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CHAPTER 13

THE RIEMANN INTEGRAL

13.1. Background

Topics: summation notation, Riemann sums, Riemann integral, upper and lower Darboux sums,
definite and indefinite integrals.

Here are two formulas which may prove helpful.

13.1.1. Proposition. For every natural number n
n∑
k=1

k =
n(n+ 1)

2
.

13.1.2. Proposition. For every natural number n
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

13.1.3. Definition. Let J = [a, b] be a fixed interval in the real line and P = (x0, x1, . . . , xn) be
n+ 1 points of J . Then P is a partition of the interval J if:

(1) x0 = a,
(2) xn = b, and
(3) xk−1 < xk for k = 1, 2, . . . , n.

We denote the length of the kth subinterval by ∆xk; that is, ∆xk = xk − xk−1. A partition
P = (x0, x1, . . . , xn) is regular if all the subintervals [xk−1, xk] have the same length. In this case

∆x1 = ∆x2 = · · · = ∆xn

and we write ∆x for their common value.

13.1.4. Notation. Let f be a bounded function defined on the interval [a, b] and P = (x0, x1, . . . , xn)
be a partition of [a, b]. Then we define

R(P ) :=
n∑
k=1

f(xk) ∆xk (13.1)

L(P ) :=

n∑
k=1

f(xk−1) ∆xk (13.2)

M(P ) :=
n∑
k=1

f
(
(12(xk−1 + xk)

)
∆xk. (13.3)

These are, respectively, the right, left, and midpoint sums of f associated with the par-
tition P . If P is a regular partition of [a, b] consisting of n subintervals, then we may write Rn

for R(P ), Ln for L(P ), and Mn for M(P ).

13.1.5. Definition. The average value of a function f over an interval [a, b] is
1

b− a

∫ b

a
f .

89



90 13. THE RIEMANN INTEGRAL

13.2. Exercises

(1)

5∑
k=1

k2 = .

(2)

10∑
k=3

4 = .

(3)
100∑
k=1

k(k − 3) = .

(4)
200∑
m=1

m3 −
199∑
m=1

m3 = .

(5)

4∑
k=1

(−1)kkk = .

(6) Let ak = 2k for each k. Then
8∑

k=3

(ak − ak−1) = .

(7)
50∑
k=3

1

k2 − k
=

12

a
where a = . Hint. Find numbers p and q such that

1

k2 − k
=

p

k − 1
− q

k
.

(8) Express 1 +
1

3
+

1

9
+

1

27
+

1

81
+

1

243
in summation notation. Answer:

a∑
k=0

bk where

a = and b = .

(9)
4∑

k=1

(k − 1) k (k + 1) = .

(10)
5∑

k=0

3k+4 =
b∑

j=a

3j where a = and b = .

(11)
60∑
k=7

1

3k−2
=

a∑
j=−2

1

3j+b
where a = and b = .

(12)
70∑

j=−3

1

5j−7
=

61∑
i=a

1

5i+b
where a = and b = .

(13)

18∑
j=−4

1

2j+3
=

7∑
k=a

2k−b where a = and b = .

(14)
60∑
k=4

1

k2 − 1
=

a

3660
where a = . Hint. Write

1

k2 − 1
as the difference of two

simpler fractions.
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(15)
34∑
k=2

1

k2 + 2k
=

a

2520
where a = . Hint. Write

1

k2 + 2k
as the difference of two

simpler fractions.

(16) Let f(x) = x2 on the interval [0, 4] and let P = (0, 1, 2, 4). Find the right,,left, and
midpoint sums of f associated with the partition P .

Answer: R(P ) = ; L(P ) = ; and M(P ) =
a

2
where a = .

(17) Let f(x) = x3−x on the interval [−2, 3] and let P = (−2, 0, 1, 3). Find the right, left, and
midpoint sums of f associated with the partition P .

Answer: R(P ) = ; L(P ) = ; and M(P ) =
a

8
where a = .

(18) Let f(x) = 3 − x on the interval [0, 2] and let Pn be the regular partition of [0, 2] into n
subintervals. Then

(a) Rn = a+
b

n
where a = and b = .

(b) Ln = c+
d

n
where c = and d = .

(c)
∫ 2
0 f = .

(19) Let f(x) = 2x− 3 on the interval [0, 4] and let Pn be the regular partition of [0, 4] into n
subintervals. Then

(a) Rn = a+
b

n
where a = and b = .

(b) Ln = c+
d

n
where c = and d = .

(c)
∫ 4
0 f = .

(20) Let f(x) = x − 2 on the interval [1, 7] and let Pn be the regular partition of [1, 7] into n
subintervals. Then

(a) Rn = a+
b

n
where a = and b = .

(b) Ln = c+
d

n
where c = and d = .

(c)
∫ 7
1 f = .

(21) If

∫ e

1
lnx dx = 1 and

∫ e2

1
lnx dx = 1 + e2, then

∫ e2

e
lnx dx = .

(22) Suppose that

∫ 17

−10
f = 3,

∫ 8

−7
f = 7,

∫ 1

−3
f = −1,

∫ 8

−3
f = 4,

∫ 2

−1
f = 5,

∫ 17

−1
f = 6, and∫ 2

1
f = 1. Then

∫ −7
−10

f = .

(23) For what value of x is

∫ √x
4

f(t) dt sure to be 0? Answer: .

(24) Suppose

∫ 3

−2
f(x) dx = 8. Then

∫ −2
3

f(Ξ) dΞ = .
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(25) Find the value of the integral

∫ 3

−3

√
9− x2 dx by regarding it as the area under the graph

of an appropriately chosen function and using an area formula from plane geometry.
Answer: .

