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Chapter One

Introduction to
Axiomatic System

1.1 History of geometry

o The word ‘geometry’ comes from the Greek words ‘geo’, meaning earth, and
‘metria’, meaning measure.

« Along with arithmetic, geometry was one of the two fields of pre-modern
mathematics.

« Ancient Egyptians used geometry principles as far back as 3000 BC, using
equations to approximate the area of circles among other formulas.

. Babylonians measured the circumference of a circle as approximately 3 times

the diameter, which is fairly close to today’s measurement which uses the
value of Pi (around 3.14).

« A Greek mathematician named Euclid who lived around the year 300 BC is
often referred to as the ‘Father of Geometry’ for his amazing geometry works
that included the influential ‘Elements’, which remained the main textbook for
teaching mathematics until around the early 20th century.



« Greeks constructed aesthetically pleasing buildings and artworks based on the
golden ratio of approximately 1.618.

« Greek philosopher and mathematician Pythagoras lived around the year 500
BC and is known for his Pythagorean theorem relating to the three sides of a
right angle triangle: a2 + b2 = ¢2

« Archimedes of Syracuse lived around the year 250 BC and played a large role
in the history of geometry including a method for determining the volume of
objects with irregular shapes.

« The compass and straight edge were powerful tools in the advancement of
geometry, allowing the construction of various lengths, angles and geometric
shapes.

« Modern day geometry has made developments in a number of areas, including
those that make use of the raw computing power of today’s computers.

1.2 Major branches of geometry
Euclidean geometry

In several ancient cultures there developed a form of geometry suited to the
relationships between lengths, areas, and volumes of physical objects. This geometry
was codified in Euclid’s Elements about 300 BCE on the basis of 10 axioms, or
postulates, from which several hundred theorems were proved by deductive logic.
The Elements epitomized the axiomatic-deductive method for many centuries.

Analytic geometry

Analytic geometry was initiated by the French  mathematician René
Descartes (1596-1650), who introduced rectangular coordinates to locate points and
to enable lines and curves to be represented with algebraic equations. Algebraic
geometry is a modern extension of the subject to multidimensional and non-
Euclidean spaces.

Projective geometry

Projective geometry originated with the French mathematician Girard
Desargues (1591-1661) to deal with those properties of geometric figures that are
not altered by projecting their image, or “shadow,” onto another surface.
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Differential geometry

The German mathematician Carl Friedrich Gauss (1777—-1855), in connection with
practical problems of surveying and geodesy, initiated the field of differential
geometry. Using differential calculus, he characterized the intrinsic properties of
curves and surfaces. For instance, he showed that the intrinsic curvature of
a cylinder is the same as that of a plane, as can be seen by cutting a cylinder along
its axis and flattening, but not the same as that of a sphere, which cannot be flattened
without distortion.

Non-Euclidean geometries

Beginning in the 19th century, various mathematicians substituted alternatives to
Euclid’s parallel postulate, which, in its modern form, reads, “given a line and a point
not on the line, it is possible to draw exactly one line through the given point parallel
to the line.” They hoped to show that the alternatives were logically impossible.
Instead, they discovered that consistent non-Euclidean geometries exist.

Topology

Topology, the youngest and most sophisticated branch of geometry, focuses on the
properties of geometric objects that remain unchanged upon continuous deformation
shrinking, stretching, and folding, but not tearing. The continuous development of
topology dates from 1911, when the Dutch mathematician L.E.J. Brouwer (1881—
1966) introduced methods generally applicable to the topic.

2.1 Introduction to Axiomatic Systems

A way of arriving at a scientific theory in which certain primitive assumptions, the
so-called axioms, are postulated as the basis of the theory, while the remaining
propositions of the theory are obtained as logical consequences of these axioms.

In mathematics, the axiomatic method originated in the works of the ancient Greeks
on geometry. The most brilliant example of the application of the axiomatic method
which remained unique up to the 19th century was the geometric system known as
Euclid's Elements (ca. 300 B.C.). At the time the problem of the description of the
logical tools employed to derive the consequences of an axiom had not yet been
posed, but the Euclidean system was a very clear attempt to obtain all the basic
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statements of geometry by pure derivation based on a relatively small number of
postulates (axioms) whose truth was considered to be self-evident.

2.2 Elements of an Axiomatic Systems

e Undefined terms (Primitives Notions)
We need undefined terms for any axiomatic system to build the axioms upon
them. Which are basic worlds or things for the system.

e Postulates (Axioms)
An axiom is a list of statements dealing with undefined terms and definitions
that are chosen to remain unproved.

e Defined terms
Definitions of the system are all other technical terms of the system are
ultimately defined by means of the undefined terms.

e Propositions (Theorem)
A theorem is any statement that can be proven using logical deduction from
the axioms.

2.3 Axiomatic System

An axiomatic System is a list of axioms and theorems that dealing with undefined
terms.

Example: - Three-Point Geometry

Undefined terms (points, Lines)

Axioms for the Three Point Geometry:

1. There exist exactly 3 points in this geometry.

2. Two distinct points are on exactly one line.

3. Not all the points of the geometry are on the same line.
4. Two distinct lines are on at least one point.

Theorem 1: Two distinct lines are on exactly one point.

To prove this, note that by axiom 4 we need only show that two distinct lines are on
at most one point.



Assume, to the contrary, that distinct lines | and m, meet at points P and Q.

This contradicts axiom 2, which says that the points P and Q lie on exactly one line.
Thus, our assumption is false, and two distinct lines are on at most one point.
Proving the theorem.

Theorem 2: The three-point geometry has exactly three lines.

Let the line determined by two of the points, say A and B, be denoted by m (Axiom
2).

We know that the third point, C, is not on m by Axiom 3.

AC is thus a line different from m, and BC is also a line different from m.

These two lines cannot be equal to each other since that would imply that the three
points are on the same line.

So there are at least 3 lines.

If there was a fourth line, it would have to meet each of the other lines at a point by
Theorem 1.1.

As those three lines do not pass through a common point, the fourth line must have
at least two points on it contradicting Axiom 2.

2.3 Model

A model for an axiomatic system is a way to define the undefined terms so that the
axioms are true. Sometimes it is easy to find a model for an axiomatic system, and
sometimes it is more difficult.

Example: -
Here are some examples of axiomatic systems.

Committees

Undefined terms: committee, member

Axiom 1: Each committee is a set of three members.

Axiom 2: Each member is on exactly two committees.

Axiom 3: No two members may be together on more than one committee.
Axiom 4: There is at least one committee.

Monoid

Undefined terms: element, product of two elements

Axiom 1: Given two elements x and y, the product of x and y, denoted x * y, is a
uniquely defined element.



Axiom 2: Given elements x, y, and z, the equation x *x (y x z) = (x x y) *x z IS
always true.

Axiom 3: There is an element e, called the identity, such that e * x = x * e = x and
for all elements .

Here are some examples of models for the “monoid” system.
e the elements are real numbers, and the product of two elements is the product
of those two numbers
e the elements are 22 matrices, and the product is the product of those two
matrices

Here is a model for the Committees system (but certainly not the only one):
Members Alan, Beth, Chris, Dave, Elena, Fred

Committees {Alan, Beth, Chris}
{Alan, Dave, Elena}
{Beth, Dave, Fred}
{Chris, Elena, Fred}

We have defined the undefined terms, and now we have to check that the axioms are
actually satisfied. It is easy to see that Axioms 1 and 4 are satisfied.

