z) = Rt lz| < 1 (vi) / T dxr = arctanhz + ¢

Proof. This theorem follows directly from the following definitions:

(1) arcsinhx = In(x + /1 + z?) (2) arccoshz = In(z + Va%2 — 1)

1 1+
hr=-1 1.
(3) arctanhzx 5 n(l_x),|a:\<

The proof is left as an exercise.

Exercises 5.5

1. Prove Theorem 5.5.6.
2. Prove Theorem 5.5.7.

3. Show that sinh mz and cosh mz are linearly independent if m # 0. (Hint:
Show that the Wronskian W (sinh ma, coshmz) is not zero if m # 0.)

4. Show that e™* and e™™* are linearly independent if m # 0.

5. Show that solution of the equation " — m?y = 0 can be expressed as
Y = c1e™¥ 4 coe” ™,

6. Show that every solution of y” — m?y = 0 can be written as y =
Asinh mx + B coshma.

7. Determine the relation between ¢; and ¢y in problem 5 with A and B in
problem 6.

8. Prove the basic identities for hyperbolic functions:
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(i) sinh(x

( = sinh x cosh y + cosh x sinh 3.
(ii) sinh(

)=
) =

+y
— y) = sinh x cosh y — cosh x sinh y.
+

(iii) cosh(z + y) = cosh z coshy + sinh x sinh y.

(v) sinh 2z = 2sinh x cosh z.

)
)
)
(iv) cosh(x — y) = cosh x coshy — sinh z sinh y.
)
(vi) cosh? z + sinh?z = 2cosh?z — 1 = 1 4 2sinh? z = cosh 2z.
)

(vii) cosh?z —sinh®2 =1, 1 —tanh®2 = sech®z, coth®z — 1 = csch’z.

9. Eliminate the radical sign using the given substitution:
(i) va?+ 22, v = asinht (ii) va? — 2?2, x =tanht
(i) va? —a?, © = acosht.

10. Compute ¢’ in each of the following:

(i) y = 2sinh(3z) + 4 cosh(2z) (ii) y = 4tanh(5x) — 6 coth(3x)
(iii) y = x sech (2z) + 2 csch (5x) (iv) y = 3sinh®*(4x + 1)
(v) y=4cosh?(2z — 1) (vi) y = sinh(2z) cosh(3z)

11. Compute y' in each of the following:

2

(i) y=a2" (i) y =2 (i) y = (22 + 1)5n)
(iv) y=logp(a?+1) (v) y=Ilog,(secz + tanz)(vi) y=10"+D
12. Compute 3 in each of the following;:

(i) y=azlnxr—=x (ii) y =1In(z+ Va2 —4) (ili) y = In(x + v4 + 22?)

(iv) y= % In <1 i_ i) (v) y = arcsinh (3z) (vi) y = arccosh (3z)
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13.

14.

15.

Evaluate each of the following integrals:

(i) /sinh(Bx) dx (ii) /x3e”2 dx (iii) /:L'2 In(x 4+ 1) dx
(iv) /a:sinh 2 dx (v) /;vcosh 3z dxr (Vi) /x4x2 dx
Evaluate each of the following integrals:

(i) / arcsinh x dx (ii) / arccosh z dz (iii) / arctanh x dx

) dz dz . dz
™ | = AU BVeear N o

Logarithmic Differentiation is a process of computing derivatives by first
taking logarithms and then using implicit differentiation. Find 3’ in each
of the following, using logarithmic differentiation.

(@ 1P+ 4

T (221 2)5(a2 + 3)° (i) y = (22 +4)@*+D)

(1)

(iii) y = (sinz + 3)(cosz+7) (iv) y = (3sinhx 4 cosz + 5)“3“)

(V) = (e + 1) (vi) y = a%(a? + 1)+

In problems 16-30, compute f'(x) each f(x).

16.

18.

20.

f(z) = /lx sinh®(¢)dt 17. / cosh®(t)

cosh z sech x

f(z) z/ (1+t2)%2dt 19. / (1+t%)Y2dt
sinh x tanh z
(Inz)? e

f(:v):/ (4 +t3)°2at 21. f(a:):/ (1 + 4t*)"dt
Inz ex?
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6COS.’I) 1 31 1
22. f(l')_/em”c m dt 23. f($)_LI m dt

53z

logs x
24. f(x):/ (14 2t%)32at 25. f(x):/ (14 5t3)Y2dt
42 logy
arccosh 1 4=° 2
26. f(.fE):/a\rCSinhx m dt 27. f(a:) :/212 e’ dt
Heos ) cosh(z?) 5
28. f(x)= / e "dt 29. f(x)= / e "dt
4sinz sinh(z2)

arccoth x
30. f(z) = / sin(12)dt

rctanh x

In problems 31-40, evaluate the given integrals.

arctan x arcsin x
31. /61+:c2 dx 32. jﬁ dx 33. /651“29‘” cos2x dx

2z
34. /$26$3dl‘ 35. / ‘ dx 36. /e”” cos(1 + 2e”)dx

1+ e

4arcsecx
37. e sec?(2 + e3%)dx  38. /IOCOW sinx dx 39. /7 dx
/ ( ) zvz? —1

40. / z 10713 dg

5.6 The Riemann Integral

In defining the definite integral, we restricted the definition to continuous
functions. However, the definite integral as defined for continuous functions
is a special case of the general Riemann Integral defined for bounded functions
that are not necessarily continuous.
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Definition 5.6.1 Let f be a function that is defined and bounded on a
closed and bounded interval [a,b]. Let P = {a = 2y < 27 < 29 < -+ <
x, = b} be a partition of [a,b]. Let C = {¢; : 2,1 < ¢; < x50 =1,2,--- ,n}
be any arbitrary selection of points of [a,b]. Then the Riemann Sum that is
associated with P and C' is denoted R(P) and is defined by

R(P) = f(e1)(w1 — mo) + flea)(wa — 1) + - + flen) (@0 + Tp1)

n

= fle) (@i —zia).

i=1

Let Aw; =a; — w9, i =1,2,--- ,n. Let ||A]| = f?i};{Aml} We write

R(P) =" f(e;)Ax;.
i=1
We say that

lim Z fle)Ax; =1
i=1

IAll—0

if and only if for each € > 0 there exists some ¢ > 0 such that

<€

whenever ||A|| < d for all partitions P and all selections C' that define the
Riemann Sum.

If the limit [ exists as a finite number, we say that f is (Riemann) inte-
grable and write

[:/abf(:zs) da.

Next we will show that if f is continuous, the Riemann integral of f is
the definite integral defined by lower and upper sums and it exists. We first
prove two results that are important.

Definition 5.6.2 A function f is said to be uniformly continuous on its
domain D if for each € > 0 there exists 6 > 0 such that if |z — z5| < 0, for
any x; and x5 in D, then

|f(z1) = f(x2)] < e



244 CHAPTER 5. THE DEFINITE INTEGRAL

Definition 5.6.3 A collection C' = {U, : U, is an open interval} is said to
cover a set D if each element of D belongs to some element of C.

Theorem 5.6.1 [f C' = {U, : U, is an open interval} covers a closed and

bounded interval [a, b, then there exists a finite subcollection B = {Ug,, Uy, + - -

of C that covers |a,b].

Proof. We define a set A as follows:
A={z:2 €a,b] and [a,x] can be covered by a finite subcollection of C'}.

Since a € A, A is not empty. A is bounded from above by b. Then A has a
least upper bound, say lub(A) = p. Clearly, p < b. If p < b, then some U,
in C' contains p. If U, = (aq,bs), then a, < p < b,. Since p = fub(A), there
exists some point a* of A between a, and p. There exists a subcollection

B ={U,,, - ,U,,} that covers [a,a*]. Then the collection

By = {Uq,, -+ ,Us,,Us} covers [a,b,). By the definition of A, A must
contain all points of [a,b] between p and b,. This contradicts the assump-
tion that p = ¢ub(A). So, p = b and b € A. It follows that some finite
subcollection of C' covers [a, b] as required.

Theorem 5.6.2 If f is continuous on a closed and bounded interval [a,b],
then f is uniformly continuous on |a,b.

Proof. Let € > 0 be given. If p € [a,b], then there exists d, > 0 such
that |f(xz) — f(p)| < ¢/3, whenever p —d, < © < p+6,. Let U, =

1 1
P-3 Ops D+ 3 6p). Then C = {U, : p € [a,b]} covers [a,b]. By The-
orem 5.6.1, some finite subcollection B = {U,,,U,,,... ,U,, } of C covers

1
[a,b]. Let 6 = gmin{épi ci=1,2,---,n}. Suppose that |x; — 9| < ¢ for

any two points x; and xs of [a,b]. Then z; € U, and z, € Up, for some p;
and p;. We note that

lpi — ps| = |(pi — 21) + (21 — 22) + (22 — pj)]

7Uan}
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It follows that both p; and p; are either in U, or U,,. Suppose that p; and
p; are both in U,,. Then

|22 — pi| = [(v2 — 1) + (21 — ps)]
<@g — 21| + |21 — pi

S0, w1, T2, p; and p; are all in U,,. Then

[f(21) = f(x2)] = [(f(21) = F(a) + (f (pi) = f(22))]
< [f(a) = Fpa)l + [f (i) — f2)]

<(—:+e
3 3
< €.

By Definition 5.6.2, f is uniformly continuous on [a, b].

Theorem 5.6.3 If f is continuous on [a,b], then f is (Riemann) integrable
and the definite integral and the Riemann integral have the same value.

Proof. Let P ={a =1y <z <23 <...<uz, =b} be a partition of [a, ]
and C' = {¢; : ;1 < ¢ < x;,i =1,2,... ,n} be an arbitrary selection. For
eachi=1,2,... ,nlet

m; = absolute minimum of f on [x;_1, z;] obtained at ¢}, f(cf) = m;;

M, = absolute maximum of f on [x;_y,x;] obtained at ¢*) = M;;

m = absolute minimum of f on [a, b];

M = absolute maximum of f on [a, b];

R(P) = fle)Aw;,
i=1
Then for each i = 1,2,... ,n, we have

n

m(b—a) < Z FE) (@i —xia) < flen) (@i — i)

=1

< Zf(cf*)(l’i —xi-1) < M(b—a).



246 CHAPTER 5. THE DEFINITE INTEGRAL

We recall that

n n

Zf )Az;, R(P) = f(e)Ax;, U(P) = f(e}") A

i=1 =1

We note that L(P) and U(P) are also Riemann sums and for every partition

P, we have
L(P) < R(P) <U(P).

To prove the theorem, it is sufficient to show that

lub{L(P)} = glb{U(P)}.