(26) Find the value of the integral

∫ 2

−2
(4− |x|) dx by regarding it as the area under the graph

of an appropriately chosen function and using area formulas from plane geometry.
Answer: .

(27) Let a > 0. Then

∫ a

0
(
√
a2 − x2 − a + x) dx =

1

b
ap(c − 2) where b = , p = ,

and c = . Hint. Interpret the integral as an area.

(28) If the average value of a continuous function f over the interval [0, 2] is 3 and the average

value of f over [2, 7] is 4, then the average value of f over [0, 7] is
a

7
where a = .

(29) Let f(x) = |2− |x− 3| |. Then

∫ 8

0
f(x) dx = .

(30) Let f(x) =

{
2 +
√

2x− x2, for 0 ≤ x ≤ 2

4− x, for x > 2
. Then∫ 2

0
f(x) dx = a+

π

b
where a = and b = ;∫ 4

0
f(x) dx = c+

π

d
where c = and d = ; and∫ 6

1
f(x) dx = p+

π

q
where p = and q = .

(31) Suppose

∫ 3

0
f(x) dx = 4,

∫ 5

2
f(x) dx = 5, and

∫ 3

2
f(x) dx = −1. Then

∫ 2

0
f(x) dx= ,∫ 1

0
f(x + 2) dx = ,

∫ 2

0

(
f(x) + 2

)
dx = ,

∫ 5

2
f(x − 2) dx = ,∫ 5

0
f(x) dx = ,

∫ 7

5
5f(x− 2) dx = , and

∫ 3

−2
f(x+ 2) dx = .

(32)

∫ 4

−1
(|x|+ |x− 2|) dx = .

(33)

∫ 3

0
(|x− 1|+ |x− 2|) dx = .
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13.3. Problems

(1) Prove proposition 13.1.1.

(2) Prove proposition 13.1.2.

(3) Show that

n∑
k=1

2−k = 1−2−n for each n. Hint. Let sn =

n∑
k=1

2−k and consider the quantity

sn − 1
2sn.

(4) Let f(x) = x3 + x for 0 ≤ x ≤ 2. Approximate
∫ 2
0 f(x) dx using the midpoint sum. That

is, compute, and simplify, the Riemann sum Mn for arbitrary n. Take the limit as n→∞
of Mn to find the value of

∫ 2
0 f(x) dx. Determine the smallest number of subintervals that

must be used so that the error in the approximation Mn is less than 10−5.

(5) Without evaluating the integral show that

7

4
≤
∫ 2

1/4

(
4

3
x3 − 4x2 + 3x+ 1

)
dx ≤ 3.

(6) Let f(x) = x2 sin
1

x
if 0 < x ≤ 1 and f(0) = 0. Show that

∣∣∣∣∫ 1

0
f

∣∣∣∣ ≤ 1

3
.

(7) Suppose that a < b. Prove that

∫ b

a

(
f(x)− c

)2
dx is smallest when c is the average value

of f over the interval [a, b].

(8) Show that if f is a continuous function on [a, b], then∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx.

Hint. Suppose that d is a positive number and we wish to prove that |c| < d. All we need
to do is establish two things: that c < d and that −c < d.

(9) Show that 1 ≤
∫ 1

0
ex

2
dx ≤ e+ 1

2
. Hint. Examine the concavity properties of the curve

y = ex
2
.

(10) Let 0 ≤ x ≤ 1. Apply the mean value theorem to the function f(x) = ex over the interval
[0, x] to show that the curve y = ex lies between the lines y = 1 + x and y = 1 + 3x
whenever x is between 0 and 1. Use this result to find useful upper and lower bounds for

the value of
∫ 1
0 e

x dx (that is, numbers m and M such that m ≤
∫ 1
0 e

x dx ≤M).

(11) Show that

∫ b

a

(∫ d

c
f(x) g(y) dy

)
dx =

(∫ b

a
f

)(∫ d

c
g

)
.

(12) Without evaluating the integral show that

π

3
≤
∫ π

0
sinx dx ≤ 5π

6
.

(13) Consider the function f(x) = x2 + 1 defined on the closed interval [0, 2]. For each natural
number n let Pn = (x0, x1, . . . , xn) be a regular partition of the interval [0, 2] into n
subintervals. Denote the length of the kth subinterval by ∆xk. (Thus for a regular partition
∆x1 = ∆x2 = · · · = ∆xn.)

Definition. Let Pn be a regular partition of [0, 2] as above. For each k between 1 and n
let ak be the point in the kth subinterval [xk−1, xk] where f has its smallest value and bk
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be the point in [xk−1, xk] where f has its largest value. Then let

L(n) =
n∑
k=1

f(ak)∆xk and U(n) =
n∑
k=1

f(bk)∆xk.

The number L(n) is the lower sum associated with the partition P and U(n) is the
upper sum associated with P .

(a) Let n = 1. (That is, we do not subdivide [0, 2].) Find P1, ∆x1, a1, b1, L(1), and

U(1). How good is L(1) as an approximation to
∫ 2
0 f?

(b) Let n = 2. Find P2. For k = 1, 2 find ∆xk, ak, and bk. Find L(2) and U(2). How

good is L(2) as an approximation to
∫ 2
0 f?

(c) Let n = 3. Find P3. For k = 1, 2, 3 find ∆xk, ak, and bk. Find L(3) and U(3). How

good is L(3) as an approximation to
∫ 2
0 f?

(d) Let n = 4. Find P4. For k = 1, 2, 3, 4 find ∆xk, ak, and bk. Find L(4) and U(4). How

good is L(4) as an approximation to
∫ 2
0 f?