Axiom 2 says “Each member is on exactly two committees.” To check this axiom,
we look at each member, and list the number of committees they are on. If that
number is 2 for every member, then the axiom is true.

Member Committees Number = 2?
Alan {Alan, Beth, Chris}, {Alan, Dave, Elena} yes
Beth {Alan, Beth, Chris}, {Beth, Dave, Fred} yes
Chris {Alan, Beth, Chris}, {Chris, Elena, Fred} yes
Dave {Alan, Dave, Elena}, {Beth, Dave, Fred} yes
Elena {Alan, Dave, Elena}, {Chris, Elena, Fred} yes
Fred {Beth, Dave, Fred}, {Chris, Elena, Fred} yes




Axiom 3 says “No two members may be together on more than one committee.” For
this axiom, we have to look at all 15 pairs of members and make sure that none of
the pairs is on more than one committee. So it is acceptable to have the pair of
members be on zero committees or one committee, but not two or more.

Pair of Members | Committee(s) Number < 1?
Alan & Beth {Alan, Beth, Chris} |yes
Alan & Chris {Alan, Beth, Chris} |yes
Alan & Dave {Alan, Dave, Elena} |yes
Alan & Elena {Alan, Dave, Elena} |yes
Alan & Fred none yes
Beth & Chris {Alan, Beth, Chris} |yes
Beth & Dave {Beth, Dave, Fred} |yes
Beth & Elena none yes
Beth & Fred {Beth, Dave, Fred} |yes
Chris & Dave none yes
Chris & Elena {Chris, Elena, Fred} |yes
Chris & Fred {Chris, Elena, Fred} |yes
Dave & Elena {Alan, Dave, Elena} | yes
Dave & Fred {Beth, Dave, Fred} |yes
Elena & Fred {Chris, Elena, Fred} | yes

3.1 Property of Axiomatic System

Independent

An axiom is called independent if it cannot be proven from the other axioms.

Example:

Consider Axiom 1 from the Committee system. Let’s omit it and see what kind of

model we can come up with.

Members

Adam, Brian, Carla, Dana

Committees

{Adam, Brian}
{Brian, Carla, Dana}
{Adam, Carla}
{Dana}




Notice that we found a model where Axiom 1 is not true; we have committees that
do not have exactly three members. Since all of the other axioms are true in this
model, then so is any statement that we could prove using those axioms. But since
Axiom 1 is not true, it follows that Axiom 1 is not provable from the other axioms.
Thus Axiom 1 is independent.

Consistency

If there is a model for an axiomatic system, then the system is called consistent.
Otherwise, the system is inconsistent. In order to prove that a system is consistent,
all we need to do is come up with a model: a definition of the undefined terms
where the axioms are all true. In order to prove that a system is inconsistent, we
have to somehow prove that no such model exists (this is much harder!).

Example: The following axiomatic system is not consistent
Undefined Terms: boys, girls

Al. There are exactly 2 boys.

A2. There are exactly 3 girls.

A3. Each boy likes exactly 2 girls.

A4. No two boys like the same girl.

Completeness
An axiomatic system is complete if every true statement can be proven from the
axioms.

Example:

Twin Primes Conjecture: There are an infinite number of pairs of primes whose
difference is 2.

Some examples of “twin” primes are 3 and 5, 5 and 7, 11 and 13, 101 and 103, etc.
Computers have found very large pairs of twin primes, but so far no one has been
able to prove this theorem. It is possible that a proof will never be found.

Categorical

An axiomatic system is categorical if (informally put) all systems obtained by
giving specific interpretations to the undefined terms of the abstract systems all
essentially the same.

Example: -



Undefined terms (points, Lines)
Axioms for the Four Point Geometry:

1. Each line is a set of four point
2. Each point is contained by precisely two line
3. Two distinct lines intersect at exactly one point

Is non categorical

3.2 Four Line Geometry

The Axioms for the Four Line Geometry:

Ax1. There exist exactly 4 lines.

Ax2. Any two distinct lines have exactly one point on both of them.

Ax3. Each point is on exactly two lines.

Theorem 1: The four-line geometry has exactly six points.

There are exactly 6 pairs of lines (4 choose 2), and every pair meets at a point.
Since each point lies on only two lines by Ax3, these six pairs of lines give 6
distinct points. To prove the statement, we need to show that there are no more
points than these 6. However, by axiom 3, each point is on two lines of the
geometry and every such point has been accounted for there are no other points

Theorem 2: Each line of the four-line geometry has exactly 3 points on it.
Proof:

Consider any line. The three other lines must each have a point in common with the
given line (Axiom 2).

These three points are distinct, otherwise Axiom 3 is violated.

There can be no other points on the line since if there was, there would have to be
another line on the point by Axiom 3 and we can't have that without violating
Axiom 1



3.3 Fano’s Geometry

Ax1. There exists at least one line.

Ax2. Every line of the geometry has exactly 3 points on it.

Ax3. Not all points of the geometry are on the same line.

Ax4. For two distinct points, there exists exactly one line on both of them.

AX5. Each two lines have at least one point on both of them.

Theorem 1: Each two lines have exactly one point in common.
Proof:

Assume that two distinct lines [ #= m have two distinct points in common P and Q.
(C! Ax4) since these two points would then be on two distinct lines.

Theorem 2: Fano's geometry consists of exactly seven points and seven lines.
Proof:

First, we have to show that there are at least 7 points and seven lines (by drawing)
Assume that there is an 8th point.

By axiom 4 it must be on a line with point 1.

By axiom 5 this line must meet the line containing points 3,4 and 7.

But the line cannot meet at one of these points (C! Ax4)

So the point of intersection would have to be a fourth point on the line 347(C!
AX2).

Thus there are exactly seven points and seven lines.



4.1 Euclid’s Axioms of Geometry

Let the following be postulated
1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.

5. That, if a straight line falling on two straight lines make the interior angles on the
same side less than two right angles, the two straight lines, if produced indefinitely,
meet on that side on which are the angles less than two right angles.

(Euclid’s Parallel Postulate)

4.2 Hilbert’s Axioms of Geometry

Undefined Terms: point, line, incidence, betweenness, and congruence.

Incidence Geometry

AXI0M I-1: For every point P and for every point Q not equal to P there exists a unique
line ¢ that passes through P and Q.

AXIOM I-2: For every line / there exist at least two distinct points incident with ¢ .

AXIOM I-3: There exist three distinct points with the property that no line is incident with
all three of them.

Betweenness Axioms

AxXioM B-1: If A * B * C , then A, B, and C are three distinct points all lying on the same
lineand C * B * A.

AXIOM B-2: Given any two distinct points B and D, there exists points A, C, and E lying
on BD suchthat A* B*D,B+C+D,andB* D * E .

Axiom B-3: If A, B, and C are three distinct point lying on the same line, then one and
only one of the points is between the other two.

Axiom B-4: (Plane Separation Axiom) For every line ¢/ and for any three points A, B,
and C not lyingon ¢ :

(1) IfA and B are on the same side of ¢ and B and C are on the same side of ¢ , then
A and C are on the same side of / .