Since f is uniformly continuous, by Theorem 5.6.2, for each ¢ > 0 there is

some § > 0 such that | f(x)—f(y)] < bL whenever |z—y| < ¢ for z and y in
—a

[a,b]. Consider all partitions P, selections C' = {¢;},C* = {c}}, C** = {c¢*}
such that 5

1Al = max (s = 2i1) < 5.

Then, for each i =1,2,... ,n
7 = el <
7))~ Fe)| <

It follows that

Wb{L(P)} = lim R(P)p=elb{U(P)} =1
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By definition of the definite integral, I equals the definite integral of f(x)
from x = a to x = b, which is also the Riemann integral of f on [a,b]. We
write

I:/abf(:c) dz.

This proves Theorem 5.6.2 as well as Theorem 5.2.1.

Exercises 5.6

1. Prove Theorem 5.2.3. (Hint: For each partition P = {a = zyp < 21 <
.. < zy = 10| of [a,b],

g(b) —g(a) = [g(zn) — g(@n-1)] + [9(xn-1) — g(@n_2)] + ...+ [g(21) — g(20)]

= Z[Q(Iz) — g(wi1)]

= Z g (c;)(x; — i) (by Mean Value Theorem)
i—1

n

= Z f(Cz)(xz - ll?ifl)
i=1
= R(P)
for some selection C' = {¢; : x; 1 < ¢; < xy,i=1,2,-+ ,n}.)
2. Prove Theorem 5.2.3 on the linearity property of the definite integral.
(Hint:

/ [Af () +bg(z)] dv = lim {Z [Af(ci) + Bg(ci)] - [z — xz’—l)}

N
H)( > fie > slc) )
<||A||~o;f( ) ) ||A||~o;g( )

_ A/abf(x)d:c +B /abg(:c)d:c.)
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3. Prove Theorem 5.2.4.

(Hint: [a,b] = [a,c]U[c,b]. T P={a=20 <21 <...<x,=0b}isa
partition of [a, b], then for some i, P ={a=27< ... <71 <c<z; <

. < x, = b} yields a partition of [a,b]; {a < zg < -+- < x;_1 < c}isa
partition of [a,c] and {¢ < z; < -+ < x,, = b} is a partition of [c,b]. The
addition of ¢ to the partition does not increase ||All.)

4. Prove Theorem 5.2.5.

(Hint: For each partition P and selection C' we have
D fle) (@i — i) <Y gle)(wi— i)
i=1 =1

5. Prove that if f is continuous on [a,b] and f(z) > 0 for each z € [a, ],

then \
/ f(x) dz > 0.

(Hint: There is some c¢ in [a, b] such that f(c) is the absolute minimum
of f on [a,b] and f(c) > 0. Then argue that

0< f(e)(b—a) < L(P) <U(P)
for each partition P.)

6. Prove that if f and g are continuous on [a,b], f(z) > g(x) for all z in

[a,b], then ) .
/a f(z) dz >/a g(x) dx.

(Hint: By problem 5,
b
[ 0@~ gty a0

Use the linearity property to prove the statement.)

7. Prove that if f is continuous on |[a, b], then

/ f(a)lda.

) dx
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10.

(Hint: Recall that —|f(z)| < f(x) < |f(z)| for all x € [a, b]. Use problem
5 to conclude the result.)

Prove the Mean Value Theorem, Theorem 5.2.6.
(Hint: Let
m = absolute minimum of f on [a, bJ;

M = absolute minimum of f on [a bl;

favla,b] =

m(b—a) < / f(z)de < M(b—a).

Then m < fu[a,b] < M. By the intermediate value theorem for contin-
uous functions, there exists some ¢ on [a, b] such that f(c) = fu[a,b].)

Prove the Fundamental Theorem of Calculus, First Form, Theorem 5.2.6.
(Hint:
g(x+h) —g(z)

g'(x) = Jimy h
~ lim % :/amf(t)dt_/:f(t)dt]
~ lim % :/;f(t) dx+/:+hf(t)dt—/:f(t)dt]
:}%% _/:Mf(t)dt}

—}llm(l) f(e), (for some ¢, x < c <z +h;)

= f(x)
where x < ¢ <z + h, by Theorem 5.2.6.)

Prove the Leibniz Rule, Theorem 5.2.8.

(Hint:
B(x) B(z) o(x)
/a(x) f(t)dt:/a f(t)dt—/a f(t)dt

for some a. Now use the chain rule of differentiation.)
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11. Prove that if f and g are continuous on [a,b] and ¢ is nonnegative, then
there is a number ¢ in (a,b) for which

[ ey ae =50 [ o) ar

(Hint: If m and M are the absolute minimum and absolute maximum of
f on [a,b], then mg(x) < f(z)g(x) < Mg(z). By the Order Property,

/ m</f <M/

_fffg T M <1f/0 (x)d:c;éO).

By the Intermediate Value Theorem, there is some ¢ such that

Lt @ygl) do
o =

[ wte) de =5 [ ota) ar

b
If/ g(x) dx =0, then g(x) # 0 on [a, b] and all integrals are zero.)

Remark 20 The number f(c) is called the weighted average of f on [a, b
with respect to the weight function g.

5.7 Volumes of Revolution

One simple application of the Riemann integral is to define the volume of a
solid.

Theorem 5.7.1 Suppose that a solid is bounded by the planes with equations
xr=a and xr =b. Let the cross-sectional area perpendicular to the x-axis at
x be given by a continuous function A(x). Then the volume V of the solid is
given by

V—/abA(x) dz.



5.7. VOLUMES OF REVOLUTION 251

Proof. Let P ={a =129 <z <2y <---<x, =0b} be a partition of [a, b].
For each i =1,2,3,--- ,n, let

V; = volume of the solid between the planes with equations x = x;_; and
xr = Zi,

m; = absolute minimum of A(x) on [x;_1, 7],

M; = absolute maximum of A(x) on [z;_1,z;],

Al’i = X; — Tj—1-
Then

Vi

X

miAx; < V; < M;Ax;,m; < < M;.

Since A(z) is continuous, there exists some ¢; such that z; 1 < ¢; < M; and

7

V=>" A(c)Az;.
=1

It follows that for each partition P of [a,b] there exists a Riemann sum that
equals the volume. Hence, by definition,

vzéu®mﬂ

Theorem 5.7.2 Let f be a function that is continuous on [a,b]. Let R
denote the region bounded by the curves x = a, v =b, y =0 and y = f(x).
Then the volume V' obtained by rotating R about the x-axis is given by

V= /ab 7(f(x))*dx.

Proof. Clearly, the volume of the rotated solid is between the planes with
equations x = a and x = b. The cross-sectional area at x is the circle
generated by the line segment joining (z,0) and (z, f(z)) and has area A(x) =
7(f(x))?. Since f is continuous, A(z) is a continuous function of x. Then by
Theorem 5.7.1, the volume V' is given by

VZKZQ@PW.
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Theorem 5.7.3 Let f and R be defined as in Theorem 5.7.2. Assume that
f(z) > 0 for all x € [a,b], either a > 0 or b < 0, so that |a,b] does not
contain 0. Then the volume V' generated by rotating the region R about the
y-axis s given by

vf::jCszxf(x» dz.

Proof. The line segment joining (x,0) and (z, f(z)) generates a cylinder
whose area is A(z) = 2mxf(x). We can see this if we cut the cylinder
vertically at (—z,0) and flattening it out. By Theorem 5.7.1, we get

b
V:/ 2rxf(x) dx.

Theorem 5.7.4 Let f and g be continuous on |a,b] and suppose that f(z) >
g(x) > 0 for all x on [a,b]. Let R be the region bounded by the curves

r=a, v=0b, y=f(z) and y = g(v).

(i) The volume generated by rotating R about the x-axis is given by

b
/ T[(f(z))* — (9(z))?] dz.

(i1) If we assume R does not cross the y-azis, then the volume generated by
rotating R about the y-axis is given by

vz/zmum—mmm.

(111) If, in part (ii), R does not cross the line x = ¢, then the volume generated
by rotating R about the line x = c is given by

b
V= / orle — 2|[f(z) — g(x)ldz.

Proof. We leave the proof as an exercise.
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Remark 21 There are other various horizontal or vertical axes of rotation
that can be considered. The basic principles given in these theorems can be
used. Rotations about oblique lines will be considered later.

Example 5.7.1 Suppose that a pyramid is 16 units tall and has a square
base with edge length of 5 units. Find the volume of V' of the pyramid.

graph

We let the y-axis go through the center of the pyramid and perpendicular
to the base. At height y, let the cross-sectional area perpendicular to the
y-axis be A(y). If s(y) is the side of the square A(y), then using similar
triangles, we get

s(y) 16—y 5
T:T;(y) =16 (16 —y)
Aly) = oo (16— )"

Then the volume of the pyramid is given by

16 16 25
A(y)dy = —— (16 — y)?d
/0 (y)dy /O 56 ( y)“dy

25 [0-p)"

256 -3 |,

_ 2 l(16)3] _ (25)(16)
256 | 3 3
400

= = cubic units.

1
Check : 'V = 3 (base side)” - height

1
=-(25)-16
- (25)

_ o

3
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Example 5.7.2 Consider the region R bounded by y =sinz, y =0, x =0
and r = m. Find the volume generated when R rotated about

(i) z-axis (i) y-axis (i) y= -2 (iv) y=1
Vyx=m (vi) = =2m.

(i) By Theorem 5.7.2, the volume V' is given by

V—/ msin®x dx
0
1 ) "
=T {5 (x — sinz cos x)

0

7T2

5

graph

(ii) By Theorem 5.7.3, the volume V' is given by (integrating by parts)

V:/ 2nrsine dr ;5 (u==x, dv=sinx dx)
0

= 21[—z cosx + sin z|]
7]

= 272,

=27

graph
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(iii) In this case, the volume V' is given by

V:/ m(sinz + 2)? dx
0
:/ m[sin® x + 4sinz + 4] dx
0
1 , T
:7T|:§ (x —sinzcosx) — 4cosx + 4a
0

1
:7T|:§ 7r+8+47r1

9
= §7r2 + 8.

graph

(iv) In this case,

V= /Oﬂﬂ[12 — (1 —sinx)?] dz.

graph
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(vi)

graph

V

<
I
S—

CHAPTER 5. THE DEFINITE INTEGRAL

/ m[l — 1+ 2sinz — sin’z]dr
0

™

1
T [—ZCosx— 5 (x — sinz cos x)
0

|
3
| — |
i
I
o |
—~
3
S~—
—_

V= /OF(QW(W — 2)sing] dr

= 27r/ [rsinz — xsinz] dx
0

= 2m[—mcosx + x cosx — sin z|j
= 2m[2m — 7]
= 27°,

21(2r — x)sinx dx

T[—2m cosx + x cos x — sin x|j
[

w4 — 7]
.

