Ministry of Higher Education and Scientific research



- **Department of Mathematics**
- **College of Science**
- Salahaddin University-Erbil
- **Subject: Geometry**
- Course Book: Second Year Second Course
- Lecturer's name: Imad A. Aziz
- Academic Year: 2023-2024

# **Course Book**

| 1. Course name                | Axiomatic System                                          |  |
|-------------------------------|-----------------------------------------------------------|--|
| 2. Lecturer in charge         | Imad A. Aziz                                              |  |
| 3. Department/ College        | Mathematics / Science                                     |  |
| 4. Contact                    | e-mail: imad.aziz@su.edu.krd                              |  |
|                               | Tel: +9647504639909                                       |  |
| 5. Time (in hours) per week   | Theory: 3                                                 |  |
|                               | Tutorial: 2                                               |  |
| 6. Office hours               |                                                           |  |
| 7. Course code                |                                                           |  |
| 8. Teacher's academic profile | 23/6/2020 lecturer at Department of Mathematics,          |  |
|                               | College of Science, University of Salahaddin-Erbil, Iraq. |  |
|                               | 16/6/2020 Awarded Ph.D. in Mathematics, Department of     |  |
|                               | Mathematics, College of Science, University of            |  |
|                               | Salahaddin-Erbil, Iraq.                                   |  |
|                               | 3/9/2006 Assistant lecturer at Department of              |  |
|                               | Mathematics, College of Science, University of            |  |
|                               | Salahaddin-Erbil, Iraq.                                   |  |
|                               | 31/7/2006 Awarded M.Sc. in Mathematics, Department of     |  |
|                               | Mathematics, College of Science, University of Al-        |  |
|                               | Mustansiriyah, Iraq.                                      |  |
|                               | 10/1/2002 Awarded B.Sc. in Mathematics, Department of     |  |
|                               | Mathematics, College of Science, University of            |  |
|                               | Salahaddin-Erbil, Iraq.                                   |  |
|                               | 1995-1996 Awarded Baccalaureate, Hamren Secondary         |  |
| 9. Keywords                   | Axiom, Categorical, Euclidean, Triangle, Similar,         |  |
|                               | Altitude, Centroid                                        |  |

#### **10.** Course overview:

The development of geometry from the point of view of axiom systems. The course includes axiomatic systems, axiomatic systems for Euclidean geometry, geometry of triangles and geometry of quadrilaterals.

#### 11. Course objective:

- Introduce the concept of concurrence and its significance in geometric constructions.
- Explore Ceva's theorem and its applications in proving concurrency.
- Identify and analyze common points of concurrence in geometric figures.
- Define collinearity and its importance in geometry.
- Investigate Menelaus' theorem and its role in establishing collinear points.
- Study Desargues' and Pappus' theorems to understand their applications in collinearity.
- Review basic properties of circles and their geometric significance.

- Understand and analyze coaxal circles and orthogonal pairs of pencils of circles.
- Learn Pascal's and Brianchon's theorems and their implications in circle geometry.
- Study homothety and its applications.
- Explore a generalized Ptolemy theorem and its proofs.
- Introduce basic concepts of coordinate geometry.
- Understand and utilize barycentric and homogeneous coordinates.
- Explore the projective plane and its geometric properties.
- Analyze quadratic curves and their characteristics.

### 12. Student's obligation

- **a.** Students reign an commitment to come on time and remain in the classroom for the duration of scheduled classes and Labs.
- **b.** Nothingness speak students with each other during lecture.
- **c.** All devices must be turned off.
- **d.** When teacher ask question, Students will be to raise your hand before answer his question.
- **e.** Students own an obligation to write tests and final examinations at the times scheduled by the teacher or the College.

## 13. Forms of teaching

I give hard copy of My lecture notes to students before coming lecturer time. first I remember students about previous lecture, and then I start new lecture. At the end of the lecture give a homework for the next lecture. During this proses I am use presentation and whiteboard.