(e) Let n = 8. Find P8. For k = 1, 2, . . . , 8 find ∆xk, ak, and bk. Find L(8) and U(8).

How good is L(8) as an approximation to
∫ 2
0 f?

(f) Let n = 20. Find P20. For k = 1, 2, . . . , 20 find ∆xk, ak, and bk. Find L(20) and

U(20). How good is L(20) as an approximation to
∫ 2
0 f?

(g) Now let n be an arbitrary natural number. (Note: “arbitrary” means “unspecified”.)
For k = 1, 2, . . . , n find ∆xk, ak, and bk. Find L(n) and U(n). Explain carefully why

L(n) ≤
∫ 2
0 f ≤ U(n). How good is L(n) as an approximation to

∫ 2
0 f?

(h) Suppose we wish to approximate
∫ 2
0 f by L(n) for some n and have an error no greater

than 10−5. What is the smallest value of n that our previous calculations guarantee
will do the job?

(i) Use the preceding to calculate
∫ 2
0 f with an error of less than 10−5.
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13.4. Answers to Odd-Numbered Exercises

(1) 55

(3) 323, 200

(5) 232

(7) 25

(9) 90

(11) 51, 7

(13) −15, 6

(15) 979

(17) 48, −12, 93

(19) (a) 4, 16
(b) 4, −16
(c) 4

(21) e2

(23) 16

(25)
9π

2

(27) 4, 2, π

(29) 9

(31) 5, −1, 9, 4, 10, 30, 10

(33) 5





CHAPTER 14

THE FUNDAMENTAL THEOREM OF CALCULUS

14.1. Background

Topics: Fundamental theorem of Calculus, differentiation of indefinite integrals, evaluation of
definite integrals using antiderivatives.

The next two results are versions of the most elementary form of the fundamental theorem of
calculus. (For a much more sophisticated version see theorem 46.1.1.)

14.1.1. Theorem (Fundamental Theorem Of Calculus - Version I). Let a belong to an open interval
J in the real line and f : J → R be a continuous function. Define F (x) =

∫ x
a f for all x ∈ J . Then

for each x ∈ J the function F is differentiable at x and DF (x) = f(x).

14.1.2. Theorem (Fundamental Theorem of Calculus - Version II). Let a and b be points in an
open interval J ⊆ R with a < b. If f : J → R is continuous and g is an antiderivative of f on J ,
then ∫ b

a
f = g(b)− g(a) .

The next proposition is useful in problem 5. It says that the only circumstance in which a
differentiable function F can fail to be continuously differentiable at a point a is when either the
right- or left-hand limit of F ′(x) fails to exist at a.

14.1.3. Proposition. Let F be a differentiable real valued function in some open interval contain-
ing the point a. If l := limx→a− F

′(x) and r := limx→a+ F
′(x) both exist, then

F ′(a) = r = l = lim
x→a

F ′(x).

Proof. Suppose that F is differentiable on the interval (a − δ, a + δ). For x ∈ (a, a + δ) the
mean value theorem guarantees the existence of a point c ∈ (a, x) such that

F (x)− F (a)

x− a
= F ′(c).

Taking the limit as x approaches a from the right we get F ′(a) = r. A nearly identical argument
yields F ′(a) = l. This shows that F is continuously differentiable at a. �

97
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14.2. Exercises

(1) Evaluate lim
n→∞

n∑
k=1

(n+ 2k)4

n5
by expressing it as an integral and then using the fundamental

theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
xp dx where a = ,

b = , c = , and p = . The value of the integral is
q

r
where q =

and r = .

(2) Evaluate lim
n→∞

n∑
k=1

1

n+ 3k
by expressing it as an integral and then using the fundamental

theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
xp dx where a = ,

b = , c = , and p = . The value of the integral is
u

v
lnu where u =

and v = .

(3) Evaluate lim
n→∞

n∑
k=1

n

n2 + k2
by expressing it as an integral and then using the fundamental

theorem of calculus to evaluate the integral. The integral is

∫ b

a
f(x) dx where a = ,

b = , and f(x) = . The value of the integral is .

(4) Evaluate lim
n→∞

n∑
k=1

n

(2n+ 7k)2
by expressing it as an integral and then using the funda-

mental theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
xp dx where

a = , b = , c = , and p = . The value of the integral is
1

r
where

r = .

(5) Evaluate lim
n→∞

n∑
k=1

(2n+ 5k)2

n3
by expressing it as an integral and then using the funda-

mental theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
xp dx where

a = , b = , c = , and p = . The value of the integral is
r

3
where

r = .

(6) Evaluate lim
n→∞

n∑
k=1

(2n+ 4k)2

n3
by expressing it as an integral and then using the funda-

mental theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
xp dx where

a = , b = , c = , and p = . The value of the integral is
r

3
where

r = .

(7) Let J =
∫ 5
0

√
3x dx and let P be the regular partition of [0, 5] into n subintervals. Find

the left, right and midpoint approximations to J determined by P .

Answer: Ln =
5

n

q∑
k=p

√
15k

n
where p = and q = .

Rn =
5

n

s∑
k=r

√
15k

n
where r = and s = .

Mn =
5

n

n∑
k=1

√
tk − u
vn

where t = , u = , and v = .
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(8) Evaluate lim
n→∞

n∑
k=1

ln(5k + n)− lnn

n
by expressing it as an integral and then using the

fundamental theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
f(x) dx

where a = , b = , c = , and f(x) = . The value of the

integral is
r

s
f(r)− 1 where r = and s = .

(9) Let g(x) =

∫ 1
2
x

3

t3 + 4t+ 4

1 + t2
dt. Then Dg(2) =

a

4
where a = .