I
D D N
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graph

Example 5.7.3 Consider the region R bounded by the circle (z—4)%+y? =
4. Compute the volume V' generated when R is rotated around

(i) y=0 (ii) z=0 (i) x =2
graph

(i) Since the area crosses the z-axis, it is sufficient to rotate the top half to
get the required solid.

6 6
V:/ﬂy2dx:7r/[4—(a:—4)2]dm
2 2
1 ° 2
:7T|:4I——(J}—4)3:| :W[16—§—§]:3—7T.
3 ) 37 3] 3

This is the volume of a sphere of radius 2.
(ii) In this case,
6 6
V= / 2z (2y) dox = 47r/ z[\/4— (r —4)?|dx ;o — 4 = 2sint
2 2
dr = 2costdt

w/2
= 47?/ (4 + 2sint)(2cost)(2cost)dt
—7/2

/2
= 477/ (16 cos® t + 8 cos® tsint) dx
—7/2
1 8 w/2
=47 |16 - = (t +sintcost) — - cos’t
= 4n[8(7)]

= 3272
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(iii) In this case,
6
V= / 27(x — 2)2y dx
2

6
:47r/ (x —2)\/4—(xr—4)?de ;2 — 4 =2sint
2

dx = 2 costdt

w/2
= 47r/ (2+ 2sint)(2cost)(2cost)dt
—7/2

w/2
= 4n / (8cos?t + 8 cos® t sin t)dt

—7/2
] /2
= 47 |4(t +sintcost) — = cos’t
3 —7/2
= 4r[4r]
= 1672

Exercises 5.7

1. Consider the region R bounded by y = 2 and y = 22. Find the volume
generated when R is rotated around the line with equation

=0 (i) y=0 (iii) y=1 (iv) =1
(v) z=4 (vi) z=-1 (vil) y=—1 (viil) y=2

2. Consider the region R bounded by y = sinx, y = cosz, v =0, x =
g. Find the volume generated when R is rotated about the line with
equation

s

3. Consider the region R bounded by y =¢*, x =0, x =In2, y = 0. Find
the volume generated when R is rotated about the line with equation

i) y=0 (ii)) =0 (iii) x =In2 (iv) y= -2
(v) y=2 (iv) =2
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4. Consider the region R bounded by y =Inx, y =0, v =1, x = e. Find
the volume generated when R is rotated about the line with equation

(i) y=0 (ii) =0 (iii) z=1 (v) x=e
) y=1 () y=-1

5. Consider the region R bounded by y = coshz, y =0, z = -1, x =
1. Find the volume generated when R is rotated about the line with

equation
(i) y=0 (i) =2 (iii) z=1 (iv) y=-1
(v) y=6 (vi) =0

6. Consider the region R bounded by y = z, y = z3. Find the volume

generated when R is rotated about the line with equation
(i) y=0 (ii)) =0 (iii) z=-1 (iv) z=1
(v) y=1 (vi) y=-1

7. Consider the region R bounded by y = 2%, y = 8 — 2. Find the volume
generated when R is rotated about the line with equation

(i) y=0 (i) z=0 (i) y=—4 (iv) y=8
(v) x=-2 (vi) =2

8. Consider the region R bounded by y = sinhz, y =0, x =0, x = 2. Find
the volume generated when R is rotated about the line with equation

(i) y=0 (ii) =0 (iii) o =2 (iv) z=—2
(v) y=-1 (vi) y =10

9. Consider the region R bounded by y = \/x, y = 4, x = 0. Find the
volume generated when R is rotated about the line with equation

(i) y=0 (ii) 2 =0 (iii) = =16 (iv) y=4

10. Compute the volume of a cone with height h and radius r.
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5.8 Arc Length and Surface Area

The Riemann integral is useful in computing the length of arcs. Let f and
/" be continuous on [a, b]. Let C denote the arc

C=A{(z, f(z)) :a <z <b}.

Let P={a=xy <z <x9 <...<ux,=>b} be a partition of [a,b]. For each
i=1,2,... n, let

graph

Ar; = x; — 154
Ay; = f(z;) — f(xi-1)

As; = /(f(x:) = f(wi1))? + (2 — 27)?
1Al = max{Az,}.

Then As; is the length of the line segment joining the two points (z;_1, f(z;-1))
and (xz;, f(z;)). Let

A(P) = i As;.

Then A(P) is called the polygonal approximation of C' with respect to
the portion P.

Definition 5.8.1 Let C = {(z, f(x)) : « € [a,b]} where f and f’ are con-
tinuous on [a,b]. Then the arc length L of the arc C is defined by

L= lim Ap= lim Z V(@) = fwi1))? + (2 — 2-1)2

1AlI=0 |All=0

Theorem 5.8.1 The arc length L defined in Definition 5.8.1 is given by

L :/ V(f'(x))? 4+ 1 dx.
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Proof. By the Mean Value Theorem, for each i =1,2,... ,n,
f(zs) = f(oio1) = f/(Ci)(Ii — i)

for some ¢; such that z; 1 < ¢; < x;. Therefore, each polynomial approxima-
tion Ap is a Riemann Sum of the continuous function

(f'(x))? +1
= Z V (f(e:)? +1 Az,

for some ¢; such that z,_; < ¢; < x;.
By the definition of the Riemann integral, we get

b
— [ ViF@r T .

Example 5.8.1 Let C' = {(z,coshx) : 0 < z < 2}. Then the arc length L
of C'is given by

2
:/ V1 +sinh?z dx
0

2
:/ coshx dx
0

= [sinh z]j
= sinh 2.

2
Example 5.8.2 Let C' = {(:p, 3 x3/2> 0<r < 4}. Then the arc length
L of the curve C' is given by

3 2
/ 1+ —'51'1/2) dx

:/ (14 2)? do

5

1+$ 3/2:|

[5v/5 — 1].

[SCR I N}
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Definition 5.8.2 Let C be defined as in Definition 5.8.1.

(i) The surface area S, generated by rotating C' about the x-axis is given by
b
5= [ 2nl @@ 1 de

(ii) The surface area S, generated by rotating C' about the y-axis

b
Sy = / 2|z (f'(x))? + 1 dx.

Example 5.8.3 Let C' = {(z,coshz) : 0 <z < 4}.

(i) Then the surface area S, generated by rotating C' around the z-axis is
given by

4
S, = / 27 coshzv/ 1 + sinh? x dx
0

4
= 27T/ cosh? z dx
0

1 4
=27 {5 (x + sinh x cosh )

0
= 7|4 + sinh 4 cosh 4].

(ii) The surface area S, generated by rotating the curve C' about the y-axis
is given by

4
Sy = / 27\ 1+ sinh?® z dx
0

4
—27r/ xcoshz dr ; (u =z, dv = coshz dr)
0

= 27[xsinhz — cosh z];
= 2r[4sinh 4 — cosh4 + 1]
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Theorem 5.8.2 Let C = {(x(t),y(t)) : a <t < b}. Suppose that '(t) and
y'(t) are continuous on [a,b].

(i) The arc length L of C' is given by

b
La/meVHmmwt

(ii) The surface area S, generated by rotating C' about the x-axis is given by

&zfmwwwwwwuwmwt

(i1i) The surface area S, generated by rotating C' about the y-axis is given by

b
Sy =/ 27| (t)[v/(a'())? + (y/())? dt.

Proof. 'The proof of this theorem is left as an exercise.

Example 5.8.4 Let C' = {(et sint, et cost) : 0 <t < } Then

bo|

ds =/(2'(t))? + (y'(1))? dt
= \/(et(sint + cost))? + (et(cost — sint))? dt
= {e®(sin?t + cos®t + 2sint cost + cos? t + sin?t — 2costsint)}/? dt

= e'/2 dt.

(i) The arc length L of C' is given by

w/2
L= / V2eldt
0
= V2 [e];"

0

:\/5(6”/2—1).
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(ii) The surface area S, obtained by rotating C' about the z-axis is given by
w/2
S, = / om (et cost)(V/2eldt)
0
/2
= 2V2r / et costdt
0

o2t /2
= 2V/2r {? (2cost + sin t)]
0

—2Von E (1) — 3}

5
2\/§7r
5

(e™ —2).

(iii) The surface area S, obtained by rotating C' about the y-axis is given by
/2
Sy = / om(e! sint) (V2! dt)
0
/2
= 2\/5%/ e* sin tdt
0

t /2

:m@ﬂ%[

2e™ 1 2V2
v 5 g] - B

2sint — cos t]}
0

2e™ 4+ 1).
. (2" +1)

Exercises 5.8 Find the arc lengths of the following curves:

32 0<ax<4

8

1. y=

2. y=- (22422 0<z2<1

3. C= {(4(cost+tsint), A(sint —tcost)): 0 <t

IN
No| 3

}

4. z(t) = a(cost + tsint), y(t) = a(sint — tcost), 0 <t < g

5. wx(t) = cos®t,y(t) =sin’t, 0 <t < 7/2
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10.

22, 0<t<1

o(t) =63, yt) =1, 0<t <1
x(t) =1—cost, y(t) =t —sint, 0 <t <27

In each of the curves in exercises 1-8, set up the integral that represents
the surface area generated when the given curve is rotated about

(a) the z-axis

(b) the y-axis

Let C = {(z,coshz): -1 <z <1}
(a) Find the length of C'.

(b) Find the surface area when C'is rotated around the z-axis.

(c¢) Find the surface area when C' is rotated around the y-axis.

In exercises 11-20, consider the given curve C' and the numbers a and b.
Determine the integral that represents:

11.

12.

13.
14.

15.

16.

(a) Arc length of C'

(b) Surface area when C'is rotated around the z-axis.
(c
(d

(e) Surface area when C' is rotated around the line y = b.

)

)

) Surface area when C' is rotated around the y-axis.

) Surface area when C'is rotated around the line = = a.
)

C:{(t,lnsect):ogtgg}; a=m, b=-3

1
C ={(2z,cosh2z): 0<z<1}; a=-2, b= 3
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IN

t

IN

17.C’:{(cost,3+sint):— E};a:2,b:5

2
T
4
19. C={(ehe):0<t<In2}; a=-1,b=—-4

bo|

m.oz{@%m%&%%%yogtg };a:—Lb:S

20. C={(414H:0<t<1};, a=-2, b=-3



Chapter 6

Techniques of Integration

6.1 Integration by formulae

There exist many books that contain extensive lists of integration, differen-
tiation and other mathematical formulae. For our purpose we will use the
list given below.