(i) If A and B are on opposite sides of ¢ and B and C are on opposite sides of / ,
then A and C are on the same side of ¢ .



Congruence Theorems

Axiom C-1: If A and B are distinct points and if A’ is any point, then for each ray r
emanating from A’ there is a unique point B’ on r such that B + A and AB = A'B' .

Axiom C-2: If AB = CD and AB = EF , then CD = EF . Moreover, every segment is
congruent to itself.

Axiom C-3: I[fAxBxC,A' *B'"«C', AB = A’'B',and BC = B'C’, then AC = A'C’".

Axiom C-4: Given any £BAC and given any ray A'B’' emanating from a point A’, then
there is a unique ray A'C’ on a given side of line A'B' such that 4BAC = «B'A'C'.

Axiom C-5: If £A = /B and 4B = +C , then £A = +C . Moreover, every angle is
congruent to itself.

Axiom C-6: (SAS) If two sides and the included angle of one triangle are congruent
respectively to two sides and the included angle of another triangle, then the two
triangles are congruent.

Axioms of Continuity

Archimedes’ Axiom: If AB and CD are any segments, then there is a number n such

that if segment CD is laid off n times on the ray AB emanating from A, then a point E is
reached wheren- CD = AE and B is between A and E.

Dedekind's Axiom: Suppose that the set of all points on a line / is the union £; U X, of
two nonempty subsets such that no point of £, is between two points of X, and vice versa.

Then there is a unique point, 0, lying on ¢ such that P, * O * P, if and only if P, € ¥, and
P,€X,and O # P, P,.

Elementary Continuity Principle: If one endpoint of a segment is inside a circle and
the other outside, then the segment intersects the circle.

Circular Continuity Principle: If a circle y has one point inside and one point outside
another circle y', then the two circles intersect in two points.

Axiom of Parallelism

Euclidean Parallel Postulate: Through a given external point there is at most one-
line parallel to a given line.

4.3 Birkhoff’s Axioms of Geometry

B1. There exist nonempty subsets of the plane called lines, with the property that each two
points belong to exactly one line.

B2. Corresponding to any two points A and B in the plane there exists a unique real
number d(AB) = d(BA), the distance from A to B, which is 0 if and only if A = B.



B3. (Birkhoff Ruler Axiom) If k is a line and R denotes the set of real numbers, there exists
a one-to-one correspondence (X — x) between the points X in k and the numbers x €
R such that d(4, B) = |a - b| where A —» a and B —b.

B4. For each line k there are exactly two nonempty convex sets R’ and R" satisfying
a) R'Uk UR" is the entire plane,
b) RRnR"=@¢,R"nk=0¢,andR" n k =@,
c) fXeRandY e R”" thenXY nk # Q.

B5. For each angle £ABC there exists a unique real number x with 0 < x < 180 which is
the (degree) measure of the angle x = 2ZABC®.

B6. If ray BD lies in 2ABC , then 2ABD® + £DBC°® = £ABC® .

B7. If AB is a ray in the edge, k, of an open half plane H(k; P) then there exist a one-to-
one correspondence between the open rays in H(k; P) emanating from A and the set

of real numbers between 0 and 180 so that if AX — x then ZBAX° = x .

B8. (SAS) If a correspondence of two triangles, or a triangle with itself, is such that two
sides and the angle between them are respectively congruent to the corresponding
two sides and the angle between them, the correspondence is a congruence of
triangles.

Bo. (Euclidean Parallel Postulate) Through a given external point there is at most one-line
parallel to a given line.

Exercise 1.1. Consider the following axiom set.

Postulate 1. There are at least two buildings on campus.

Postulate 2. There is exactly one sidewalk between any two buildings.
Postulate 3. Not all the buildings have the same sidewalk between them.
a. What are the primitive terms in this axiom set?

b. Deduce the following theorems:

Theorem 1. There are at least three buildings on campus.

Theorem 2. There are at least two sidewalks on campus.

c. Show by the use of models that it is possible to have

exactly two sidewalks and three buildings;

at least two sidewalks and four buildings; and,



exactly three sidewalks and three buildings.
d. Is the system complete? Explain.
e. Find two isomorphic models.

f. Demonstrate the independence of the axioms.

Exercise 1.2. Consider the following axiom set.

Al. Every hive is a collection of bees.

A2. Any two distinct hives have one and only one bee in common.
A3. Every bee belongs to two and only two hives.

A4. There are exactly four hives.

a. What are the undefined terms in this axiom set?

b. Deduce the following theorems:

T1. There are exactly six bees.

T2. There are exactly three bees in each hive.

T3. For each bee there is exactly one other bee not in the same hive with it.
c. Find two isomorphic models.

d. Demonstrate the independence of the axioms.

Exercise 1.3. Consider the following axiom set.
P1. Every herd is a collection of cows.

P2. There exist at least two cows.

P3. For any two cows, there exists one and only one herd containing both cows.

P4. For any herd, there exists a cow not in the herd.

P5. For any herd and any cow not in the herd, there exists one and only one other

herd containing
the cow and not containing any cow that is in the given herd.

a. What are the primitive terms in this axiom set?



b. Deduce the following theorems:

T1. Every cow is contained in at least two herds.
T2. There exist at least four distinct cows.

T3. There exist at least six distinct herds.

c. Find two isomorphic models.

d. Demonstrate the independence of the axioms.



Chapter Two

Basic Resultsin Book | of the
Elements

2.1 Thefirst 28 propositions

A planegeometryis “neutral’ if it doesnotincludea parallelpostulateor its logical consequences.
Thefirst 28 propositionsof Book | of Euclid’s Elementsareresultsin a neutralgeometrythatare
provedbasednthefirst 4 axiomsandthecommonnotions.

Proposition I.1. To construcianequilaterakriangle.

Proposition 1.2. To placea straightline equalto a givenstraightline with oneendat a givenpoint.
Proposition 1.3. To cut off from the greaterf two givenunequaktraightlinesa straightline equal
totheless.

Proposition 1.4. (SAS) If two triangleshavetwo sidesequalto two sidesrespectivelyandhavethe
anglescontaineddy the equalstraightlinesequal thentheyalsohavethe baseequalto thebasethe
triangleequalgo thetriangle,andtheremaininganglesequalthe remaininganglesrespectively.
Proposition I.5. In isosceledriangles,the anglesat the baseequalone another;andif the equal
straightlinesareproducedurther,thentheanglesunderthebaseequaloneanother.

Proposition 1.6. If in a triangletwo anglesequalone anotherthenthe sidesoppositethe equal
anglesalsoequaloneanother.

Proposition |.7. Giventwo straightlinesconstructedrom the endsof a straightline andmeetingin
apoint,therecannotbe constructedrom the endsof the samestraightline, andon the sameside of
it, two otherstraightlinesmeetingin anothepointandequalto theformertwo respectivelynamely
eachequalto thatfrom the sameend.

Proposition 1.8. (SSS)If two triangleshavethe two sidesequalto two sidesrespectivelyandalso
havethe baseequalto the base thenthey also havethe anglesequalwhich are containedby the
equalstraightlines.

Proposition 1.9. To bisecta givenrectilinearangle.