(10) Let g(x) = (5 + 7 cos2(2πx) − sin(4πx))−1 and f(x) =

∫ 2

x3
g(t) dt. Then Df(12) = −1

a
where a = .

(11) Let g(x) = (1 + (x4 + 7)1/3)−1/2 and f(x) =

∫ x3

x
g(t) dt. Then Df(1) =

2√
a

where

a = .

(12) Let f(x) =

∫ sinπx

x2

dt

1 + t4
. Then Df(2) = a− 4

b
where a = and b = .

(13) Let g(x) =

∫ x

0

u− 1

u− 2
du. Then

(a) the domain of g is ( , );

(b) g is increasing on ( , ); and

(c) g is concave down on ( , ).

(14) Solve for x:

∫ x

0
(2u− 1)2 du =

14

3
. Answer: x = .

(15) Solve for x:

∫ x+2

x
u du = 0. Answer: x = .

(16) Find a number x > 0 such that

∫ x

1
(u−1) du = 4. Answer: x = 1+a

√
a where a = .

(17) Find

∫ 6

3
f ′(x) dx given that the graph of f includes the points (0, 4), (3, 5), (6,−2), and

(8,−9). Answer: .

(18) Let g(x) =

∫ x

0
xf(t) dt where f is a continuous function. Then

Dg(x) = .

(19) Let f(x) =

∫ x

0

1− t2

3 + t4
dt. Then f is increasing on the interval ( , ) and is

concave up on the intervals ( , ) and ( , ) .

(20) If y =

∫ s

0

√
2 + u3 du, then

dy

ds
= .

(21) If y =

∫ t2

2
cos
√
x dx and t ≥ 0, then

dy

dt
= .

(22) If

∫ x

−2
f(t) dt = x2 sin(πx) for every x, then f(1/3) =

π

a
+

1

b
where a = and b = .
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(23) Let f(x) =

∫ x3

x lnx

dt

3 + ln t
for x ≥ 1. Then Df(e) =

1

a
(b2 − 1) where a = and

b = .

(24) Let f(x) =

∫ ln(x2+1)

ln(x+1)4

dt

4 + et
for x > 0. Then Df(1) =

1

a
where a = .

(25) Let f(x) =

∫ 1
2
x2ex−1

−2

t2

(4 + sinπt)2
dt. Then Df(1) =

3

a
where a = .

(26) Let f(x) =

∫ xex
2

0

dt

5 + (ln t)2
. Then Df(1) =

a

b
where a = and b = .

(27) Let f(x) =

∫ ex
3

0

dt

6 + (ln t)2
. Then Df(2) =

6ea

b
where a = and b = .

(28) Let f(x) =

∫ ln(x2+3)

lnx

dt

3 + et
for x ≥ 1. Then Df(2) = −3

a
where a = .

(29) Let f(x) = (x2+2x+2)−1 for all x ∈ R. Then the interval on which the curve y =
∫ x
0 f(t) dt

is concave up is ( , ).

(30) lim
h→0

1

h

∫ 2+h

2

√
1 + x2 dx = .

(31) lim
λ→0+

∫ 2λ

λ
e−xx−1 dx = . Hint:

e−x

x
=
e−x − 1

x
+

1

x
.

(32) lim
x→0

1

x

∫ 1+5x

1
(4− cos 2πt)3 dt = .

(33) lim
r→0

1

r

∫ e4r

1

√
3 +

1

x
dx = .

(34) lim
u→0

1

u

∫ ln(e2+3u)

2

√
1 + 2t+ 5t2 dt = aeb where a = and b = .

(35)

∫ 9

1

1

x3/2
=
a

3
where a = .

(36)

∫
12e4x dx = aebx + c where a = , b = , and c is an arbitrary constant.

(37)

∫
40 cos 5x dx = a sin bx+ c where a = , b = , and c is an arbitrary constant.

(38)

∫ 1

0

4√
4− x2

dx =
a

3
where a = .

(39)

∫ √3
0

6

9 + x2
dx = .

(40)

∫ π/2

0
cosxesinx dx = a− b where a = and b = .

(41)

∫ π

0
sec2 1

4x dx = .
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(42) If a = 0 and b = 1
5(e− 1), then

∫ b

a

15

5x+ 1
dx = .

(43) Let f(x) = |x| + |cosx| for all x. Then

∫ π

−π/2
f = a +

b

8
πp where a = , b = ,

and p = .

(44)

∫ 2

−1

∣∣x3 − x∣∣ dx =
a

4
where a = .

(45)

∫ 2π

0
(|sinx|+ cosx) dx = .

(46)

∫ π/4

0
sin5 x cosx dx =

1

a
where a = .

(47)

∫ 3

1
(x3 − 6x2 + 2x− 7) dx = .

(48)

∫ 4

0
(x3 + 3

√
x) dx = .

(49)

∫ 3

0
(5− 2x2) dx = .

(50)

∫ 5

1

(√
x+

1√
x

)2

dx = a+ ln b where a = and b = .

(51)

∫ π/2

π/6
csc2 x dx = .

(52)

∫ 5

0

dx

25 + x2
=
π

a
where a = .

(53)

∫ 1

0
(x3 + x)ex

4+2x2 dx =
1

a
(ep − 1) where a = and p = .

(54) Let f(x) =

∫ x

3π
(7 + cos(sin t)) dt. Then Df−1(0) =

1

a
where a = .

(55) Let f(x) =

∫ x1/3

π/3
arctan(2 + 2 sin t) dt for x ≥ 0. Then Df−1(0) =

4π

a
where a = .