1. /af(u)du:a/f(u)du

2. / (ia fi(u)> du = i ( / o fi(u)du>
3. /u”du: ;‘Tl L0, n#-1

-

utdu = In |u| + C

+C,a>0,a#1

~

/ln|u]du:uln\u] —u+C

267
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. [ sin(au)du — —cos(au)
a
sin(auw)
9. cos(au)du = . +C
10. /tan(au)du = M +C
a
11. /cot(au)du = M L O
a
12. / sec(au)du = In | sec(au) + tan(au)|
a
13. /csc(au)du = In | csc(au) — cot(au)| s
a
h
14. /sinh(au)du = M +C
a
15. /cosh(au)du = sinh(au) +C
a
a
| inh
17. /coth(au)du — M O
a
2
18. /sech (au)du = — arctan(e®) + C
a
2
19. /cseh (au) du = - arctanh (e™) + C
20. . 9 gy sin(au) cos(au)
0 /sm (au)du 5 > O
21. /0052(au)du _u + sin(au) cos(au) L
2 2a
- /taHQ(GU)du _ tanlaw) L e
a
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cot(au)

23. /cot2(au)du = — —u+C
a
9 tan(au)
24. [ sec”(au)du = +C
a
t
25. /cscz(au)du =L (au) +C
a
inh(2
26. /SinhQ(au)du = —g + w +C
inh(2
27. /cosh2(au)du = g + W +C
h
28. /tanhg(au)du =u— tanh(au) +C
a
h
29. /COthQ(CLU)dU =u— coth(au) +C
a
h
30. /SeChQ(au)du _ tanhlaw) (au) +C
a
9 — coth(au)
31. [ csch?(au)du = — +C
sec(au)
32. [ sec(au)tan(au)du = " +C
csc(au)
33. [ csc(au) cot(au)du = — +C
h
34. /sech (au) tanh(au)du = —w +C
csch (au)
35. [ csch (au) coth(au)du = ——= + C
a
du 1 u
36. /a2 T2 a arctan (5) +C
du 1 u 1 a+u
37. /aQ—U? = arctanh (5) +C = % In p— +C
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38 = arcsinh (%) +C

/ du
du . (U
39. /\/ﬁ = arcsin <a> +C, |a| > |ul

40 = arccosh (E) +C, |u| > |a
a

/du
) Ve—a

d 1
41 /u\/ﬁ = a arcsec (g) +Ca |'LL| > |CI,|
d 1
42, /u\/ﬁ = . arcsech (g) +C, la| > |ul
du 1 u
43. | ——— — _~ arcesch (—) +C
/u\/m a @

u du
44. — =Vat+ur+C
Va? + u?

45./ u du =—Inva?—u?+C, |a|] > |ul

a? — u?

u du
46. | ——==Va2 +u2+C
Va2 + u?

u du
47, | ——= = Va2 —u*+C, |a| > |u

u du
48. | —==vVu2—a®2+C, |ul > |a
Vi@ =l

1
49. /arcsin(au)du = yarcsin(au) + — V1 —a?u? + C, |a||lu| < 1
a

1
50. /arccos(au)du = warccos(au) — — V1 —a?u? + C, |allu] <1
a
1 2 2
51. [ arctan(au)du = varctan(au) — % In(1+a“u)+C
1
52. /arccot (au)du = uarccot (au) + % In(1 + a*u®) + C
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1
53. /arcsec (au)du = uarcsec (au) — — In ‘au + Vatu? — 1‘ +C, au>1
a

1
54. /arccsc (au)du = uarcesc (au) + — In ’au + Vatu? — 1‘ +C, au>1
a

1
55. /arcsinh (au)du = warcsinh (au) — — V14 a?u? + C
a
1
56. /arccosh (au)du = uarccosh (au) — oV —1+a?u?®+C, |a||u] > 1
1
57. /arctanh (au)du = uarctanh (au) + % In(—1+ a*u?®) + C, |a|ju| # 1
1
58. /arccoth (au)du = warccoth (au) + % In(—1+ a*u?) + O, |allu] # 1
a
59. /arcsech (au)du = uarcsech (au) + — arcsin(au) + C, |a||lu| <1
a
1
60. /arccsch (au)du = uarccsch (au) + . In jau + Va*u? + 1|+ C
“[gsin(bu) — bcos(b
61. /e““ sin(bu)du = e™lasin(bu) — beos(bu)] +C
a? + b?
au b bsin(b
62. /e““ cos(bu)du = ¢"lacos(bu) + bsin(bu)] +C
a? + b2
cn -1 con—1 n—1 s n—2
63. [ sin"(u)du = — [sin" " (u)cos(u)] + sin”™*(u)du
n n
1 -1 . n— 1 -2
64. [ cos™(u)du = — [cos" " (u)sin(u)] + cos" " *(u)du
n n
t n—1
65. /tan"(u)du = tan" (u) _ /tan”Z(u)du
n—1
tn—l
66. /cot”(u)du = oot u) /Cot"_Q(u)du
n—1
67 /sec”(u)du _ [sec™?(u) tan(u)] + o2 /Sec”Q(u)du
' n—1 n—1
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68. / esc™ (u)du = n__l - [ose 2 (u) cot(w)] + Z — f / ese™ 2 (w)du

69. / sin(mau)sin(nu)du = S“;[(ﬂ”;” - :;‘))“] - Sir;[((:i?f))“] +C, m? £ n?
70. / cos(mu) cos(nu)du — S““Q[E:Z - Z;“] + Sil;[((gig))“] +C, m? £
71. / sin(mu) cos(nu)du = COZ[((:;__Z))U] - COZ[((ZiZ;“] +C, m? £ n?

Exercises 6.1

1. Define the statement that g(z) is an antiderivative of f(x) on the closed
interval |a, b]

2. Prove that if g(x) and h(x) are any two antiderivatives of f(x) on [a,b],
then there exists some constant C' such that g(z) = In(z) + C for all
on [a,b].

In problems 3-30, evaluate each of the indefinite integrals.

3. /:z:5dx 4. /i3 dx 5. /m3/5dx
T

2
6. /3x2/3d:v 7. /ﬁ dz 8. /tW% dt
9. /(t‘1/2+t3/2) dt 10. /(1+x2)2dx 11. /t2(1+t)2dt
1
12. /(1 +t3)(1 —t*)dt 13. / (m +sint) dt  14. /(2sint+3008t)dt
15. /3SGC2t dt 16. /2680295 dz 17. /4secttant dt

18. /ZCsctcott dt 19. /sect(sect+tant)dt
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20. /Csct(csct—cott)dt 21. /sm;c dx
cos? x
.3 3
t—3 t+2
22. / L 23. / e 24, / COSTTEZ
sin® x sin” ¢ cos?t
25. /tan% dt 26. /cotgt dt 27. /(2 sec’t + 1)dt

28. /% dt 29. /sinht dt 30. /cosht dt

31. Determine f(x) if f'(x) = cosx and f(0) = 2.
32. Determine f(z) if f”(x) =sinz and f(0) =1, f(0) = 2.
33. Determine f(z) if f”(z) = sinhz and f(0) =2, f(0) = —3.

34. Prove each of the integration formulas 1-77.

6.2 Integration by Substitution

Theorem 6.2.1 Let f(x),g(x), f(g(z)) and ¢'(x) be continuous on an in-
terval [a,b]. Suppose that F'(u) = f(u) where u = g(x). Then

ap/ﬂmmWWMx=/EWMu=F@u»+c

()

ﬁw/fmmmmm=/ f(w)du = F(g(b)) — Flg(a).

u=g(u)

Proof. See the proof of Theorem 5.3.1.

Exercises 6.2 In problems 1-39, evaluate the integral by making the given
substitution.
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L. /33:(962 + )%z, u=2"+1

cos(V/t) B
3. / 7 dt, = =/t

2€arcsin T

. ﬁdx,u

— arcsin &

5
7. /x 4$2d$, u = 4"

4arctan:p ;
__ jarctanx
9. / 2 de, u=4

5arcsec T

1. [ 22— dg,
zvr? -1

U = arcsecx

13. /(cot 37)° csc? 3w dw, u = cot 3w

5

15. /cos rsinx dr, u = cosx
17. /sin3x dx, u=coszx
19. /tan3 x dr, u=tanx
21. /sec4x dr, u=tanzx
23. /sin3 zrcos’z dr, u=sinx
25. /tan4x dxr, u=tanx

2. /xsin(l + 2t dr, u=1+2?

3x? 3
[t e v

3 6<':l.I'CCOS x

6. —— dx
i

8. /1051n“cosx dr, u=sinz

1 1 10
10. /ﬂdx, u=1+Inz

T

12. /(tan 21)% sec? 22 dx, u = tan 2z
14. /sin21x008$ dr, u=sinx

16. /(1 +sinz)cosz dr, u=1+sinx

18. /cos?’x dr, u=sinz
20. /cot?’x dx, u=cotzx
22. /csc4a: dr, uw=cotx
24. /sin3 zcos’z dr, u = cosx
in(l
26. /wdm‘, u=Inx
x
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In(1 + 22
27. /“OS( BT G = n(1 4 2)? 28,

1+ 22

29. /cot3xcsc4x dx, uw=cscx

dx
31. ————=, 1 = 3cost
/m
dx
33. ———,x = 3cosht
/m
dx
35. /4 x2,x—2tanht

37. /4(351“(?“) cos(3x)dx, u = sin3x

39. /3 e 2% goc? ¢ dx, u = tan 2z

Evaluate the following definite integrals.

1
41, /(x+1)30dx
0

w/4
43. / tan® z sec® x dx
0

45. /2(:c +1)(z — 2)"dx

47. / sm 3x
0

49. / sin® 2z cos 2z dx
0

arctanm
o1.
/ 1+a2 du

30.

32.

34.

36.

38.

40.

42.

44.

46.

48.

50.

52.

275

/tan3 rsect z dr, u=secx

/

du 2sint
r = 2sin

Va4 — 22’

dr 2 sinh ¢
————— 1 =2sin
N

d

T m—Qtant

(=
/ dx
a2 — 4

[«

T = 2sect

3("”2+4)dx, u = 3+

/x\/x—l—de, u=ux+2

r
I
2
I
I

I

[en]

[e=]

x4 — %)Y 2dx

(x +13dx

(1+2) 1200

cos 2x

cos? 3z sin 3z dzx

arcsm x

V1—a?

dx
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3 parcsecx 1 dx
53. /2 7$ = dz 54. /0 T
6.3 Integration by Parts

Theorem 6.3.1 Let f(x), g(x), f'(z) and ¢'(x) be continuous on an interval
[a,b]. Then

@) [ 1@ @i = fa)gta) - [ go)f (@

b b
(ii) / F(@)g (2)dx = (F(D)g(b) — Fa)g(a)) — / 9(0) ' (@)dz

(111) /udv:uv—/vdu

where u = f(x) and dv = ¢'(x)dz are the parts of the integrand.
Proof. See the proof of Theorem 5.4.1.