Proposition 1.10. To bisecta givenfinite straightline.

Proposition I.11. To drawa straightline at right anglesto a givenstraightline from a givenpoint
onit.



Proposition 1.12. To draw a straight line perpendicular to a given infinitaigfht line from a given
point not on it.

Proposition 1.13. If a straight line stands on a straight line, then it makésegitwo right angles or
angles whose sum equals two right angles.

Proposition 1.14. If with any straight line, and at a point on it, two straigimds not lying on the
same side make the sum of the adjacent angles equal to twarigles, then the two straight lines
are in a straight line with one another.

Proposition 1.15. If two straight lines cut one another, then they make thécadrangles equal to
one another.

Proposition I.16. (Exterior Angle Theorem) In any triangle, if any one of thees is produced, the
exterior angle is greater than either of the interior andosjtp angles.

Proposition 1.17. In any triangle, two angles taken together in any mannetemethan two right
angles.

Proposition I.18. In any triangle, the angle opposite the greater side isgrea

Proposition 1.19. In any triangle, the side opposite the greater angle isgrea

Proposition 1.20. In any triangle, the sum of any two sides is greater thandh®aining one.
Proposition 1.21. If from the ends of one of the sides of a triangle two straligitgs are constructed
meeting within the triangle, then the sum of the straightdiso constructed is less than the sum of
the remaining two sides of the triangles, but the construsteaight lines contain a greater angle
than the angle contained by the remaining two sides.

Proposition 1.22. To construct a triangle out of three straight lines whichadhree given straight
lines: thus it is necessary that the sum of any two of thegttdines should be greater than the
remaining one.

Proposition 1.23. To construct a rectilinear angle equal to a given rec@iragle on a given straight
line and at a point on it.

Proposition 1.24. If two triangles have two sides equal to two sides respelgtibut have one of
the angles contained by the equal straight lines greatarttteother, then they also have the base
greater than the base.

Proposition 1.25. If two triangles have two sides equal to two sides respelstibut have the base
greater than the base, then they also have one of the angltsirad by the equal straight lines
greater than the other.

Proposition 1.26. (ASA or AAS) If two triangles have two angles equal to two Esgespectively,
and one side equal to one side, namely, either the side aujdime equal angles, or that opposite
one of the equal angles, then the remaining sides equalrtiemang sides and the remaining angles
equals the remaining angle.

Proposition 1.27. If a straight line falling on two straight lines make theesitate angles equal to
one another, then the straight lines are parallel to onenanot

Proposition 1.28. If a straight line falling on two straight lines make theerr angles equal to the
interior and opposite angle on the same side, or the sum aftié¥@or angles on the same side equal
to two right angle, then the straight lines are parallel te another.

Proposition 1.1, 1.2, and 1.3 are basically proved by candion using straightedge and compass.
Proposition 1.4 (SAS) is deduced by means of the uniquenessaight line segment joining two



points. Apparently Euclid places it early in his list so thatcan make use it in proving later results.
Before we proceed, let’s state the definition obhgruent triangleé

Definition 2.1 Two triangles are “congruent” if and only of there is some “wao match vertices
of one to the other such that corresponding sides are equahigth and corresponding angles are
equal in size.

If AABC'is congruenttdA XY Z, we shall use the notatioch ABC = AXY Z. ThusAABC =
AXYZifandonlyif AB = XY, AC = XZ, BC =YZ and/ZBAC = /YXZ,/CBA =
LY X, /JACB =/XZY.

A X

Figure 2.1: Congruent triangles

Let's state and prove proposition I.5 and 1.6 in modern laggu

Proposition I.5. InAABC, if AB = AC, then/ABC = ZAC B, same for the exterior angles at
BandC.

Proof. Let the angle bisector of A meetBC at D. Then by (SAS)ABAD = ACAD. Thus
/ABC = ZACB. (Alternatively, takeD to be the midpoint o3C and use (SSS) to conclude that
ABAD = ACAD.)

2.2 Pasch’s axiom

There is a hidden assumption that the bisector actuallysets the third side of the triangle. This
seems intuitively obvious to us, as we see that any trianggeam fnside’ and an ‘outside” That

is “the triangle separates the plane into two regiowhich is a simple version of the Jordan curve
theorem! In fact, Euclid assumes this separation propeittyowt proof and does not include it as
one of his axioms. Pasch (1843-1930) was the first to notisdttiden assumption of Euclid. Later
he formulates this property specifically; and it is now knaasgriPasch’s axiorh

A

Figure 2.2: Pasch’s axiom



Pasch’s axiomLet ¢ be a line passing through the sideB of a triangle ABC. Then/ must pass
through a either a point oalC or on BC.

Proposition 1.6. In AABC, if ZABC = ZACB, thenAB = AC.

Proof. Supposed B # AC. Then one of them is greater. L&3 > AC'. Mark off a pointD on AB
such thatbB = AC. AlsoCB = BC andZACB = ZDBC. Thus trianglesAC B is congruent
to triangle D BC, the less equal to the greater, which is absurd. Therefdéte= AC.

A
D

Figure 2.3: Proposition 6

Similarly, it is not true thatd B < AC'. ConsequentlyAB = AC.

Propositions 1.7 and 1.8 are the (SSS) congruent criterPraposition 1.7 is self-evident by con-
struction and proposition 1.8 follows from 1.7. Proposit®l.9 to 1.15 follow from definitions and

construction. Propositions .16 and 1.17 are discussethépter 1. The proofs use crucially axiom
1land?2.

Proposition 1.18. In the triangleABC, if AB > AC, thenZC > /B.
Proof. Mark off a pointD on AB such thatAD = AC.

A

Figure 2.4: Proposition 18

By proposition 1.5/ADC = ZACD. Thus/ZC > ZACD = LADC > /B by the exterior angle
theorem (proposition 1.16).

Proposition 1.19. In the triangleABC, if /B > /C, thenAC > AB.
Proof. If AB = AC, then by proposition 1.5 we haweB = ZC. If AB > AC, then by proposition
18 we have/C > ZB. Thus both cases lead to a contradiction. Hence, we mustAd@ve AB.

Proposition 1.20. (Triangle Inequality) For any trianglé BC, AB + BC > AC.
Proof. Exercise.



Proposition 1.21. Let D be a point inside the trianglé BC. ThenAB + AC > DB + DC and
/BDC > /BAC.

Figure 2.5: Proposition 21

Proof. This follows from the triangle inequality (propositior2Q) and the exterior angle theorem
(proposition 1.16).

Also Proposition 1.22 follows from the triangle inequalifgroposition 1.20). Proposition 23 is on
copying an angle by means of a straightedge and a compaas.begustified using (SSS) condition.

Proposition 1.24. For the trianglesA BC and PQ R with AB = PQ andAC = PR, if /A > /P
thenBC > QR.

Proof. Stack the trianglé’Q R onto ABC' so thatP@Q matches withAB. Since/A > /P, the ray
AR is within ZBAC'. Join BR andC R. Supposer is outside the trianglel BC.

P=A

Figure 2.6: Proposition 24

As AC = AR (or PR), ZARC = ZACR. Thus/BRC > /ARC = ZACR > /BCR.
Therefore, BC > QR. We leave it as an exercise for the case wheis insideABC'.