Hint. What is tan 5π
12 ?

(56) If log2 x =

∫ x

2

1

t
dt, then x = exp

(
a2

a− 1

)
where a = .
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14.3. Problems

(1) Estimate
104∑
k=1

√
k by interpreting it as a Riemann sum for an appropriate integral.

(2) Let f(x) = x3 + x, let n be an arbitrary natural number, and let P = (x0, x1, . . . xn)
be a regular partition of the interval [0, 2] into n subintervals. (Note: “arbitrary” means
“unspecified”.) For each k between 1 and n let ck be the midpoint of the kth subinterval
[xk−1, xk].
(a) Find the width ∆xk of each subinterval.
(b) Find xk for each k = 0, . . . , n.
(c) Find ck for each k = 1, . . . , n.
(d) Find the corresponding Riemann midpoint sum

∑n
k=1f(ck)∆xk. Simplify the expres-

sion and put it in the form a+ b/n+ c/n2 + . . . .
(e) Find the limit of the Riemann sums in part (d) as n→∞.

(f) Compute
∫ 2
0 f using the fundamental theorem of calculus

(g) What is the smallest number of subintervals we can use so that the Riemann sum
found in (d) approximates the true value of the integral found in (f) with an error of
less than 10−5?

(3) Let f(x) = −1
2x + 3

2 for −1 ≤ x ≤ 3. Partition the interval [−1, 3] into n subintervals of
equal length. Write down the corresponding right approximating sum Rn. Show how this
expression can be simplified to the form a+ b

n for appropriate numbers a and b. Take the

limit of this expression as n gets large to find the value of
∫ 3
−1 f(x) dx. Check your answer

in two different ways: using a geometrical argument and using the fundamental theorem
of calculus.

(4) Let f(x) = x2 + 1 for 0 ≤ x ≤ 3. Partition the interval [0, 3] into n subintervals of
equal length. Write down the corresponding right approximating sum Rn. Show how this
expression can be simplified to the form a + b

cn + d
cn2 for appropriate numbers a, b, c,

and d. Take the limit of this expression as n gets large to find the value of
∫ 3
0 f(x) dx.

Check your answer using the fundamental theorem of calculus.

(5) Define functions f , g, and h as follows:

h(x) =

{
1, for 0 ≤ x ≤ 2

x, for 2 < x ≤ 4.

g(x) =

∫ x2

x
h(t) dt for 0 ≤ x ≤ 2

f(x) =

∫ x

0
g(t) dt for 0 ≤ x ≤ 2.

(a) For each of the functions h, g, and f answer the following questions:
(i) Where is the function continuous? differentiable? twice differentiable?
(ii) Where is the function positive? negative? increasing? decreasing? concave up?

concave down?
(iii) Where are the x-intercepts? maxima? minima? points of inflection?

(b) Make a careful sketch of the graph of each of the functions.
(c) What is the moral of this problem? That is, what do these examples suggest about

the process of integration in general?
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Hints for solution. When working with the first function h it is possible to get the
“right answers” to questions (i)—(iii) but at the same time fail to give coherent reasons
for the assertions made. This part of the problem is meant to encourage paying attention
to the precise definitions of some of the terms. Indeed, the correct answers will vary from
text to text. Some texts, for instance, distinguish between functions that are increasing
and those that are strictly increasing. Other texts replace these terms by nondecreasing
and increasing, respectively. Some texts define concavity only for functions which are
twice differentiable; others define it in terms of the first derivative; still others define it
geometrically.

This first part of the problem also provides an opportunity to review a few basic facts:
differentiability implies continuity; continuity can be characterized (or defined) in terms
of limits; and so on.

Unraveling the properties of the second function g is rather harder. Try not to be put
off by the odd looking definition of g. The crucial insight here is that by carrying out
the indicated integration it is possible to express g, at least piecewise, as a polynomial.
From a polynomial expression it is a simple matter to extract the required information.
Impatience at this stage is not a reliable friend. It is not a good idea to try to carry out
the integration before you have thought through the problem and discovered the necessity
of dividing the interval into two pieces. It may be helpful to compute the values of g at
x = 1.0, 1.1, 1.2, . . . , 1.9, 2.0. Notice that about midway in these computations something
odd happens. What is the precise point p where things change? Eventually one sees that
g too is expressible as one polynomial on [0, p] and as another polynomial on (p , 2]. Once
g has been expressed piecewise by polynomials it is possible to proceed with questions
(i)–(iii). To determine whether g is continuous at p, compute the right- and left-hand
limits of g there.

The question of the differentiability of g is subtle and deserves some serious thought.
It may be tempting to carry over the format of continuity argument to decide about the
differentiability of g at p. Suppose we compute the right- and left-hand limits of the
derivative of g at p and find that they are not equal. Can we then conclude that g is not
differentiable at p? At first one is inclined to say no, that all we have shown is that the
derivative of g is not continuous at p, which does not address the issue of the existence
of g′(p). Interestingly enough, it turns out that the only way in which a differentiable
function F can fail to be continuously differentiable at a point a is for either the right-
or left-hand limit of F ′(x) to fail to exist at a. The crucial result, which is a bit hard
to find in beginning calculus texts, is proposition 14.1.3. Thus when we discover that a
function F is differentiable at all points other than a, and that the limits limx→a− F

′(x)
and limx→a+ F

′(x) both exist but fail to be equal, there is only one possible explanation:
F fails to be differentiable at a.