Exercises 6.3 Evaluate each of the following integrals.

rsinx dx 2. /xcosx dx
zlnz dz 4. /x e® dx
z 4% dx 6. /;1:2111:6 dx

x?sinx dr 8. /xQ cosz dx

— S S S —

r2e® dx 10. /x2 10* dz
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11. /ex sinx dr (Let u = e” twice and solve.)

2% cos(2x)dx
2% In(22)dx
xesc? x dr
x? coshx dx
sin(ln z)dx
xrarcsinx dx
xrarctanx dx

arcsin x dx

arctan z dz

12. /ez cosx dr (Let u = €” twice and solve.)
13. / e* sin 3z dr (Let u = €* twice and solve.)
14. /msin(&r)da: 15. /
16. /x264’”dx 17. /
18. /x sec’ r dx 19. /
20. /xsinh(4:c)d:c 21. /
22. /wcos(5x)dx 23. /
24. /cos(lnx)d:v 25. /
26. /az arccos x dx 27. /
28. /x arcsec r dx 29. /
30. /arccosx dz 31. /

32. / arcsecz dx

Verify the following integration formulas:

277
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ran—1 -1
33. [ sin"(ax)dx = _sin™” (az) cos(az) + 2 /(sin”2 ax)dx
na n
n 1 n—1 . n—1 n—2
34. [ cos"(ax)dr = — cos" " (ax)sin(az) + (cos"™“ ax)dx
na n

35. /x”exdx:x"ex—n/xnlexdx
36. /:U”sina: dr = —x"cosx—i—n/x"‘lcosw dx
37. /x"cosx dx:x”sinx—n/a:”_lsinx dx
38/”'(b)d L lasin(be) — beos(br)] + C
. in = — in —
e sin(bx)dx a2+b26 asin(bx cos(bx
1
39. /e‘” cos(br) dx = pEE e lacos(bzr) + bsin(bz)] + C
40 /x"lnxdx: ! " ng — ! "+ O, n#£ -1, >0
' n+1 (n+1)2 ’ ’
41. /sec”x dr = sec” 2 rtanz 4+ — /sec”_2x dr, n#1, n>0
n— n—1
n —1 n—2 n—2 n—2
42. [ csc"x dx = 1 csc" “xrcotw + csc" “xdr, n#1,n>0
n— n—

Use the formulas 33-42 to evaluate the following integrals:

43. /sin4x dx 44. /003595 dx

45. e dx 46. rtsinz dx

3

z°cosz dx 2z

47. e“* sin 3z dx

49. e3* cos 2z dx 50. 2 Inx dr

— — —
%
— — —
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51. /sec?’x dx 52. /CSCSZE dx

Prove each of the following formulas:

1
53. /tan”x dr = ] tan" o — /tan”QJU dr, n#1

n —

54. /Cot"x dr = - i 1 cot" tx — /Cot"_Qx dr, n #1
55. /sin%“ rdr=— /(1 —u?)"du, u = cosx

56. /C052"+1 rdr=— /(1 —u*)"du, u = sinx

57. /sinQnH r cos™x dr = — /(1 —u?)"u"du, u = cosx
58. /COS2n+1 x sin™x dx = /(1 —u?)"u"du, u=sinz

59. /sin271 r cos™ x dr = /(sin 7)*"(1 — sin® 2)"dx

60. /tan”x sec”™ x dr = /u”(l +u?)" du, u=tanz
61. /Cot”x csc?™ g dr = — /u"(l +u?)™ 'du, u = cotx
62. /taunQ”+1 x sec™x dr = /(u2 —1)"u™ 'du, u = secx
63. /(:01:2’“rl x csc"x dr = — /(u2 — )" 'du, u = cscx

1 _
64. /Sin mx cosnr dr = —= {Cos(m +n)z + cos(m — n)z +C; m? #n?
2 m-+n m-—n
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65. /Sinm:z; sinnz dr = ! {sm(m —n)z _ sin(m + n)x

5 }—FC’; mzyén2

m—n m-—+n

1

66. /COS max cosnx dr = 5 {sm(m —n)s + sin(m + n)x

}—FC; m27én2
m-—n m-+n

6.4 Trigonometric Integrals

The trigonometric integrals are of two types. The integrand of the first
type consists of a product of powers of trigonometric functions of z. The
integrand of the second type consists of sin(nx) cos(mz), sin(nx) sin(maz) or
cos(nz) cos(mx). By expressing all trigonometric functions in terms of sine
and cosine, many trigonometric integrals can be computed by using the fol-
lowing theorem.

Theorem 6.4.1 Suppose that m and n are integers, positive, negative, or
zero. Then the following reduction formulas are valid:

-1 —1
1. /sin"m dr = — sin" 'z cosz + (n—1) /sin"zx dr, n >0
n n

1 n
2. /sin”_2 r dr = sin" !z cosx + /sin”:z dr, n <0
n—1 n—1

3. /(sinaz:)1 dr = /csca: dr = In| cscz—cot z|4+c or —In | csc x+cot x|+c

1 ) n—1
4. /cosnx dr = = cos" 'zsinz + /005"21’ dr, n >0
n n

-1
5. /cos”_Qx dr = ] cos" ' rsinx + n ] /cos”x dr, n <0

n — n —

6. /(cosx)_l dx:/seca: dr =1In|secz + tanz| + ¢

7. /sinnx cos®™ Mz dr = [sin" (1 — sin® 2)™ cos x dx

= [u"(1 —u?)"du, uw=sinz, du=cosz dx
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8. /sin2"+1x cos™x dr = fcosm.r(l —cos?x)"sinz dx
=— [u™( du, w = cosx, du = —sinz dz
9. /sm zcos z dr = [(1 — cos?z)" cos®™ x dx
= [(1 —sin®*z)" sin® z dz
1 _
10. /sm cos(mx)dx = — [cos(m ) + cos(m n)x] +c, m* #n?
2 m—n m—n
1 Ts _ :
/sm ma) sin(mz) de = = {sm(m njz _ sin(m + n)x] + ¢, m* #n?
2 m—n m+n
1 Tsi B :
12. /cos(mx) cos(mx) dr = = {sm(m njz  sin(m+ n)x] + ¢, m* # n?
2 m-—n m+n

Corollary. The following integration formulas are valid:

t n—1
13. /tan"u du = tal Y —/tan"2ud
n—1

1 -2
14. /sec”u du = 7 sec" 2z tanx + n ] /Sec"_2 x dx

n — n —
—1 -2

15. /csc"u du = csc 2 xcotx + n /CSCn_QZE dx
n—1 n—1

Exercises 6.4 Evaluate each of the following integrals.

1. /sin5 T dx 2. /cos4x dx
3. /tan5x dx 4. /cot4:c dz
5. /sec5 T dx 6. /0504 T dx
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—

sin® x cos* z dx 8. / sin® x cos®  dx

9. / sin® z cos® x dx 10. / sin® z cos' z dx
11. / tan® x sec* z dx 12. / cot® zcsct . dw
13. /tan4 rsec’ x dv 14. / cot* zcsc® x dx
15. / tan® xsec* z dx 16. / cot' z esct x dx
17. /tan3 rsec® x dr 18. / cot® xcsc® v dx
19. / sin 2x cos 3 dx 20. / sin4x cos 4z dx
21. / sin 3x cos 3x dx 22. / sin 2x sin 3x dx
23. / sin 4z sin 6x dx 24. / sin 3z sin bx dx
25. / cos 3x cos 5 dx 26. / cos 2x cos4dx dx
27. / cos 3z cos 4z dx 28. / sin4z cos 4z dx

6.5 Trigonometric Substitutions

Theorem 6.5.1 (a? — u? Forms). Suppose that w = asint, a > 0. Then
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du = acostdt, a® —u® = a®cos®t, Va®> —u? = acost, t = arcsin(u/a),
PR—)

int=—, cost =" tant “
sint = —, cost = —, tant = ———
CL’ a ) /7a2_u27
a2 — u2
cott = —, sect = , csct —
U a? — u? U

graph

The following integration formulas are valid:

udu 1 9 o
]_. /m:—§ ln|a —U|+C
d 1 — 1
2. /Lz—lna u—i—c:—arctanh(E)—i-c
a?—u?  2a a-+u a a
udu
3. ——— = Va2 —ul+ec
/\/&2—u2
4 / du . <u> n
) ———— = arcsin | — c
Va2 —u? a
. / du | a a? — u? n
) ——=-Iln|—-— —| +¢
uaz —u? a U U
a? C/u 1
6. va? —u? du:? arcsm<—>+§U\/a2—u2+c
a

Proof. The proof of this theorem is left as an exercise.
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Theorem 6.5.2 (a® + u? Forms). Suppose that u = atant, a > 0. Then

u
du = asec’ tdt,a* + u® = a®sec’t, Va? + u? = asect,t = arctan (

U
sint = ——— -
va? 4+ u? a
va? + u? va?+ u? a

"

csct = , sect = —, cott =
a

u

graph

Proof. The proof of this theorem is left as an exercise.

The following integration formulas are valid:

udu 1 9 9
1. /m:§ln|a +U‘+C
/ du 1 U
2. ——— = — arctan <—>+c
a?+u?  a a
udu
3. ——=Va*t+ut+c
/\/a2+u2
du
4. 7:1n‘u+\/a2—|—u2‘+c
/\/a2+u2
du 1 Vaz+u?z  a
5. _— = In|——— — —| +c¢
uva?+u? a U
1 2
6. /\/a2+u2 du:§U\/a2+u2+% ln‘u+\/a2+u2 +c

Theorem 6.5.3 (u? — a® Forms) Suppose that u = asect, a > 0. Then

du = asecttant dt, u® —a®> = a*tan’t, Vu? — a? = atant,t = arcsec <

) u? — a? a u? — a?
sint = ——, cost = —, tant = ———,
U a
U U a
csClt = ———, sect = —, cott =
ViZ — a2 a W2 — a2

u

a

)
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graph

Proof. The proof of this theorem is left as an exercise.