Proposition 1.25. For the trianglesA BC and PQ R with AB = PQ andAC = PR, if BC > QR,
thenZA > /P.

Proof. If ZA = ZP, then by (SAS) the two triangles are congruent. Bdt # QR, we have a
contradiction. IfZA < ZP, then by proposition 1.24BC < @R, which also contradicts the given
condition. Thus we must havéA > /P.



Proposition 1.26. (ASA) For the trianglesABC and PQR, if £/B = £Q,ZC = ZR andBC =
QRthenAABC = APQR.

Proof. SupposedB > P(Q. Mark off a pointD on AB such thatBD = QP. Then by (SAS),
DBC = PQRsothatBCD = ZQRP = ZR. Butthen/BCD < /C = /R, a contradiction.

A
D

B e} Q R
Figure 2.7: Proposition 26

Similarly we get a contradiction iIRB < PQ. ThusAB = PQ. Then by (SAS)AABC =
APQR. The (AAS) case is left as an exercise.

Exercise 2.1: If two sides of a triangle are equal, the line which bisects the angle between
the equal sides bisects the third side.

Exercise 2.2: If two sides of a triangle are equal, the line joining the corner (or vertex)
between the equal sides and the mid-point of the third side bisects the angle between
the equal sides.

Exercise 2.3: line PM is perpendicular to line AB at point M and PM bisects AB at M
Prove that PA =PB.

Exercise 2.4: If two angles of a triangle are equal, the sides opposite these angles are equal.
Exercise 2.5: If a quadrilateral has three right angles, its fourth angle is a right angle also.

Exercise 2.6: If two sides of a quadrilateral are equal and parallel, the quadrilateral is
a parallelogram.

Exercise 2.7: A radius perpendicular to a chord of a circle bisects the chord.
Exercise 2.8: The sum of the angles of a triangle is two right angles.
Exercise 2.9: Equal chords of a circle are equally distant from the center of the circle.

Exercise 2.10: The opposite angles of a parallelogram are equal.



Chapter Three

Triangles

In this chapterwe provesomebasicpropertief trianglesin Euclideangeometry.

3.1 Basicproperties of triangles

Theorem 3.1 (Congruent Triangles) GiventwotrianglesABC and A’ B'C’,

A A’

B a c B’ / c’

Figure 3.1: Congruent Triangles

the following statements are equivalent.

(a) AABC'is congruenttaNA’B'C’. (AABC = ANA’B'C")
(b)ya=d,b="0b,c=c".(SSS)

©b=V,2A=2A", c= . (SAS)
(dyLA=2A"b=V,2C = ZC'. (ASA)

(e)£A=/A", /B =/B' a=ad.(AAS)

Theorem 3.2 Given two trianglesABC and A’ B'C’ where/ZC = £C' = 90°,

A A’
c b c v
B a C B’ / c’

Figure 3.2: Congruent right Triangles



the following statements are equivalent.

(a) N ABC =2 NA'B'C".
(b)£C =2C"=90°,a=a',c = . (RHS)
(b) £C = 2C"=90°,b=1V,c= . (RHS)

Theorem 3.3 (Similar triangles) Given two trianglesABC and A’ B'C’,

Al

Figure 3.3: Similar Triangles

the following are equivalent.

(a) AABC is similar toAA’B'C". (ANABC ~ NA'B'C")
(b)£ZA=/A"and/B = /B'.

(c)ZA=/A"andb: b =c: .

(a:d=b:b =c:.

Theorem 3.4 (The midpoint theorem) Let D and E be points on the sided B and AC of the
triangle ABC respectively. Thed D = DB andAE = EC if and only if DE is parallel to BC
andDE = }BC.

B c

Figure 3.4: The midpoint theorem

D

Q

A E M C B

Figure 3.5: The midpoint ofiC is F



Example 3.1 In figure 3.5, M, N, and P are respectively the mid-points of the line segments
AB,CD and BD. Let @ be the mid-point ofM/ N and let PQ be extended to meetB at E.
Show thatAE = EC.

Solution. Join N P. BecauseV is the mid-point ofC'D and P is the midpoint of BD, we have
NP is parallel toAB. SinceNQ = MQ, we see thath\ N PQ is congruent toAM EQ. Thus
EM = NP = %BC. Therefore2EM = BC = MB — MC = AM — MC = AC —2MC =

AC —2(EC — EM) = AC — 2EC + 2EM. ThusAC = 2EC andE is the mid-point ofAC.

Definition 3.1 For any polygonal figured; A, - - - A,,, the area bounded by its sides is denoted by
(A1As -+ Ap).

For example ifABC is a triangle, thef ABC') denotes the area @k ABC; and if ABCD is a
quadrilateral, thetABC D) denotes its area, etc.

Theorem 3.5 (Varignon) The figure formed when the midpoints of the sides of a quadrdbare
joined is a parallelogram, and its area is half that of the quitateral.

Proof. Let P,@Q, R, S be the midpoints of the side4B, BC,CD, DA of a quadrilateral respec-
tively. The fact thatPQ RS is a parallelogram follows from the midpoint theorem. EveBC D is
a “cross-quadrilaterdl, the result still holds.

Figure 3.6: Varignon’s theorem

As for the area, we have

(PQRS) = (ABCD) — (PBQ) — (RDS) — (QCR) — (SAP)
= (ABCD) — 1(ABC) — 1(CDA) — 1(BCD) — L(DAB)
= (ABCD) — L(ABCD) — L(ABCD)
= L(ABCD).

If “ sign ared is used, the result still holds.

Theorem 3.6 (Steiner-Lehmus)Let BD be the bisector of B and letC' E be the bisector of C.
The following statements are equivalent:

(8) AB = AC
(b) 2B = /C
(c)BD = CE



B C

Figure 3.7: Steiner-Lehmus Theorem

The result on (c) implies (a) is called the Steiner-Lehmusdrbm. The proof relies on two lemmas.

Lemma 3.7 If two chords of a circle subtend different acute angles ahfsoon the circle, the
smaller angle belongs to the shorter chord.

Proof. Two equal chords subtend equal angles at the center antleeggles (half as big) at suitable
points on the circumference. Of two unequal chords, thetehdoeing farther from the center,
subtends a smaller angle there and consequently a smalteramgle at the circumference.

Lemma 3.8 If a triangle has two different angles, the smaller angle Haslonger internal angle
bisector.

Proof. Let ABC' be the triangle with/B > ZC. Let's take = $/B andy = 1/C. Thus
8 > ~. Let BE andCF be the internal angle bisectors at angléand C' respectively. Since
/EBF = (8 > ~, we can mark off a poin¥ onCF suchtha EBM = ~. ThenB,C, E, M lie
on acircle.

Figure 3.8: The smaller angle has the longer internal angéstor



Note that3 +~v < B+~ + 3£A = 90°. Also ZC = 2y < B+~ = ZOCBM. HenceCF > CM >
BE. To prove the theorem, we prove by contradiction. SupptSe> AB. Then/B > /C. By
lemma 2,C'F > BFE, a contradiction. Can you produce a constructive proof isfrisult?

Theorem 3.9 (The angle bisector theorem)f AD is the (internal or external) angle bisector of
ZAinatriangle ABC, thenAB : AC = BD : DC.

E

s}
v
Q

Figure 3.9: Angle bisectors

Proof. The theorem can be proved by applying sine laudntd BD andA AC D. An alternate proof
is as follow. Construct a line througB parallel to AD meeting the extension @f'A at £. Then
/ABE = /BAD = /DAC = ZAEB. ThusAE = AB. SinceACAD is similar toACE B,we
haveAB/AC = AE/AC = BD/DC. The proof for the external angle bisector is similar.

mn

Theorem 3.10 (Stewart) If B _ ™ thennAB? + mAC? = (m + n)AP? + —BC2.
PC n m+n

A

B m P n C

Figure 3.10: Stewart’s theorem
Proof. Apply cosine law to the triangled BP and APC for the two complementary anglesat
Theorem 3.11 (Pappus’ theorem)Let P be the midpoint of the sidBC of a triangle ABC. Then

AB? + AC? = 2(AP? + BP?).

3.2 Special points of a triangle

1. Perpendicular bisectors The three perpendicular bisectors to the sides of a taAfC' meet
at a common poin®, called thecircumcentreof the triangle. The poin® is equidistant to the three



vertices of the triangle. Thus the circle centre@atith radiusO A passes through the three vertices
of the triangle. This circle is called th@rcumcircle of the triangle and the radiug is called the
circumradiusof the triangle.

Figure 3.11: Perpendicular bisectors

b c
sin A - sin B - sinC -
2. Medians The 3 mediansAD, BE andCF of AABC are concurrent. Their common point,
denoted by, is called thecentroidof AABC.

For any triangleA BC' with circumradiusR, we have theine rule 2R.

A

Figure 3.12: Medians

We have

(1) (AGF)=(BGF) = (BGD) = (CGD) = (CGE) = (AGE).
(2) AG:GD=BG:GE=CG:GF =2:1.

(3) (Apollonius'theorem)

AD? = L1 + ) — 12,
BE? = 1(c® + a?) — 1b%,
CF? = 1(a®* +b%) — 1%



3. Angle bisectors The internal bisectors of the 3 angles®fA BC are concurrent. Their common
point, denoted by, is called thencentreof AABC. Itis equidistant to the sides of the triangle. Let
r denote the distance frohto each side. The circle centredlatvith radiusr is called thdncircle

of AABC, andr is called thanradius

Figure 3.13: Angle bisectors

Lets = %(a + b+ c) be thesemi-perimeterWe have

1) x=s—a,y=s—bandz=s—c.
(2) (ABC) =sr.
(3) abc = 4srR.

To prove (3), we havésrR = 4(ABC)R = 2(absin C')R = abc.
Exercise 3.1Prove thatin 4 = (2b2¢% + 2c¢%a? + 2a2b — a* — b* — ¢*)2 /(2bc).

4. Altitudes. The 3 altitudesAD, BE andC'F of AABC are concurrent. The point of concurrence,
denoted byH, is called theorthocentreof AABC'. The triangleD E'F' is called theorthic triangle
of AABC'. We have the following result.

Theorem 3.12 The orthocentre of an acute-angled triangle is the inceatrigs orthic triangle.

Figure 3.14: Altitudes



Example 3.2 Show that the three altitudes of a triangle are concurrent.

Solution. Draw linesPQ, Q R, RP throughC, A, B and paralleltdd B, BC, C A respectively. Then
PQR forms a triangle whose perpendicular bisectors are thii@ds of the trianglel BC'.

R A Q

P

Figure 3.15: The three altitudes of a triangle are conctirren

Exercise 3.2In an acute-angled ABC, AB < AC, BD andCF are the altitudes. Prove that
() BD<CFE

(i) AD < AE

(i) AB? + CE? < AC? + BD?

(v) AB+CE < AC + BD.

(v) Isittrue thatAB™ + CE™ < AC™ 4+ BD" for all positive integen?

A

B C

Figure 3.16:AB% + CE? < AC? + BD?

Exercise 3.3 Prove Heron’s formula that for a triangeBC, we have

(ABC) = \/s(s —a)(s — b)(s — ¢).
Exercise 3.4 Prove that ifl is the incentre of the trianglé BC, thenAI? = be(s — a)/s.

Exercise 3.5 Prove that for any triangld BC,

cos? é = ss—a) and sin? = = 7(8 — (s - C).

2 be 2 be




5. External bisectors The external bisectors of any two anglesofi BC' are concurrent with the
internal bisector of the third angle.

Figure 3.17: External angle bisectors

We call the circles centred &%, I, I. with radiir,, 74, 7. respectively thexcirclesof the AABC,
their centred,, I, I.., theexcentresand their radiir,, ry, 7. the exradii. Note that
(1) AY,=AZ,=BZ,=BX,=CX.=CY,.=s.

[24Y, = AY, + AZ, = AB + BZ, + AC + CY, = AB + BX, + X,C + AC =
AB + BC + AC = 2s.]

(2) BX.=BZ.=CXy=CY, =s—a.[BX.=CX.—BC =5s—al]

CY, =CX, =AY, =AZ,=s—b.

AZy = AY, = BZ, = BX, = s — c.
38) (ABC)=(s—a)rg=(s—b)ry = (s —c)re.

[(ABC) = 11,Z, - AB+31,Y,- AC — 11,X, - BC = iro(c+b—a) =ro(s —a).]
@) St t=1

T



(5) AABC isthe orthic triangle o\ I, I} 1.

Exercise 3.6 Prove that- + L + L=1

T

Exercise 3.7 Prove the identity
abc=s5(s=b)(s—c)+s(s—c)(s—a)+s(s—a)(s—b)—(s—a)(s—b)(s—c),
where2s =a + b+ c.

Exercise 3.8ProvethatR =r, +7p + 7. — 7T

3.3 The nine-point circle

Theorem 3.13 Let L be the foot of the per-
pendicular fromO to BC. ThenAH =
20L.

Proof. As AAEB is similar to AOLB
with AB : OB = c¢: R = 2sinC, we have
AE : OL = 2sinC. On the other hand,
/AHE = /C sothatAE : AH = AD :
AC =sinC. ConsequentlyAH = 20L.
Alternatively, extend”O meeting the cir-
cumcircle of AABC at the pointP. Then
APBH is a parallelogram. ThudH =

PB =20L. Figure 3.18

Theorem 3.14 The circumcentreD, cen- A

troid G and orthocentred of AABC are
collinear. The centroid divides the seg-
mentOH into the ratiol : 2.

The line on whichO, G, H lie is called the o
Euler lineof AABC. i

Proof. Since AH and OL are parallel, B T C
/HAG = ZOLG. Also AH = 2LO and
AG = 2LG. ThusAHAG is similar to
AOLG so thatZAGH = ZLGO. There-

fore H are collinear.
0.G, ! Figure 3.19

Let N be the midpoint oD H, whereO is the circumcentre anff is the orthocentre o ABC.
Using the fact thaDG : GH = 1 : 2, we haveNG : GO =1 : 2. SinceGL : GA =1 :2

10



and/NGL = ZOGA, we see thah NG L is similar to AOGA. ThusN L is parallel toOA and
NL : OA =1 : 2. If we take H; to be the midpoint ofAH, thenL, N, H, are collinear,N H;
is parallel toOA and NH; = %OA. SinceN is the midpoint ofOH, we also haveVD = NL.
ConsequentlyND = NL = NH; = §0A = {R.