After finding a piecewise polynomial expression for g, another difficulty arises in deter-
mining whether g is concave up. It is easy to see that g is concave up on the intervals (0, p)
and (p , 2). But this isn’t enough to establish the property for the entire interval (0, 2).
In fact, according to the definition of concavity given in many texts g is not concave up.
Why? Because, according to Finney and Thomas (see [2], page 237), for example, concav-
ity is defined only for differentiable functions. A function is concave up on an interval only
if its derivative is increasing on the interval. So if our function g fails to be differentiable at
some point it can not be concave up. On the other hand, under any reasonable geometric
definition of concavity g certainly is concave up on (0, 2)—although it is a bit hard to
show. The solution to this dilemma is straightforward: pick a definition and stick to it.

Analysis of the last function f proceeds pretty much as for g. One new wrinkle is the
difficulty in determining where f is positive. The point at which f changes sign is a root
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of a fifth degree polynomial. An approximation based either on the intermediate value
theorem or Newton’s method goes smoothly.

As with g, conclusions concerning the concavity of f may differ depending on the defi-
nitions used. This time both a geometrical definition and one based on the first derivative
lead to one conclusion while a definition based on the second derivative leads to another.

Finally, for part (c) does it make any sense to regard integration as a “smoothing”
operation? In what way?

(6) Show that if f is continuous, then∫ x

0
f(u)(x− u) du =

∫ x

0

∫ u

0
f(t) dt du.

Hint. What can you say about functions F and G if you know that F ′(x) = G′(x) for
all x and that F (x0) = G(x0) at some point x0?

(7) Let f be a continuous function and a < b. Show that

∫ b

a
f(−x) dx =

∫ −a
−b

f(x) dx.

Hint. Show that if F is an antiderivative of f , then the function G : x 7→ −F (−x) is an
antiderivative of the function g : x 7→ f(−x).

(8) Let a < b, f be a continuous function defined on the interval [a, b], and g be the function

defined by g(t) =

∫ b

a
(f(x) − t)2 dx for t in R. Find the value for t at which g assumes a

minimum. How do you know that this point is the location of a minimum (rather than a
maximum)?

(9) Let λ be a positive constant. Define F (x) =

∫ λx

x

1

t
dt for all x > 0. Without mentioning

logarithms show that F is a constant function.

(10) Without computing the integrals give a simple geometric argument that shows that the

sum of
∫ 1
0

√
x dx and

∫ 1
0 x

2 dx is 1. Then carry out the integrations.
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14.4. Answers to Odd-Numbered Exercises

(1) 1, 3, 2, 4, 121, 5

(3) 0, 1,
1

1 + x2
,
π

4

(5) 2, 7, 5, 2, 67

(7) 0, n− 1, 1, n, 30, 15, 2

(9) 9

(11) 3

(13) (a) −∞, 2
(b) −∞, 1
(c) −∞, 2

(15) −1

(17) −7

(19) −1, 1, −
√

3, 0,
√

3. ∞
(21) 2t cos t

(23) 2, e

(25) 200

(27) 8, 35

(29) −∞, −1

(31) ln 2

(33) 8

(35) 4

(37) 8, 5

(39)
π

3

(41) 4

(43) 3, 5, 2

(45) 4

(47) −38

(49) −3

(51)
√

3

(53) 4, 3

(55) 5





CHAPTER 15

TECHNIQUES OF INTEGRATION

15.1. Background

Topics: antiderivatives, change of variables, trigonometric integrals, trigonometric substitutions,
integration by parts, partial fractions, improper Riemann integrals.

107
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15.2. Exercises

(1)

∫ 1

0

x
1
2

1 + x
3
4

dx =
a

3
(1− ln b) where a = and b = .

(2)

∫ 9

0

√
x

1 +
√
x
dx = a+ 4 ln b where a = and b = .

(3)

∫ 3
√
3

1
3
√

3

1

x
4
3 + x

2
3

dx = .

(4)

∫ 1/2

0

arctan 2x

1 + 4x2
dx =

π2

a
where a = .

(5)

∫ √2
0

x 101+x
2
dx =

a

ln 10
where a = .

(6)

∫ 16

1

x− 1

x+
√
x
dx = .

(7)

∫ 9

1

dx

(x+ 1)
√
x+ 2x

=
1

a
where a = .

(8)

∫ 8

27/8

2 dx

x5/3 − 3x4/3 + 3x− x2/3
= .

(9)

∫ π/2

π/6

cos3 x√
sinx

dx =
a

5
− b

10
√

2
where a = and b = .

(10)

∫ π/8

0
tan 2x sec2 2x dx =

1

a
where a = .

(11)

∫ 4/3

1

1

x2

√
1− 1

x
dx =

1

a
where a = .

(12)

∫ 4

1

4x− 1

2x+
√
x
dx = .

(13)

∫ 1/
√
2

0
x sin3(πx2) cos(πx2) dx =

1

a
where a = .

(14)

∫ π/4

0

sec2 x

(5 + tanx)2
dx =

1

a
where a = .

(15)

∫ 2

0

x2√
x3 + 1

dx =
a

3
where a = .

(16)

∫ 2

0

x dx√
4x2 + 9

=
1

a
where a = .

(17)

∫ 2

1

2x2 dx

(x3 + 1)2
=

a

27
where a = .

(18)

∫ √10
1

x
√
x2 − 1 dx = .

(19)

∫ 9

4

x− 9

3
√
x+ x

dx = .
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(20)

∫
r5 dr√
4− r6

= −1

a

√
4− r6 + c where a = and c is an arbitrary constant.

(21)

∫ π/4

0

tan3 x sec2 x(
1 + tan4 x

)3 dx =
3

a
where a = .

(22)

∫ √3
0

x dx

x2 − 4
= − ln a where a = .

(23)

∫ 3

1

dx

x1/2 + x3/2
=
π

a
where a = .