The following integration formulas are valid:

udu 1 5 9
]_. /mZEh’llU —a‘—i—c
du 1 uU—a
2. — =1
/u2—a2 2a t u+a te
udu
3. ———=Vur—a’+c
/\/uz—a2
4. /diuzln‘u—i-\/u?—a2 +c
ViZ — a2
5 / du 1 <u>+
) ——— = — arcsec | — c
uwu? —a?2 a a
1 2
6. /\/uQ—anu:iuvuZ—&z—%ln‘u+\/u2—a2 +c

Exercises 6.5 Prove each of the following formulas:

d 1
1. /&:—§ In|a® — u?| + C

a2 — u?

du 1
2. ——=—11
/a2—u2 2a .

d
%:—w/aQ—UQ—i—C
vVas —u

du LU
4. /ﬁ:ar081n<g>+0,a>0
a va®—u?

a—Uu

+C

a—+u

Bl

+C

— In

/ du B
) we—e a

u u
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2

6. /\/(12 —u? du = % arcsin (E)
a

u du 1 5 o

d 1
8. /7142_ arctan <E) +C
a2+ u?  a a

u du
9. —=Va2+ 2+ C
Va2 + u?

du
10. 7zln‘u+\/a2+u2‘
/\/a2—|—u2
1 |Va +u?
11 — In|l—

u

du
. /ux/a2+u2 Ca

1
—l—iu\/a?—u?—l—C, a>0

+C

a

+C

1 2
12. /\/a2+u2 du:§uva2+u2+% ln‘u+\/a2+u2 +C

13. /ﬂ:% ln}uQ—a2|+C

u? — a2

du 1
14, | ——=—1
/uQ—a2 2a .

u du
15. —— =Vuz—a2+C
VUZ — a2

u—a

+C

u-+a

+C

du
16. 7:1n’u+\/u2—a2
/\/u2—a2
du 1 U
17. /m = a arcsec (a) + C

1
18. /\/u2 —a?2 du= 3 uvVu? —a? —

2
% ln‘u—l—\/u2—a2 +C

Evaluate each of the following integrals:
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19 z dx 50 / dx
' VL ' AV
dx x dx
. 23.
22 / pp— 3 / 95 22
25. v d 2. / dr
V9 + 22 V9 + 22
dx x dx
28. _ 29. _—
/$2—16 Va2 —16
31, / e 39, / _dr
1?2 —4 xv/9 — 12
34. /\/9 — 22 dx 35. /\/4 — 9x2
x? x?
37. dx 38. — dx
/\/4—1-:52 /\/x2—16
dx dx
40. —_— 41. _
/ (9 — x2)? / (x2 —16)?
/1 3 o
43. / T A4, / T da
x x
T L g [T
224 — 22 2212 — 4

dx dx
49. _— 50. _—
/91:2—4x+12 /\/4x—x2

52.

/ dz 53 / dz
dx — a2 Vat -2z +5

x dx x
99. —_— 56. —d
Vit =2 +5 /:172+4a:—|—13 !

21.

24.

27.

30

33

36

39.

42.

45

48.

51

o4.

a7.

287

/xdx
4 — g2
/ dx
9+ 22
/ T dx
22 — 16

/ dx
‘ Va2 — 16

/ dx
' zvz? + 16

22
. / dx
v1—22

/ dx

(4 + 22)3/2
dx

' 22?2+ 4

/ dx
2 —2x+5
/ dx
' V2 — 4z + 12
/ T dx
2 —4x — 12

/(5 — 4z — 22V 2dg
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20+ 7 z+ 3 / dx
58. —— dz 59. — dxz 60. _—
/$2+4+13 Va2 42z +5 VAz? —1
r+4 T+ 2 / e*dx
61. — dx 62. —dx 63.
V922 + 16 V16 — 922 (5 — €27 + etr)1/2

64 / e3dx
' (€87 + 4e3@ 4 3)1/2

6.6 Integration by Partial Fractions

A polynomial with real coefficients can be factored into a product of powers
of linear and quadratic factors. This fact can be used to integrate rational
functions of the form P(x)/Q(x) where P(z) and Q(x) are polynomials that
have no factors in common. If the degree of P(x) is greater than or equal to
the degree of Q(x), then by long division we can express the rational function

by

P(x) r(z)

Q(z) Q(x)
where ¢(x) is the quotient and r(z) is the remainder whose degree is less than
the degree of Q(z). Then Q(x) is factored as a product of powers of linear

and quadratic factors. Finally r(z)/Q(x) is split into a sum of fractions of
the form

= q(x) +

A A A,
ar+b  (ax +b)? (ax + b)»
and
Bix + ¢ n Box + ¢o B,,x + ¢,
ar? +br+c  (ax? + bxc)? (ax? + bz + )™’

Many calculators and computer algebra systems, such as Maple or Mathe-
matica, are able to factor polynomials and split rational functions into partial
fractions. Omnce the partial fraction split up is made, the problem of inte-
grating a rational function is reduced to integration by substitution using
linear or trigonometric substitutions. It is best to study some examples and
do some simple problems by hand.

Exercises 6.6 Evaluate each of the following integrals:
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dx
L /(z—l)(m—Z)(w—l—él)
dx
) ==
dx
g /(932+1)(:v2+4)
2x dx
/x2—5x+6
r+1
/(93+2)(x2+4) d
2 dx
1L /($2+4)(x2+9)

2% dx
13- / (22 +4)(22+9)

~

2 /(:c—4)d(gio+m)
o ke=ri=r
. | e

z dx
5. /(x+3)(:1:~|—4)

(x +2)dx
10- /(x+3)(:p2+1)

dx
12. /(3:2 0@ 9)

x dx
14. / (2 — 1) (2 — 9)

dx x dx
15. 16.
g /x4—16 0 /:U4—81

6.7 Fractional Power Substitutions

If the integrand contains one or more fractional powers of the form z%/",
then the substitution, x = u", where n is the least common multiple of the
denominators of the fractional exponents, may be helpful in computing the
integral. It is best to look at some examples and work some problems by
hand.

Exercises 6.7 Evaluate each of the following integrals using the given sub-
stitution.

A3/ 6 dx 3
[ T dos e = 2 [y e
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/ dx 2 _ 14 / dx 2 3.3
Ut = e U=
V14 e rvx3 -8
Evaluate each of the following by using an appropriate substitution:
5 x dz 5
VARV ES) ) Vr+d
/ x dz
1+ x
2/3
0. / e
8 4 /2
dz
12.
/ x84+ 1 e / 1+
1
/ v de 14. / VT
14 22%/3 2+
1—x 14+ Vx

6.8 Tangent x/2 Substitution

If the integrand contains an expression of the form (a+bsinz) or (a+bcosx),
then the following theorem may be helpful in evaluating the integral.

Theorem 6.8.1 Suppose that u = tan(z/2). Then

2 1 —u? 2
sinx:ﬁuuw Cosx:TZz and dx:mdu.
Furthermore,
/ dx B / (2/(1 + u?))du _/ 2du
a+bsinz a—l—b(HuQ) ) a(l +u?) + 2bu

| orhei=/ (i/ib(l‘zz) - | sy

14+u2
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Proof. The proof of this theorem is left as an exercise.

Exercises 6.8
1. Prove Theorem 6.8.1

Evaluate the following integrals:

d
2. /796 3. /
2+sinx sinx + cosx
S e . |
sinx — cosx 2smx—|—3cosx
= k=
2 —sinx 3+ cosx
8/ 0. / sinx dx
3 —coszx sinx 4+ cosx
10. / cosz dx 1 /1+Slnl‘dl’
Sinx — cosx 1—sinzx
1— 2 —
19 / Ccos T Jr 13 / cos
1+cosx 2+cos:1:
14 /2+cos;1: 15 /2—sm:z:
2 —sinz 3+ cosx
16/
1+smx+cosa:’

6.9 Numerical Integration

Not all integrals can be computed in the closed form in terms of the elemen-
tary functions. It becomes necessary to use approximation methods. Some
of the simplest numerical methods of integration are stated in the next few
theorems.
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Theorem 6.9.1 (Midpoint Rule) If f, f' and f" are continuous on [a,b],
then there exists some ¢ such that a < ¢ < b and

/abf(x)dx: (b—a)f (“;b) + f;gf) (b—a)’.

Proof. The proof of this theorem is omitted.

Theorem 6.9.2 (Trapezoidal Rule) If f, f and " are continuous on [a,b],
then there exists some c such that a < c < b and

b "(e
[t =00 |5 @+ sop] - L5 0 - ap

Proof. The proof of this theorem is omitted.

Theorem 6.9.3 (Simpson’s Rule) If f, f', f", f® and % are continuous
on |a, b, then there exists some ¢ such that a < ¢ < b and

[ r@ar =22 (s ar (50) + 5] - L2 -

These basic numerical formulas can be applied on each subinterval [z;, x;11]
of a partition P = {a = xy < 21 < --- < x, = b} of the interval [a, b
to get composite numerical methods. We assume that h = (b —a)/n, z; =
a+th, 1 =0,1,2,---.n

Proof. The proof of this theorem is omitted.

Theorem 6.9.4 (Composite Trapezoidal Rule) If f, f' and " are continu-
ous on |a,b], then there exists some ¢ such that a < ¢ < b and

/f

Proof. The proof of this theorem is omitted.

b—a
12

+2foz + fb)| - R2f"(c).

Theorem 6.9.5 (Composite Simpson’s Rule) If f, f', f”, f(3) and f* are
continuous on [a,b], then there exists some ¢ such that a < ¢ < b and

n/2—1 n/2

b
/Qf(:c)d:c—% a)+ 2 Z f(z2) —|—4Zf Toi1) + f(b) | — 180 4f(4)< ).

where n s an even natural number.
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Proof. The proof of this theorem is omitted.

Remark 22 In practice, the composite Trapezoidal and Simpson’s rules can
be applied when the value of the function is known at the subdivision points
ri,1=0,1,2,--- n.

Exercises 6.9 Approximate the value of each of the following integrals for
a given value of n and using

(a) Left-hand end point approximation: Z flzim) (2 — xiq)
i=1
(b) Right-hand end point approximation: Z flz)(x; — xi1)
i=1
: : o - Ti—1 + T

(c) Mid point approximation: Z f (4) (r; —xiq)
i=1 2

Composite Trapezoidal Rule

Composite Simpson’s Rule

/N TN
e

1 !
—dzx, n=10 : — dx, n=10
x 5 VT

21
/ dx, n =10
1 1+(132

2
. / 23 dx, n =10
1+ 0

1
/ (14 22)Y2dz, n =10
0

=
N
do
[\)

w
c\
—_
=
B
U
RS
3
I
—_
]
i~

ot
C\H
—_
_|_
D
QL
“&
3
I
—_
(e}
(@)

2
(2% — 2z) dx, n =10

%

S—

1 1
(1+2*)Y2dz, n =10 10. / (1+ 2M)Y2dz, n =10
0

S—



Chapter 7

Improper Integrals and
Indeterminate Forms

7.1 Integrals over Unbounded Intervals

Definition 7.1.1 Suppose that a function f is continuous on (—o0,00).
Then we define the following improper integrals when the limits exist

/aoo f(z)dx = bli_)rglo ab f(x)dx (1)
[ swie= g [ s ®

T pwde= [ p@de+ [ pad 3)
[ rwae= [ s |

provided the integrals on the right hand side exist for some c. If these im-
proper integrals exist, we say that they are convergent; otherwise they are
said to be divergent.