## 14. Assessment scheme

- 1. *Practical:* 20% (Homework, Assignments and Quizzes).
- 2. *Theoretical:* 20% (Midterm exams).
- 3. *Final Exam: Practical:* 0% and *Theoretical:* 60%.

# **15. Student learning outcome:**

By the end of this course, students should be able to:

- Prove the concurrency of lines using Ceva's theorem.
- Identify and analyze common points of concurrence in various geometric figures.
- Apply Menelaus' theorem to determine collinear points.
- Use Desargues' and Pappus' theorems to prove collinearity in geometric constructions.
- Demonstrate understanding of basic properties of circles and apply them to solve problems.
- Analyze the properties and applications of coaxal circles and orthogonal pairs of pencils of circles.
- Identify the orthocenter in different geometric configurations.
- Apply Pascal's and Brianchon's theorems to solve problems involving circles.
- Understand and apply the concept of homothety in geometric transformations.
- Use the Apollonius circle and Soddy's theorem in problem-solving.
- Prove and apply a generalized Ptolemy theorem in geometric contexts.
- Solve geometric problems using basic coordinate geometry.

- Utilize barycentric and homogeneous coordinates in problem-solving.
- Understand and apply concepts of the projective plane in geometry.
- Analyze and solve problems involving quadratic curves.

#### **16.** Course Reading List and References:

- Carl W. Lee, Axiomatic Systems, University of Kentucky, Revised Spring (2002)
- H.S.M.Coxeter and S.L.Greitzer, Geometry Revisited, New Mathematical Library 19, MAA (1967)
- Michael Hvidsten, Geometry with Geometry Explorer, McGraw Hill (2005)
- Dan Pedoe, Geometry A Comprehensive Course, Dover (1988)

| 17. The Topics:                                         | Lecturer's name                                                                                                                                       |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Concurrence                                          |                                                                                                                                                       |
| • Ceva's theorem                                        |                                                                                                                                                       |
| Common points of concurrence                            |                                                                                                                                                       |
| 2. Collinearity                                         |                                                                                                                                                       |
| Menelaus' theorem                                       |                                                                                                                                                       |
| • Desargues' theorem                                    |                                                                                                                                                       |
| • Pappus' theorem                                       |                                                                                                                                                       |
| 3. Circles                                              | This Column are not                                                                                                                                   |
| Basic properties                                        | applicable because                                                                                                                                    |
| Coaxal circles                                          | timetables of bolidays                                                                                                                                |
| Orthogonal pair of pencils of circles                   | will change that is I                                                                                                                                 |
| • The orthocentre                                       | will change that is i                                                                                                                                 |
| Pascal's theorem and Brianchon's theorem                | week by week review                                                                                                                                   |
| • Homothety                                             | of the topics                                                                                                                                         |
| • The Apollonius circle of two points                   | of the topics.                                                                                                                                        |
| • Soddy's theorem                                       |                                                                                                                                                       |
| • A generalized Ptolemy theorem                         |                                                                                                                                                       |
| 4. Using Coordinates                                    |                                                                                                                                                       |
| Basic coordinate geometry                               |                                                                                                                                                       |
| Barycentric and homogeneous coordinates                 |                                                                                                                                                       |
| Projective plane                                        |                                                                                                                                                       |
| Quadratic curves                                        |                                                                                                                                                       |
| 18. Practical Topics (If there is any)                  |                                                                                                                                                       |
|                                                         | This Column are not<br>applicable because timetables<br>of holidays will change that is<br>I cannot Determine a week by<br>week review of the topics. |
| 19. Examinations:                                       | · · · · ·                                                                                                                                             |
| Ouestions in the examination will be arranged the match | ing mode by way of the                                                                                                                                |

examples and exercises that I give delivered in the lecture notes.

Sometimes will be have extra mark in examination for worthy students.

#### 20. Extra notes:

Answers of examination will be find in the board's declaration Mathematics department after every examination.

# 21. Peer review