(24)

∫ ee

e

1

x lnx(1 + (ln lnx)2)
dx =

π

a
where a = .

(25)

∫ 1
2
√
2

1/8

dx√
x4/3 − x2

=
a

4
where a = .

(26)

∫ √3−5
−5

dx√
−x2 − 10x− 21

=
π

a
where a = .

(27)

∫ 0

−3/2

dx

4x2 + 12x+ 18
=
π

a
where a = .

(28)

∫ arctan e3

arctan e

csc 2x

ln(tanx)
dx =

1

2
ln a where a = .

(29)

∫ 1

0

(arctanx)2

1 + x2
dx =

πp

a
where p = and a = .

(30)

∫ ln 3

0

ex/2

1 + ex
dx =

π

a
where a = .

(31)

∫ 1/2

0

3 arcsinx√
1− x2

dx =
πp

a
where p = and a = .

(32)

∫ 1/2

1/4

dx√
x− x2

=
π

a
where a = .

(33)

∫ 1

0
(x+ 2)ex

2+4x dx =
1

a

(
ep − 1

)
where a = and p = .

(34)

∫ √lnπ
√

ln π
2

xex
2

cos(3ex
2
) dx =

1

a
where a = .

(35)

∫ ln 8

ln 2

1− ex

1 + ex
dx = a ln

a

b
where a = and b = .

(36)

∫ 1

0
x 5−x

2
dx =

a

b ln b
where a = and b = .

(37)

∫ e4

e

log7 x

x
dx =

a

2 ln 7
where a = .

(38)

∫ e3

e2
x−1(log3 x)2 dx =

a

b(ln b)2
where a = and b = .
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(39)

∫ π/2

0
sin7 u du =

16

a
where a = .

(40)

∫ π/3

0
sec5 x tanx dx =

a

5
where a = .

(41)

∫ π/4

0
sec3x dx = a+ 1

2 ln b where a = and b = .

(42)

∫ π/3

0
tan3 x sec3 x dx =

a

15
where a = .

(43)

∫ π/2

0
sin4 x dx =

3π

a
where a = .

(44)

∫ π/2

0
cos3 x sin5 x dx =

1

a
where a = .

(45)

∫ π/2

0
sin4x cos5x dx =

8

a
where a = .

(46)

∫ π/3

0
tan3x dx = a− ln b where a = and b = .

(47)

∫ π

0
sin6 x dx =

aπ

16
where a = .

(48)

∫ π/3

0
sec6 x dx =

a

5

√
3 where a = .

(49)

∫ 3/4

0

dx√
9− 4x2

= .

(50)

∫ 1

1/
√
2

dx

x
√

4x2 − 1
=
π

a
where a = .

(51)

∫
dx√

8− 4x− 4x2
= a arcsin

(
1
3f(x)

)
+ c where a = , f(x) = , and c is

an arbitrary constant.

(52)

∫
dx

x2 + 2x+ 5
= a arctan(a f(x)) + c where a = , f(x) = , and c is an

arbitrary constant.

(53)

∫ 2

1

dx

x(1 + x4)
=

1

4
ln

32

a
where a = .

(54)

∫ √13
1

dx

x2
√

3 + x2
= a

(
1− b√

13

)
where a = and b = .

(55)

∫ 6

3

√
x2 − 9

x
dx = a

√
3− b where a = and b = .

(56)

∫ 6

3
√
2

dx√
x2 − 9

= ln(a+
√
b)− ln(1 +

√
2) where a = and b = .

(57)

∫ 3

0

dw√
9 + w2

= ln(a+
√
b) where a = and b = .
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(58)

∫
x2(

4− x2
)3/2 dx =

x

f(x)
−g(x/2)+c where f(x) = , g(x) = ,

and c is an arbitrary constant.

(59)

∫ √3
0

arctanx dx =
a√
3
− ln b where a = and b = .

(60)

∫ √3
0

x arctanx dx =
aπ

b
− 1

a

√
b where a = and b = .

(61)

∫ 2

1
x3 lnx dx = a ln 2− b

16
where a = and b = .

(62)

∫ e

1
x2 lnx dx =

1

a
(bep + 1) where a = , b = , and p = .

(63)

∫
x2ex dx = p(x)ex + c where p(x) = and c is an arbitrary constant.

(64)

∫ 1

0
arctanx dx =

π

a
− 1

b
ln b where a = and b = .

(65)

∫ 1

0
arccotx dx =

a

4
+

1

b
ln b where a = and b = .

(66)

∫ π/6

0
x sinx dx =

a−
√
b π

12
where a = and b = .

(67)

∫
x2 cosx dx = f(x) sinx+ g(x) cosx+ c where f(x) = , g(x) = ,

and c is an arbitrary constant.

(68) Expand
x2 + 2x− 2

x3(x− 1)
by partial fractions.

Answer:
a

x
+

b

x2
+

c

x3
+

d

x− 1
where a = , b = , c = , and d = .

(69) Expand
x3 + x2 + 7

x2 + x− 2
by partial fractions.

Answer: f(x) +
a

x− 1
+

b

x+ 2
where f(x) = , a = and b = .

(70)

∫ 2

1

2

w3 + 2w
dw =

1

a
ln a where a = .

(71)

∫ 0

−3

−2w3 + w2 + 2w + 13

w2 + 2w + 3
dw = a + ln b where a = and b = .

(72)

∫
3x2 + x+ 6

x4 + 3x2 + 2
dx = −a ln(x2 + 2) + a ln(g(x)) + 3 arctanx+ c where a = ,

g(x) = , and c is an arbitrary constant.

(73)

∫
1− 4x− 3x2 − 3x3

x4 + x3 + x2
dx =

a

x
−5 lnx+ln(g(x))+c where a = , g(x) = ,

and c is an arbitrary constant.

(74)

∫
4x3 − 2x2 + x

x4 − x3 − x+ 1
dx = f(x) + 2g(x) + ln(x2 + x+ 1) + c where f(x) = ,

g(x) = , and c is an arbitrary constant.
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(75)

∫
x2 + 3

x3 + x
dx = a lnx − ln(g(x)) + c where a = , g(x) = , and c is an

arbitrary constant.

(76)

∫
2x2 − 3x+ 9

x3 − 3x2 + 7x− 5
dx = a ln(x− 1) +

1

a
arctan

(
1

a
g(x)

)
+ c where a = ,

g(x) = , and c is an arbitrary constant.

(77)

∫
2x3 + x2 + 2x− 1

x4 − 1
dx = ln(x − 1) + ln(x + 1) + f(x) + c where f(x) =

and c is an arbitrary constant.

(78)

∫
x5 − 2x4 + x3 − 3x2 + 2x− 5

x3 − 2x2 + x− 2
dx = g(x)+a ln(x−2)+b arctanx+c where a = ,

b = , g(x) = , and c is an arbitrary constant.

(79)

∫
x7 + 9x5 + 2x3 + 4x2 + 9

x4 + 9x2
dx = f(x)− 1

x
+ ln(g(x)) + arctan(h(x)) + c where

f(x) = , g(x) = , h(x) = , and c is an arbitrary constant.

(80)

∫ π/2

0

dx

8 + 4 sinx+ 7 cosx
= ln

(a
9

)
where a = . Hint. Try substituting u = tan x

2 .

(81)

∫ π/2

0

cosx

cosx+ sinx
dx =

π

a
where a = . Hint. Try substituting u = tan x

2 .

(82)

∫
2x2 + 9x+ 9

(x− 1)(x2 + 4x+ 5)
dx = a ln(x−1)+f(x)+c where a= , f(x) = ,

and c is an arbitrary constant.

(83)

∫
2x4 + x3 + 4x2 + 2

x5 + 2x3 + x
dx = a f(x) +

1

a
arctanx− 1

a
g(x) + c where a = ,

f(x) = , g(x) = , and c is an arbitrary constant.

(84)

∫
5u2 + 11u− 4

u3 + u2 − 2u
du = a ln|u|+ b ln|u− 1| − ln|u+ 2|+ c where a = , b = , and

c is an arbitrary constant.

(85)

∫ π/2

0
(cotx− x csc2 x) dx = .

(86)

∫ e

0
x2 lnx dx = aep where a = and p = .

(87)

∫ 4

2

x dx√
|9− x2|

=
√

5 +
√
a where a = .

(88)

∫ ∞
0

e−x sinx dx =
1

a
where a = .

(89) If we choose k = , then the improper integral

∫ ∞
0

(
k

3x+ 1
− 2x

x2 + 1

)
dx converges.

In this case the value of the integral is 2 ln a where a = .

(90)

∫ 4

2

1√
2x− 4

dx = .

(91)

∫ ∞
e2

dx

x(lnx)2
=

1

a
where a = .
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(92) Does the improper integral

∫ 8

0
x−1/3 dx converge? Answer: . If it converges,

its value is .

(93) Does the improper integral

∫ 1

1
2

1√
2x− 1

dx converge? Answer: . If it converges,

its value is .

(94) Does the improper integral

∫ 1

−1

1

x2
dx converge? Answer: . If it converges, its

value is .

(95) Does the improper integral

∫ 1

2
3

1

3x− 2
dx converges? Answer: . If it converges,

its value is .

(96) Does the improper integral

∫ ∞
0

1

1 + 9x2
dx converge? Answer: . If it converges,

its value is .

(97) Does the improper integral

∫ ∞
0

x4e−x
5
dx converge? Answer: . If it converges,

its value is .

(98)

∫ 1

−1

dx√
|x|

= .

(99)

∫ ∞
3
1/4

x dx

1 + x4
=
π

a
where a = .

(100)

∫ ∞
0

x dx

(1 + x2)4
=

1

a
where a = .

(101)

∫ √3
0

x√
9− x4

dx =
π

a
where a = .

(102)

∫ ∞
√
3

1

1 + x2
dx =

a

6
where a = .

(103)

∫ ∞
1

xe−x dx =
2

a
where a = .

(104)

∫ ∞
0

x12e−x dx = n! where n = .

(105)

∫ 1

1/2

x√
1− x2

dx =
a

2
where a = .

(106) lim
λ→0+

1

lnλ

∫ a

λ

cosx

x
dx = . Hint. Problem 10 may help.

(107) Let f(x) =

∫ x

3π
(7 + cos(sin t)) dt. Then Df−1(0) =

1

a
where a = .

(108) Let f(x) =

∫ x1/3

π/3
arctan(2 + 2 sin t) dt for x ≥ 0. Then Df−1(0) =

4π

a
where a = .

Hint. What is tan 5π
12 ?

(109) Let f(x) =

∫ x

1

3t2 + t+ 1

5t4 + t2 + 2
dt. Then Df−1(0) =

a

5
where a = .



114 15. TECHNIQUES OF INTEGRATION

(110) Let f(x) =

∫ x

0
t3
√
t4 + 9 dt for x ≥ 0. Then Df−1

(
49
3

)
=

1

a
where a = .

(111) lim
λ→0+

∫ 2λ

λ

e−x

x
dx = ln a where a = . Hint:

e−x

x
=
e−x − 1

x
+

1

x
.