Definition 7.1.2 Suppose that a function f is continuous on [0, 00). Then
the Laplace transform of f, written £(f) or F(s), is defined by

L(f) = F(s) = / T et (o)

294



7.1. INTEGRALS OVER UNBOUNDED INTERVALS 295

Theorem 7.1.1 The Laplace transform has the following properties:

L(c) = g (4)
£(e) = (5)
L{coshat) = - a2 (6)
Lisinhat) = —— (7)
Llcoswt) = 5 (8)
L(sinwt) = ﬁ 9)
L) = (10)

(i) L(e™) :/ e*e tdt
0
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provided s > a.

[e8) at —at
(i) L(coshat) :/ (%) e *tdt
0

(iv) L(sinhat) :/ L (e — e e " dt
0

[\]

_1 1 1
2ls—a s+a

},s>|a|

a
= m,s > |CL’

(v) L(coswt) —/ coswte *dt
0
1 _ o0
0

= i [e™*(—s coswt + wsinwt)]

S

w? 4+ 527

(vi) L(sinwt) :/ sinwte "' dt
0

1
=i [e™*(—ssinwt — wcos wt)}go

W
w? 4+ 82’
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(vii) L(t) = / te *dt;  (u=t,dv = e "dt)
0

S8} oo —st
e
+ / dt
0 0 s

o0

te_St

—S

6—st

— 2
57 o

1

52

This completes the proof of Theorem 7.1.1.

Theorem 7.1.2 Suppose that f and g are continuous on [a,00) and 0 <
F(x) < g() on [a,00).

(i) [f/ g(x)dx converges, then/ f(z)dz converges.

(ii) [f/ f(z)dz diverges, then/ g(x)dx diverges.

Proof. The proof of this follows from the order properties of the integral
and is omitted.

Definition 7.1.3 For each x > 0, the Gamma function, denoted I'(z), is
defined by

F(x):/ t" e L.
0

Theorem 7.1.3 The Gamma function has the following properties:

ra)=1 (11)
F(z+1) =al'(2) (12)
I'(n+1) =n!, n= natural number (13)



298CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

Proof.

Mx+1) = / tYetdt; (u=t" dv = e 'dt)
0

= -t + :c/ tletdt
0

=zl'(z), >0
r©2)=10(1) =1
[(3)=2I(2) =1-2=2!
If I'(k) = (k—1)!, then
I'(k+1)=EkDl(k)
= k((k = 1))
= k.

By the principle of mathematical induction,
I'(n+1)=n!
for all natural numbers n. This completes the proof of this theorem.

Theorem 7.1.4 Let f be the normal probability distribution function defined

by ;
f(;)j) = 1 e_(f/gg)

_O' 27

where p is the constant mean of the distribution and o is the constant stan-
dard deviation of the distribution. Then the improper integral

/oo Fa)de = 1.

—00

Let F' be the normal distribution function defined by

Fla) = /_OO f(@)da.
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Then F(b) — F(a) represents the percentage of normally distributed data that
lies between a and b. This percentage is given by

/a  Ha)de.

M+b0 b 1 2/2
f(z)dz = / — e /4.
/;H-aa a V 27’(

Proof. The proof of this theorem is omitted.

Furthermore,

Exercises 7.1 None available.

7.2 Discontinuities at End Points

Definition 7.2.1 (i) Suppose that f is continuous on [a, b) and

hril, f(z) =400 or —oo.

Then, we define
b T
/ f(x)dx = lim f(z)dz.

z—b" J,
If the limit exists, we say that the improper integral converges; otherwise we
say that it diverges.
(ii) Suppose that f is continuous on (a, b] and

lim, f(z) =400 or —oo.

/abf(x)dx: lim /:f(x)dx.

z—a™t

Then we define,

If the limit exists, we say that the improper integral converges; otherwise we
say that it diverges.

Exercises 7.2

1. Suppose that f is continuous on (—o0,00) and ¢'(x) = f(x). Then define
each of the following improper integrals:
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+oo

@ [ f@)de
(b) / f(x)da
400

() f(x)dx

—00

2. Suppose that f is continuous on the open interval (a, b) and ¢'(z) = f(x)
on (a,b). Define each of the following improper integrals if f is not
continuous at a or b:

(a) /mf(x)dx, a<z<b
(b)/f(:v)dx,a<x§b

© [ s

+o0
3. Prove that / e dr=1
0

1
1 s
4. Prove that dr = —
0 vV 1-— $2 2
—+o00
5. Prove that / der =7
oo L+ 22
<1 ) )
6. Prove that / — dx = , if and only if p > 1.
. aP p—1

“+oo 0
7. Show that / e dr = 2 / e dr. Use the comparison between
—00 +ooo 2
e and e~*". Show that / e dr exists.
— o

1
dz
8. Prove that / — converges if and only if p < 1.
0 T
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10.

11.

12.

13.

14.

15.

16.

17.

18.

+o0o
Evaluate/ e " sin(2x)dz.
0
+o0
Evaluate/ e cos(3z)dw.
0
+oo
Evaluate/ e "dx.
0
+o00
Evaluate/ xe “dx.
0
Prove that / sin(2z)dx diverges.
0

Prove that / cos(3z)dz diverges.
0

Compute the volume of the solid generated when the area between the
graph of y = e~ and the z-axis is rotated about the y-axis.

Compute the volume of the solid generated when the area between the
graph of y = e™, 0 < x < 0o and the x-axis is rotated

(a) about the z-axis

(b) about the y-axis.

SHE=

Let A represent the area bounded by the graph y = —, 1 < x <

and the z-axis. Let V denote the volume generated when the area A is
rotated about the z-axis.

show that A is +o00

show that V =

(a)

(b)

(c) show that the surface area of V' is +oc.
)

(d) Is it possible to fill the volume V' with paint and not be able to paint
its surface? Explain.

Let A represent the area bounded by the graph of y = ¢ 2%,0 < 2 < o0,
and y = 0.
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(a) Compute the area of A.

(b) Compute the volume generated when A is rotated about the z-axis.

(c) Compute the volume generated when A is rotated about the y-axis.

+o0 400 -
19. Assume that / sin(z?)dr = /(7/8). Compute/ Sil/l_w dx.
0 0 xr

“+oo

20. It is known that / e~ = /r.

—0o0

+o0
(a) Compute / e dr.
0

+oo et

o VT
+00 5
(c) Compute/ e 4 du.
0

dzx.

(b) Compute

Definition 7.2.2 Suppose that f(t) is continuous on [0, 00) and there exist
some constants @ > 0, M > 0 and 7" > 0 such that |f(¢)] < Me™ for all
t > T. Then we define the Laplace transform of f(¢), denoted L{f(t)}, by

LU} = / et

for all s > so. In problems 21-34, compute L{f(t)} for the given f(t).

1 ift>0 B
21. f@)::{o cr o0 22. f(t)=t
23. f(t) =12 24. f(t)=1
25. f(t)=t",n=1,2,3,--- 26. f(t) =e™

27. f(t) = te 28. f(t) =t"e?,n=1,2,3, -
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at __ bt at _ 1,,.bt
2. f(t) = ea_z 30. f(t):%
31. f(t):% sin(bt) 32, f(t) = cos(bt)
33, f(t):% sinh(bt) 34, f(£) = cosh(bt)

Definition 7.2.3 For z > 0, we define the Gamma function I'(x) by

+oo
[(x) = / t" e L.
0

In problems 35-40 assume that I'(x) exists for x > 0 and /0+OO e = % V.
35. Show that I'(1/2) = /7 36. Show that I'(1) =1

37. Prove that I'(x + 1) = 2I'(2) 38. Show that I' (g) = \/7%
39. Show that I' (g) = z NZa 40. Show that I'(n + 1) = n!

In problems 41-60, evaluate the given improper integrals.

+o0 +o0 d
41, / 2xe~" d 42. / =
0 1 x3/2
Ty too Yy
43. —_— 44. —d
/4 x5/? /1 1+a2
+oo T +oo 4
45. ——d 46. d
/1 1+ a2 / 21
400 1 +o0 1
47. d 48. d >1
/2 z(Inz)? v /2 x(Inz)p P
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1 2
49./ 3ze % dx 50./ e® dx

oo 2 o
51. / i 52. / dx
o €eTFe® oo 249
2 dx 4 T
53. 54. — dzx
/0 AV /0 V16 — 22
5 T —+00 dSC
55. —d 56. _—
[ @ e
“+o00 7\/3_5 %) d
57. / C  dz 58. / e
0 VT o Vo(r+25)
59 /00 L dx 60 /+OO 2 de
CJo 1= (e7)? ~Jo
7.3

Theorem 7.3.1 (Cauchy Mean Value Theorem) Suppose that two functions
f and g are continuous on the closed interval [a,b], differentiable on the open
interval (a,b) and ¢'(x) # 0 on (a,b). Then there exists at least one number
¢ such that a < ¢ < b and

Proof. See the proof of Theorem 4.1.6.

Theorem 7.3.2 Suppose that f and g are continuous and differentiable on
an open interval (a,b) and a < c <b. If f(c) = g(c) =0, ¢'(x) #0 on (a,b)

and ()

) T

M g
then

lim M = [

a—c g(z)
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Proof. See the proof of Theorem 4.1.7.

Theorem 7.3.3 (L’Hopital’s Rule) Let lim represent one of the limits

lim, lim, lim, lim , or lim .

r—c g—ct x—c- T—+00 T——00
Suppose that f and g are continuous and differentiable on an open interval

(a,b) except at an interior point ¢, a < ¢ < b. Suppose further that ¢'(x) # 0
n (a,b), lim f(z) = limg(z) = 0 or lim f(z) = lim g(x) = 400 or —oco. If

lim f'(z) =L,+00 or —o0
g'(r)
then
lim @ = lim f’(x)
g9(z) g ()

Proof. The proof of this theorem is omitted.

Definition 7.3.1 (Extended Arithmetic) For the sake of convenience in deal-
ing with indeterminate forms, we define the following arithmetic operations
with real numbers, +0o and —oo. Let ¢ be a real number and ¢ > 0. Then
we define

+ 00+ 00 = 400, —00 — 00 = —00, ¢(+00) = +00, ¢(—00) = —o0
(—¢)(+00) = —00, (—c)(—00) = 400, —I—%oo =0, % =0, % =0,
= 0,(+00)" = o0, (+00) 7 =0, (+00)(+00) = +00, (+00)(~00) = ~o0,

(—o0)(—00) = +o0.