Alternatively, if we takeH;=midpoint of AH, then AN H H; is congruent toANOL because
HH, = %AH = OL,NH = NO,/HHN = Z/LON. ThenL, N, H, are collinear. Thus
NH;=NL=ND = %OA. [HereG is not involved in the proof.]

A

Figure 3.20: The Nine-point Circle

Theorem 3.15 (The Nine-point Circle) The feet of the three altitudes of any triangle, the midmoint
of the three sides, and the midpoints of the segments frothrievertices to the orthocentre, all lie
on the same circle of radiu1§R with centre at the midpoint of the Euler line. This circle isokvn
as the nine-point circle or the Euler circle of the triangle.

Exercise 3.9 Suppose the Euler line passes through a vertex of the teéa&giow that the triangle
is either right-angled or isosceles or both.

11



Chapter Four

Quadrilaterals

Quadrilateralsare 4-sidedpolygons. Among themthosewhoseverticeslie on a circle are called
cyclic quadrilateralsCyclic quadrilateral@rethe simplestobjectslike trianglesin planegeometry
andthey possessemarkableproperties.In this chapterwe shall exploresomebasicpropertiesof

guadrilateralsn Euclideangeometry.

4.1 Basicproperties

1. For a quadrilateralABC'D, the following
statementgreequivalent:

(i) ABCD is aparallelogram.

(i) AB || DC andAD | BC.

(i) AB = DC andAD = BC.

(iv) AB || DC andAB = DC.

(v) AC andBD bisect each other.

2. For a parallelogramd BC D, the following
statements are equivalent:

(i) ABCD is arectangle.

(i) LA =90°.

(i) AC = BD.

3. For a parallelogramd BC'D, the following
statements are equivalent:

(i) ABCD is arhombus

(i) AB = BC.

(i) AC L BD.

(iv) AC bisects/A.

Figure 4.1
D, c
A B
Figure 4.2
D, c
A B

Figure 4.3



Example 4.1 In the figure ,F, I are the mid-
points of AB and BC' respectively. Suppose
DFE and DF intersectAC at M and N re-
spectively such thaltM = MN = NC.
Prove thatd BC'D is a parallelogram.

Figure 4.4

Solution. Join BM andBN. Let BD intersectAC atO. As AE = EB, AM = MN, we have
EM is parallel toBN. Similarly, BM is parallel toF’ N. Therefore, BM DN is a parallelogram.
From this, we hav® B = OD andOM = ON. SinceAM = NC, we also havé& A = OC'. Now
the diagonals oA BC D bisect each other. This means tla#BC D is a parallelogram.

Theorem 4.1 The segments joining the midpoints of pairs of oppositesside quadrilateral and
the segment joining the midpoints of the diagonals are corotand bisect one another.

Figure 4.5:XY passes througt

Proof. Consider a quadrilaterad BC' D with midpointsE, F', G, H of its sides as shown in the
figure. By Varignon’'s theoremi FGH is a parallelogram. Thus the diagondlé; and I'H of
this parallelogram bisect each other. Now consider the ijjatetal (a crossed-quadrilateral in the
figure) ABDC. By Varignon's theorem, the midpoinis, Y, G, X of its sides form a parallelogram.
Thus EG and XY bisect each other. Consequently(z, FH and XY are concurrent at their
common midpoin®.

Definition 4.1 A quadrilateral ABC'D is called a cyclic quadrilateral if its 4 vertices lie on a
common circle. In this case the 4 poildsB, C, D are said to be concyclic.

Regarding cyclic quadrilaterals, we have the followingrelagerizations.

Theorem 4.2 Let ABC' D be a convex quadrilateral. The following statements ard\edent.
(a) ABCD is a cyclic quadrilateral.

(b) /BAC = /BDC.

(c) LA+ ZC = 180°.

(d)ZABE = /D.



Figure 4.6: A cyclic quadrilateral

Proof. That (a) implies (b) follows from the property of circlessmely the angle subtended by a
chord at any point on the circumference and on one side ofltbedds a constant. To prove (b)
implies (c), observe thak AP B is similar toADPC. This in turn implies thah AP D is similar to
ABPC. Thus/BAC = /BDC, /ABD = /ACD, /CAD = /CBD and/ADB = Z/ACB.
Therefore/A+/C = Z/BAC+/CAD+ /ACB+/ACD = {(LA+/B+/C+ /D) = 180°.
That (c) is equivalent to (d) is obvious. The part that (d) liegp(a) is left as an exercise.

Exercise 4.1 Suppose the diagonals of a cyclic quadrilated#C' D intersect at a poinP. Prove
thatAP - PC = BP - PD.

Theorem 4.3 If a cyclic quadrilateral has perpendicular diagonals irdecting atP, then the line
through P perpendicular to any side bisects the opposite side.

Proof. Let X H be the line througtP perpendicular taBC. We wish to proveX is the midpoint of
AD.

Figure 4.7: A cyclic quadrilateral with perpendicular diagls

We have/DPX = /BPH = /PCH = ZACB = ZADB = /X DP. Thus the triangle&X PD
is isosceles. Similarly, the trianglé AP is isosceles. ConsequeniifyA = X P = X D.



4.2 Ptolemy’s theorem

Theorem 4.4 (The Simson line)The feet of the perpendiculars from any pafhbn the circumcir-
cle of a triangleA BC' to the sides of the triangle are collinear.

Figure 4.8: The Simson line

Proof. Referring to figure 4.8, we see thBZ AY, PXCY and PAC B are cyclic quadrilaterals.
Therefore/PYZ = /PAZ = /PCX = ZPY X. This shows thaY’, Z, X are collinear.

(Note that the converse of the statement in this theoremsis @lie. That is, if the feet of the
perpendiculars from a poinP to the sides of the trianglel BC' are collinear, thenP lies on the
circumcircle of AABC'.) The line containing the feet is known as tBnson line

Theorem 4.5 (Ptolemy) For any cyclic quadrilateral, the sum of the products of the fpairs of
opposite sides is equal to the product of the diagonals.

Proof. Let PBC A be a cyclic quadrilateral and |&f, Y, Z be the feet of the perpendiculars fratn
onto the sideB3C, AC, AB respectively. By previous theorerX, Y, Z lie on the Simson line.

Figure 4.9: Ptolemy’s theorem



The quadrilateralY PZ is cyclic. SinceZPY A = 90°, the circle passing through, Y, P, Z has
diameterP A. Thus

YZ . . a
A= sin /YAZ = sin /BAC = By R

ThatisYZ = aPA/(2R). Similarly, by considering the cyclic quadrilaterdts’ X B andPXCY’,
we haveXZ = bPB/(2R) andXY = ¢PC/(2R). As X,Y, Z lie on the Simson line, we have
XZ+ZY = XY sothathPB/(2R) + aPA/(2R) = ¢PC/(2R). Canceling the common factor
2R, we gethPB + aPA = c¢PC'. Thatis

AC-PB+ BC-PA=AB- PC.

Ptolemy’s Theorem can be strengthened by observing tivasifiny point not on the circumcircle of
NAABC, thenthe equalitX Z + ZY = XY has to be replaced by the inequalfyZ + 7Y > XY
sothatAC - PB+ BC - PA > AB - PC.

Theorem 4.6 If P is a point not on the ar€’' A of the circumcircle of the trianglel BC, then
AC-PB+ BC-PA> AB- PC.

Example 4.2 Let P be a point of the minor ar€ D of the circumcircle of a squaré BC D. Prove
that

PA(PA+ PC) = PB(PB + PD).

Solution. Referto figure 4.10. Led B = a. Applying Ptolemy’s theorem to the cyclic quadrilater-
alsPDAB andPABC, we havePD - BA+ PB-DA=PA-DB,andPA-BC+ PC-AB =
PB - AC. Thatisa(PD + PB) = v/2a - PA anda(PA + PC) = /2a - PB. Canceling a
common factor of: for both equations, we ga&tD + PB = /2PA andPA + PC = /2PB.
ThusPA(PA 4 PC) = \2PA-PB = PB(PB + PD).

Figure 4.10 Figure 4.11

Exercise 4.21n a parallelogramA BC D, a circle passing through meetsAB, AD andAC at P,
Q@ and R respectively. Prove that P - AB + AQ - AD = AR - AC. See figure 4.11.



4.3 Area of a quadrilateral

Theorem 4.7 (Brahmagupta’s Formula) If a cyclic quadrilateral has sidesg, b, ¢,d and semi-
perimeters, then its areak is given by

K?=(s—a)(s—b)(s —c)(s —d).

Proof. Let ABC D be a cyclic quadrilateral. Let the length BfD ben. First note tha A+ Z/C =
180° so thatcos A = — cos C' andsin A = sin C. Thus by Cosine law,

a? +b% —2abcos A =n? =% + d? — 2ed cos C,

giving
2(ab + cd) cos A = a® + b* — ¢* — d°. (4.1)
C
D ,
A b B
Figure 4.12: Brahmagupta’s Formula
Since ) ) )
K = EabsinA + EcdsinC = E(ab + cd) sin A,
we also have
2(ab+ cd)sin A = 4K. (4.2)

Adding the squares of (4.1) and (4.2), we obtain

4(ab+ cd)* = (a® +b* — ¢* — d*)* + 16K?,
giving

16K? = (2ab + 2cd)? — (a® +b? — ¢ — d*)?.

Thus 16K2%=(2ab+ 2cd)? — (a® + b — % — d?)?
= (2ab + 2cd + a® + b? — 2 — d?)(2ab + 2¢d — a® — b? + 2 + d?)



((a+0)* = (c—=d)*)((c+d)* = (a—b)?)
(a+b+c—d)(a+b—c+d)(c+d+a—-Db)(c+d—a+D)
(25 — 2d)(2s — 2¢)(2s — 2b)(2s — 2a).

Therefore K2 = (s — a)(s — b)(s — ¢)(s — d).
Settingd = 0, we obtain Heron’s formula for the area of a triangle:

(ABC)? = s(s —a)(s — b)(s — ¢).

Exercise 4.3In a trapeziumABC D, AB is parallel toDC and E is the midpoint ofBC'. Prove
that2(AED) = (ABCD).

Exercise 4.4 Suppose the quadrilaterdlBC D has an inscribed circle. Show thatB + CD =
BC + DA.

Exercise 4.5 Suppose the cyclic quadrilatetdBC D has an inscribed circle. Show tH{agt BC D) =
v abed.

Exercise 4.6 Let ABC'D be a convex quadrilateral. Prove that its afé&s given by

A
K? = (s—a)(s —b)(s — ¢)(s — d) — abed cos® (%) .
Exercise 4.7Let ABC DF be the pentagon whose vertices are intersections of thesates of

non-neighboring sides of a pentaghid J K L. Prove that the neighboring pairs of the circumcircles
of the trianglesALH, BHI, CIJ, DJK, EK L intersect at 5 concyclic poin8 Q, R, S, T.

Figure 4.13: Miquel's 5-circle theorem

[Hint: Note thatJ, S, B, E are concyclic since’ EBS = /HBS = ZCIS = ZCJS. Simi-
larly, J, @, E, B are concyclic. Thud, S, B, E,Q are concyclic. Now try to show’, T, S, Q are
concyclic by showing that Q PT + ZQST = 180°.]



Remark 4.1 This is Miquel’s 5-circle theorem first proved by Miquel in3® This problem was
proposed by president Jiang Zemin of PRC to the studentaofldhg Secondary School in Macau
during his visit to the school in 20 December 2000.

4.4 Pedal triangles

Definition 4.2 For any pointP on the plane of a trianglel BC, the foot of the perpendiculars from
P onto the sides of the trianglé BC form a triangleA; B; C; called the pedal triangle of the point
P with respect to the trianglel BC.

Figure 4.14: Pedal triangle

Theorem 4.8 Let A; B;C, be the pedal triangle of the poit with respect to the trianglel BC'.

Then

R? - OP?
4R?

whereQ is the circumcentre an® is the circumradius of the triangld BC'.

(A1B.1Ch) = (ABC),

Proof. ExtendB P meeting the circumcircle oA ABC at B,. JoinBoC'. As in the figure /A, =

Figure 4.15: Area of the pedal triangle



Thus

Also,

Thus,

(A1B1CY) = %AlBl -A1Ct -sin Ay = %(PCsin C)(PBsin B)sin ZByCP.

sin /BoCP  sin /BoCP  PBy

sinA  sinZBBsC  PC’

(A1B1Cy) ==PBs - PBsin Asin BsinC

= _(R%* - OP?)sin Asin BsinC
2 OP2

N =N =

=)

The above result is a generalization of Simson’s theorem.

Corollary 4.9 The pointP lies on the circumcircle oA ABC' if and only if the area of the pedal
triangle is zero if and only ifd;, B, C; are collinear.

Exercise 4.8 Show that the third pedal triangle is similar to the origitnengle.

Exercise 4.9Let P be a point on the circumcircle of the triang3C. Prove that its Simson line
with respect to the triangld BC' bisectsP H, whereH is the orthocentre of the triangeBC.

=
=

Figure 4.16: The Simson line bised?d{ .

[Hint: Let X, Y and Z be the feet of perpendiculars frof onto the sidesBC, CA and AB
respectively. It is well-known thaX', Y andZ are collinear. The line on which they lie is called the
Simson line. ExtenddH, BH andC H meeting the circumcircle of the triangeBC at H;, Hs
and H3 respectively. LetP H; intersectBC at D, PH, intersectC' A at E and PH3 intersectAB
atF. JoinPB.]



Exercise 4.10Let P and P’ be diametrically opposite points on the circumcircle of thangle
ABC. Prove that the Simson lines &f and P’ meet at right angle on the nine-point circle of the
triangle.

Exercise 4.11Prove Brahmagupta-Mahavira formula: L&BCD be a cyclic quadrilateral with
AB=0b,BC =¢,CD =d,DA =aandAC =m,BD =n. Then

m  ab+cd

n  ad+bc

Figure 4.17: Brahmagupta-Mahavira formula

[Hint: Interchange the sides with lengthgndb, alsoa andd. Apply Ptolemy’s theorem.]
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