Questions Bank
Axiomatic System

Second Class

Chapter 1

Exercise 1.1. Consider the following axiom set.

Postulate 1. There are at least two buildings on campus.

Postulate 2. There is exactly one sidewalk between any two buildings.
Postulate 3. Not all the buildings have the same sidewalk between them.
a. What are the primitive terms in this axiom set?

b. Deduce the following theorems:

Theorem 1. There are at least three buildings on campus.

Theorem 2. There are at least two sidewalks on campus.

c. Show by the use of models that it is possible to have

exactly two sidewalks and three buildings;

at least two sidewalks and four buildings; and,



exactly three sidewalks and three buildings.
d. Is the system complete? Explain.
e. Find two isomorphic models.

f. Demonstrate the independence of the axioms.

Exercise 1.2. Consider the following axiom set.

Al. Every hive is a collection of bees.

A2. Any two distinct hives have one and only one bee in common.
A3. Every bee belongs to two and only two hives.

A4. There are exactly four hives.

a. What are the undefined terms in this axiom set?

b. Deduce the following theorems:

T1. There are exactly six bees.

T2. There are exactly three bees in each hive.

T3. For each bee there is exactly one other bee not in the same hive with it.
c. Find two isomorphic models.

d. Demonstrate the independence of the axioms.

Exercise 1.3. Consider the following axiom set.
P1. Every herd is a collection of cows.

P2. There exist at least two cows.

P3. For any two cows, there exists one and only one herd containing both cows.

P4. For any herd, there exists a cow not in the herd.

P5. For any herd and any cow not in the herd, there exists one and only one other

herd containing
the cow and not containing any cow that is in the given herd.

a. What are the primitive terms in this axiom set?



b. Deduce the following theorems:

T1. Every cow is contained in at least two herds.
T2. There exist at least four distinct cows.

T3. There exist at least six distinct herds.

c. Find two isomorphic models.

d. Demonstrate the independence of the axioms.



Chapter 2

Exercise 2: Prove the Followings

Proposition I.1. To constructnequilateraltriangle.

Proposition .2 To placeastraightline equalto agiven straightine with oneend ata givenpoint.
Proposition |.3. To cut off from the greaterof two givenunequaktraightlinesastraightline equal
totheless.

Proposition I.4. (SAS) If two triangleshavetwo sidesequalto two sidesrespectivelyand havethe
anglescontainedoythe equalstraightlinesequal thentheyalso havethe baseequalto thebasethe
triangleequalgo the triangle,andthe remaininganglesequalthe remaininganglesrespectively.
Proposition |.5. In isosceledriangles,the anglesat the baseequalone another;andif the equal
straightlinesareproducedurther,thenthe anglesunderthebaseequaloneanother.

Proposition 1.6. If in atriangle two anglesequaloneanother,thenthe sidesoppositethe equal
anglesalsoequaloneanother.

Proposition |.7. Giventwo straightlines constructedrom the endsof astraightine andmeetingin
apoint, therecannobe constructedrom theendsof the samestraightline, andon the samesideof
it, two otherstraightines meetingn anotheipointandequalto theformertwo respectivelynamely
eachequalo thatfrom thesameend.

Proposition 1.8 (SSS)if two triangleshavethetwo sidesequalto two sidesrespectivelyandalso
havethe baseequalto the base thenthey alsohavethe anglesequalwhich are containedby the
equalstraightlines.

Proposition |.9. To bisectagivenrectilinearangle.

Proposition I.10. To bisecta givenfinite straightline.

Proposition 1.11. To drawa straightline at right anglesto a given straightline from a givenpoint
onit.

Proposition 1.12. To draw a straight line perpendicular to a given infinitaigfint line from a given
point not on it.

Proposition 1.13. If a straight line stands on a straight line, then it makésegitwo right angles or
angles whose sum equals two right angles.

Proposition 1.14. If with any straight line, and at a point on it, two straigimds not lying on the
same side make the sum of the adjacent angles equal to twarigles, then the two straight lines
are in a straight line with one another.

Proposition 1.15. If two straight lines cut one another, then they make thécadrangles equal to
one another.

Proposition 1.16. (Exterior Angle Theorem) In any triangle, if any one of th#es is produced, the
exterior angle is greater than either of the interior andosjtp angles.

Proposition 1.17. In any triangle, two angles taken together in any manneftessethan two right
angles.



Proposition 1.18. In any triangle, the angle opposite the greater side istgrea

Proposition 1.19. In any triangle, the side opposite the greater angle istgrea

Proposition 1.20. In any triangle, the sum of any two sides is greater thanehgaining one.
Proposition 1.21. If from the ends of one of the sides of a triangle two stralgtis are constructed
meeting within the triangle, then the sum of the straighediso constructed is less than the sum of
the remaining two sides of the triangles, but the constdusteaight lines contain a greater angle
than the angle contained by the remaining two sides.

Proposition .22 To construct a triangle out of three straight lines whichadhree given straight
lines: thus it is necessary that the sum of any two of thegititdines should be greater than the
remaining one.

Proposition 1.23. To construct a rectilinear angle equal to a given rectéirangle on a given straight
line and at a point on it.

Proposition 1.24. If two triangles have two sides equal to two sides respelgtibut have one of
the angles contained by the equal straight lines greaterttieother, then they also have the base
greater than the base.

Proposition 1.25. If two triangles have two sides equal to two sides respelgtibut have the base
greater than the base, then they also have one of the anglésroad by the equal straight lines
greater than the other.

Proposition 1.26. (ASA or AAS) If two triangles have two angles equal to two grespectively,
and one side equal to one side, namely, either the side aaljotihe equal angles, or that opposite
one of the equal angles, then the remaining sides equalrteimang sides and the remaining angles
equals the remaining angle.

Proposition 1.27. If a straight line falling on two straight lines make theeattate angles equal to
one another, then the straight lines are parallel to onenanot

Proposition 1.28. If a straight line falling on two straight lines make theemior angles equal to the
interior and opposite angle on the same side, or the sum d@ftdw@or angles on the same side equal
to two right angle, then the straight lines are parallel te another.



Exercise 2.1: If two sides of a triangle are equal, the line which bisects the angle between
the equal sides bisects the third side.

Exercise 2.2: If two sides of a triangle are equal, the line joining the corner (or vertex)
between the equal sides and the mid-point of the third side bisects the angle between
the equal sides.

Exercise 2.3: line PM is perpendicular to line AB at point M and PM bisects AB at M
Prove that PA =PB.

Exercise 2.4: If two angles of a triangle are equal, the sides opposite these angles are equal.
Exercise 2.5: If a quadrilateral has three right angles, its fourth angle is a right angle also.

Exercise 2.6: If two sides of a quadrilateral are equal and parallel, the quadrilateral is
a parallelogram.

Exercise 2.7: A radius perpendicular to a chord of a circle bisects the chord.
Exercise 2.8: The sum of the angles of a triangle is two right angles.
Exercise 2.9: Equal chords of a circle are equally distant from the center of the circle.

Exercise 2.10: The opposite angles of a parallelogram are equal.



Chapter 3
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Figure 3.10: Stewart’s theorem

Theorem 3.11 (Pappus’ theorem)Let P be the midpoint of the sidBC' of a triangleABC'. Then

AB? + AC? = 2(AP? + BP?).
. The 3 mediansAD, BE andCF of AABC are concurrent. Their common point,
denoted by, is called thecentroidof AABC.

A

Figure 3.12: Medians

We have

(1) (AGF) = (BGF) = (BGD) = (CGD) = (CGE) = (AGE).
(2) AG:GD=BG:GE=CG:GF=2:1.
(3) (Apollonius'theorem)

AD? = J(b* + 2) — ;a?,

BE? = }(c® +a?) — }b?,

CF? = 1(a? + %) — 12,



. The internal bisectors of the 3 angles/®fd BC' are concurrent. Their common
point, denoted by, is called thencentreof AABC. Itis equidistant to the sides of the triangle. Let
r denote the distance frohto each side. The circle centredlatvith radiusr is called thdncircle
of AABC, andr is called thanradius

Figure 3.13: Angle bisectors

Lets = %(a + b+ c) be thesemi-perimeterWe have

1) x=s—a,y=s—bandz=s—c.
(2) (ABC) =sr.
(3) abc = 4srR.

Exercise 3.1Prove thatin A = (2b%¢® + 2¢2a® + 2a%b* — a* — b* — ¢*)7 /(2bc).

Theorem 3.12 The orthocentre of an acute-angled triangle is the inceatrigs orthic triangle.

Figure 3.14: Altitudes



Exercise 3.2In an acute-angled, ABC' AB < AC, BD andCE are the altitudes. Prove that
() BD<CE

(i) AD < AE

(i) AB? +CE? < AC? + BD?

(v)AB + CE < AC+ BD

(v) Isittrue thatAB™ + CE* < AC™ + BD" for all positive integen?

A

B C
Figure 3.16:AB*> + CE* < AC* 4 BD?

Exercise 3.3Prove Heron'’s formula that for a triangleg ', we have

(ABC) = V(s a)(s b)(s o
Exercise 3.4 Prove that ifl is the incentre of the trianglé BC, thenAI? =bc(s a)/s.
Exercise 3.5Prove that for any trianglel BC,

A = (5 9) and sin? A —
— 5 =

(5) AABC isthe orthic triangle o\ I, I} 1.
Exercise 3.6Prove that! + ' + ! = 1.
Exercise 3.7 Prove the identity

abc = s(s —b)(s —c)+s(s —c)(s—a) +s(s —a)(s—b) — (s —a)(s —b)(s —¢),
where2s = a + b+ c.

Exercise 3.8ProvethatR =r, + 7 + 7. — 7T

Exercise 3.9 Suppose the Euler line passes through a vertex of the teaigjlow that the triangle
is either right-angled or isosceles or both.



Chapter 4

Theorem 4.6 If Pis a point not on the arc' A of the circumcircle of the triangleA BC, then

AC PB+ BC- PA> AB-PC.

Exercise 4.2 In a parallelogramABC D, a circle passing through meetsAB, ADand AC at P
Q andR respectively. Prove thatP AB + AQ-AD = AR- AC . See figure 4.11.

Exercise 4.3In a trapeziumABC D, AB is parallel toDC and FE is the midpoint ofBC. Prove
that2(AED) = (ABCD).

Exercise 4.4 Suppose the quadrilaterdlBC D has an inscribed circle. Show thatB + CD =
BC + DA.

Exercise 4.5 Suppose the cyclic quadrilatetdBC D has an inscribed circle. Show t{agt BCD) =
Vabed.

Exercise 4.6 Let ABC D be a convex quadrilateral. Prove that its afé#s given by

A+C)

K? = (s —a)(s —b)(s — ¢)(s — d) — abed cos® ( 5

Exercise 4.7 Let ABC DFE be the pentagon whose vertices are intersections of thesates of
non-neighboring sides of a pentaglii J K L. Prove that the neighboring pairs of the circumcircles
of the trianglesALH, BHI, C1J, DJK, EK L intersect at 5 concyclic point8 @, R, S, T

Figure 4.13: Miquel's 5-circle theorem

[Hint: Note thatJ, S, B, E are concyclic since’ EBS = ZHBS = ZCIS = ZCJS. Simi-
larly, J,Q, E, B are concyclic. Thug, S, B, E, Q are concyclic. Now try to show?, T, S, Q are
concyclic by showing that Q PT + ZQST = 180°.]



Corollary 4.9 The pointP lies on the circumcircle oNABC' if and only if the area of the pedal
triangle is zero if and only if4, , B;, C; are collinear.

Exercise 4.8Show that the third pedal triangle is similar to the origitrédngle.

Exercise 4.9Let P be a point on the circumcircle of the triangde3C. Prove that its Simson line
with respect to the triangld BC bisectsP H, Whereq is the orthocentre of the triangleBC

Exercise 4.10Let P and P’ be diametrically opposite points on the circumcircle of thangle
ABC. Prove that the Simson lines &f and P’ meet at right angle on the nine-point circle of the
triangle.

Exercise 4.11Prove Brahmagupta-Mahavira formula: L&BC D be a cyclic quadrilateral with
AB =b,BC =¢,CD =d,DA =aandAC =m,BD = n. Then

m  ab+cd

n  ad+be

Figure 4.17: Brahmagupta-Mahavira formula

[Hint: Interchange the sides with lengthgndb, alsoa andd. Apply Ptolemy’s theorem.]
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