Definition 7.3.2 The following operations are indeterminate:
0 +o0 +00 —00 —00
0’ 400’ —00 —00’ +00

, 00— 00, 0-00,0% 1% od.

Remark 23 The L’Hopital’s Rule can be applied directly to the 8 and i%
forms. The forms oo — co and 0 - co can be changed to the % or i% by
using arithmetic operations. For the 0° and 1°° forms we use the following

procedure:
. In(f(z
lim( f(2))?® = lim 9@ U@) — Jlim G

It is best to study a lot of examples and work problems.
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Exercises 7.3

1. Prove the Theorem of the Mean: Suppose that a function f is continuous
on a closed and bounded interval [a, b] and f’ exists on the open interval
(a,b). Then there exists at least one number ¢ such that a < ¢ < b and

m 1Oy (2) ) = f(@)+ PO - a).

2. Prove the Generalized Theorem of the Mean: Suppose that f and ¢ are
continuous on a closed and bounded interval [a,b] and f’ and ¢ exist
on the open interval (a,b) and ¢'(x) # 0 for any z in (a,b). Then there
exists some ¢ such that a < ¢ < b and

3. Prove the following theorem known as I’'Hopital’s Rule: Suppose that f
and g are differentiable functions, except possibly at a, such that

glﬁli)r(llf(a;) =0, llir(llg@:‘) =0, and 31613(11 % =L
Then
flx) . ['(2)

lim —~% = lim =L
r—a (x) T—a g’(:(;)

4. Prove the following theorem known as an alternate form of I'Hopital’s
Rule: Suppose that f and ¢ are differentiable functions, except possibly
at a, such that

f'(@)

lim f(z) =00, limg(x)=o00, and lim =1L
Tr—a ( ) r—a ( ) Tr—a g’(x)

Then /
o @) @)

e gl@) " e g(a)
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5. Prove that if f’ and ¢’ exist and

/
lim f(x)=0, lim g(x)=0, and lim f/(x) =1L,
r——+00 xr——+00 r——+00 g (I)
then
lim ﬂ = L.
r——+00 g(x)
6. Prove that if f/ and ¢’ exist and
, . f'(x)
1 =0 1 0)=0 d 1 =
m f@) =0, lm g(0) =0, and  lm 7o =1L
then
lim _f(x) =1L
T——00 .Z')
7. Prove that if f/ and ¢’ exist and
lim f(r)=oco, lm g(x)=oo, and lm L7
Jm J@) =eo lim g@)=co ad lim Gy =L
then
lim ﬂ = L.
2=t g()
8. Prove that if f’ and ¢’ exist and
. : . f(=)
lim f(x) =00, lim g(x)=o00, and lim =L,
Tr——00 ( ) Tr——00 ( ) Tr——00 g/({L')
then
lim ﬁ = L.
a—too g()

307

9. Suppose that f” and f” exist in an open interval (a, b) containing ¢. Then

prove that
L J(et ) = 2f() + [~ h)
h—0 h?

— f//(c)
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10.

11.

12.

13.

14.

Suppose that f’ is continuous in an open interval (a,b) containing c.
Then prove that
fle+h)—fle—h)

i 2h = /).

Suppose that f(z) and g(x) are two polynomials such that

f(@) = apz" + a1z "+ -+ ap_1x + an, ag # 0,
g(x) = box™ + byx™ -+ by 12+ by, by # 0.

Then prove that

(z) 0 ifm>n
lim ) +ooor —oo ifm<n
A 9(2) .

ag/bo ifm=n

Suppose that f and g are differentiable functions, except possibly at c,
and
lim f(z) =0, lim g(x)=0 and lim g(z)ln(f(z)) = L.

r—cC r—cC r—cC

Then prove that

lim (f(z))?@ = er.
Suppose that f and g are differentiable functions, except possibly at c,
and

lim f(z) = +oo, }clgi g(x) =0 and lim g(z)In(f(x))= L.

xr—c Tr—cC

Then prove that

lim (f(x))9® = L.
Suppose that f and ¢ are differentiable functions, except possibly at c,
and

lim f(z) =1, lim g(x) =400 and lim g(z)In(f(x)) = L.

Tr—cC r—c Tr—cC

Then prove that
lim (f(z))?@ = et

xr—cC
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15. Suppose that f and g are differentiable functions, except possibly at c,
and
. . o [fl2)
lim f(z) =0, lim g(z)=40c0 and lim ———— = L.
z—cC T—cC T—=c (1/9(1‘))
Then prove that
lim f(z)g(x) = L.
16. Prove that hH(l) (1+ x)% =e.
) 11
17. Prove that hn}) (1—z)r =-
r— (&
18. Prove that lirll r_ 0 for each natural number n.
r—+o0o0 eT
19. Prove that lim w =0.
a—0t xsinx
20. Prove that lim (g — :c> tanz = 1.
T3
In problems 21-50 evaluate each of the limits.
. 2 1— 2
21 i S 22l LT
x—0 ,132 x—0 :EZ
R 24 lim (M)
z—0 su](bx) z—0 tan(n:):)
) 6332 -1 ) 3/
25. lim 26. lim (14 22)
z—0 x z—0
1 h) —1 z+h _ x
27 fim 2R (@) 28. lim — <
h—0 h h—0 h
In(100
29. lim (1 + ma)™/* 30, fim 2100+ )

x—0 r—00 €
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3L lim (1 4 sin maz)"/® 32. lim (sinz)®
xr— x—0
: xt — 223 + 10
33. 1 s 34. 1
Jm (2) e o — T 1
. . . 27
35. lim tan(2z)In(z) 36. lim xsin (—)
z—0t T—+00 xT
34+2x\"
37. i )2/x 38. i
g (2 +¢7) Jim, (4+2m)
39. lim (1 4 sin maz)"/® 40 Tim_ (z)n(2)
r— x—0
1 4
41, lim (&8 —1)Y/Ia 42. lim | — — 277
z—0t z—0 r? x?
43, lim SOUe®) 4. lm 7
2—0+ cot(br) z—too T
45. lim —— 46, tm (Lo 2
z—0t Inzx z—0t \x Inzx
2z + 3sinx
47. lim ————~ 48. i b/ —1),b
’ 20 dr + 2sinz ; 2450 $( ):6>0, 671

log,(z + h) — log,

bl‘-‘rh _ baj
49. i - Rt
i ﬁ%( n )’b>0’b7“ 50 lim . b= 0,641
51, qim L& —1sine T
=0 cosT — cos? x oo 1
sin 5x 9 — 326 1 o7
53. lim ———— 54. lim 2T T
oot 1 — cosda S 12
x 1 t o
55.  lim e*In (6 il ) 56. lim w
rtoo e’ z—0 €T
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3 - T _ QT
57, lim L Sm2r 58, lim 2O
z—0 (1 — cosx)? 250 2
1 1 t —
59. lim — In [ —2 60. lim AT T
z—0 T 1—2z z—0 3
: 1 1 2z
61, Jim Sm{TCOST) 62. fim nLETE)
z—0  xsinz z—+00 T2
1 n 1 2x
63. lm o 64. lim —— 111(:’5+e )
T——+00 X r—+00 \/.% T
Inx In(tan 3x)
65. i —_— 66. i St
e (1 + 23)1/2 e In(tan 4z)
sinz\ /*
67. lim (1 —37%)" 68. lim ( )
z—0* z—0 €T
3\\*
69. lim (e @ 4 e 2 70. lim <cos (—))
r——+00 xr——+00 €T
2
. 1\\" . 1\"
71. lim (In|( — 72.  lim 1+ —
z—0+ T z—-+00 2z
1 3z+Inx 1 1
73.  lim 1+ — 74. lim | — — —
T—400 2r z—0 xT sin 2x

1 1
75, lim (\/902 T :1:) 76. lim ( _ —)

o0 rsinx  x?

77. lim 1 — > 78. lim l—11(1 1
=2 \x—2 224+12—6 z—0+ \ T z

. 1 ) 1 1
79. lim (cotx——) 0. lim (—2— 5 )
z—0 x z—0 \ T tan® x
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81.

83.

85.

87.

89.

91

92

. a?sin (1)
lim —z 84.
z—0 ST
_ 1/x
lim ¢~ 1 +2) 86.
z—0 €x
1 1

lim | —= — 88.
=0+ \22 zlnz

hril (In(1+e") — ) 90.

f"(c) = lim

e 1
- 2.
( T em—l) ;

. T —sinx
lim —
xr—00 €T

. Suppose that f is defined and differentiable in an open interval (a,b).
Suppose that a < ¢ < b and f”(c) exists. Prove that

f@) = /(0) = (2 = Of ()

Tr—cC

. Suppose that f is defined and f', f”,--
(a,b). Also, suppose that a < ¢ < b and £ (c) exists

(a) Prove that

f™(c) = lim

(e — /2]

, f=1 exist in an open interval

F@) = £(&) = (x = ) f'(c) — - = Ll ()

r—cC

at ¢, such that

f(n)(c) + En(z)

(z—c)™
n!

(b) Show that there is a function E,(x) defined on (a, b), except possibly

(x —c)"!

e S
(z — )" En(x)
n!
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and lim E,(z) = 0. Find Ey(x) if ¢ =0 and

rtsin (L) |, 2 #£0
0 , =20
If f/(c) =--- = f™Y(c) =0, nis even, and f has a relative mini-

mum at = = ¢, then show that £ (c) > 0. What can be said if f has
a relative maximum at ¢? What are the sufficient conditions for a rel-

ative maximum or minimum at ¢ when f'(¢) = --- = f™@Y(¢) = 0?
What can be said if n is odd and f'(c) = --- = f"V(c) = 0 but
F(c) #0.

93. Suppose that f and g are defined, have derivatives of order 1,2,--- ;n—1

in an open interval (a,b),a < ¢ < b, f™(c) and g™ (c) exist and g(” ( ) #
0. Prove that if f and g, as well as their first n — 1 derivatives are 0,
then

LT
e g(@) | go(e)

Evaluate the following limits:

94.

96.

98.

100.

101.

. x2sin & . cos (% cosz)
lim L 95. lim —=—~=
z—0 x z—0 sin” x
lirr% (%) 97. lim+ z(In(z))",n=1,2,3,---
T— z—0
¥ —x 32 nx
lim ———— 99. lim —M—
oot 1—z+Ing z—to0 (1+ z4)/2

T——+00

lim
z—0 1 —e %

61‘

1 x
lim x”ln( te ), n=12---

x fow e~V dx

2
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7.4 Improper Integrals

1. Suppose that f is continuous on (—o0, 00) and ¢'(z) = f(z). Then define
each of the following improper integrals:





