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Chapter 5

Concurrence

When several lines meet at a common point, they are said tmbeurrent The concurrence of
lines occurs very often in many geometric configurationse paint of concurrence usually plays a
significant and special role in the geometry of the figure.his thapter, we will introduce several
of these points and the classical Ceva’s theorem which givesessary and sufficient condition for
three cevians of a triangle to be concurrent. We will illasgrwith many applications that stem out
from Ceva'’s theorem.

5.1 Ceva’s theorem

Definition 5.1 The line segment joining a vertex &fA BC to any given point on the opposite side
(or extended) is called a cevian.

Figure 5.1: Three cevians meet a point

Theorem 5.1 (Ceva)Three ceviansiA’, BB’, CC’ of AABC are concurrent if and only if
BA" CB" AC"
A'C B'A C'B

[ Here directed segments are uséd.

Proof. First suppose the 3 ceviadsd’, BB’, CC’ are concurrent. Draw a line throughparallel
to BC meeting the extension @B’ andC'C’ at D andE respectively. See Figure 5.2. Then
CB’" BC AC' EA
BA~ AD’ C'B_ BC’
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44 CHAPTER 5. CONCURRENCE

Figure 5.2: Ceva’s Theorem

SinceBA, = A0 = A0 we haveB—Al = A—D Thus
AD ~ OA  EA’ A'C~ EA’

BA' CB' AC' _AD BC EA _ |

To prove the converse, suppose
BA" CB" AC"
A'C BA CB
Let’s consider the case wher, B, C’ lie in the interior of BC, C A, AB, respectively. The case
that two of them are outside is similar. L8B’ andCC’ meet at a poinD. Then connecdO
meetingBC' at a pointA”. It suffices to proved’ = A”. By the forward implication of Ceva’s

theorem ,we have

1. (5.1

BA" CB' ACY

. . =1. 2
A'"C B'A (C'B (5.2)
. ) BA" BA”
Comparing equations (5.1) and (5.2), we haVELA/C = Jic ThusA’ = A”.

There is an alternate proof using area. As

BA' (ABA') (OBA') (ABO) CB' _ (BCO) AC' _ (CAO)
A'C ~ (AA'C) ~ (OA'C) ~ (ACO)’ B'A ~ (BAO)’ C'B _ (CBO)

we have
BA" CB' AC' B

. . = 1.
A'C B’A C'B
A
C B
B2 1
B A’ c

Figure 5.3: Trigonometric version of Ceva’'s Theorem

There is a trigonometric version of Ceva’s theorem in terrhthe sines of the angles that the
cevians make with the sides of the triangles at the vertiReger to Figure 5.3. Let CAA’ = ay,
/A'AB = a9, ZABB' = 81, Z/B'BC = 5, /BCC' = ~v; andZC'C A = .
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Thensina; = A'C -

sin C'
AA

sin B o tha*sm ay BA'sinB Similarl
AAT Sna,  ACsnC’ 4

sinay = BA’ -

sin 8y T B'AsinA sin vy " (C'BsinB’

sinfBy CB’sinC and siny,  AC’ sin A

Therefore, by Ceva’s theorer,A’, BB'CC’ are concurrent if and only if

sinagy sinfy  sinvys 1

sina; sinf; siny

Example 5.1 We can use the trigonometric version of Ceva’s theorem taickethat the three alti-
tudes of a triangle are concurrent.

5.2 Common points of concurrence

The common points of concurrence that arise from a trianghsist of the following.

1.

The 3 medians o\ ABC' are concurrent. Their common point, denoted®yis called the
centroid of AABC.

The 3 altitudes o\ ABC' are concurrent. Their common point, denotedrbyis called the
orthocentre of AABC.

The internal bisectors of the 3 anglegofd BC' are concurrent. Their common point, denoted
by I, is called thancentre of AABC.

The internal bisector of A and the external bisectors of the other two angleAdfBC are
concurrent. Their common point, denotedRy s called theexcentreof AABC. Similarly,
there are excentrds and /..

The three perpendicular bisectors of a trianggld BC' are concurrent. Their common point,
denoted byO is called thecircumcentre of AABC.

The cevians where the feet are the tangency points of tiele (or excircle) of a triangle
are concurrent. This common point is called Gergonnepoint. Thus there are 4 Gergonne
points for a triangle.

A

Figure 5.4: Gergonne point
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Example 5.2 In AABC, D, E andF are the feet of the altitudes from, B andC' onto the sides
BC, CA and AB respectively. Prove that the perpendiculars frdronto £ F, from B onto DF’

and fromC onto E'F" are concurrent.

Figure 5.5: A point of concurrence

Solution. We shall use the trigonometric version of Ceva’s theoreinst §&in /FAP = cos ZAFP =
cos C. Similarly, sin /ZPAE = cos B, sin ZECR = cos B, sin ZRCD = cos A, sin ZDBQ =

cos A andsin ZQBF = cosC. Thus
sin /FAP sin/ECR sin/DBQ 1
sin /PAE sin /ZRCD sinZQBF

and by Ceva’s theoremd P, BQ andC'R are concurrent. In fact the point of concurrence is the

circumcentre of the triangld BC'.
Example 5.3 In an acute-angled trianglé BC, N is a point on the altitudelM. The lineCN,
BN meetAB and AC respectively af' andE. Prove tha EMN = ZFMN.

Figure5.6:/ZEMN = ZFMN

Solution. Construct a line througH parallel toBC meeting the extensions éf ' and M E at P
and@ respectively. Thug M AP = 90°. As APAF is similar toAM BF andAQAFE is similar
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to AMCE, we have

PA:A_F.BM’ AQ:E_A.MC.

FB EC
PA AF BM CFE
Thus—= = =— . 2= . X2 1 's Th . Theref = AQ. Itfoll
USAQ 75 MC FA , by Ceva’s Theorem. Therefor2 A Q. It follows

thatZ/ZEMN = ZFMN.

Example 5.4 On the plane, there are 3 mutually and externally disjonatesI';, I's andI's centred
at X, X, and X3 respectively. The two internal common tangentd'efandI’s, (I's andT'y, I'y
andI's) meet atP, (Q, R respectively). Prove that; P, X»(@Q and X3 R are concurrent.

Solution. Let the radii ofl’y,I's andI'3 bery, ro andrs respectively.

Ak

P

Figure 5.7:X, P, X>@Q and X3 R are concurrent

ThenX R : RXs : =11 :79, XoP : PX3: =19 :7r3andX3Q : QX1 :=r3:71. Thus
XiR XoP X3Q
RX, PX; QX

By Ceva’s TheoremX; P, X>(Q and X3Z are concurrent.

1.

Example 5.5 Prove that the 3 cevians of a triangld3C' such that each of them bisects the perime-
ter of the triangleA BC' are concurrent.

Solution. Let BC' = a,AC = b,AB = cands = 1(a+b+c). Let A’, B’,C’ be the points on
BC,AC, AB suchthatdA’, BB’, CC' each bisects the perimeter&fA BC. ThenBA'+A'C = a
andc+ BA’ = b+ A'C. ThusBA' = s —candA'C = s — b. Similarly, CB’ = s —a,B'A =
s—c,AC' =s—bandC’'B = s — a. Thus

BA" CB' AC'

AC BA CB
so that by Ceva’s Theorem A’, BB’, CC’ are concurrent. The point of concurrence is called the
Nagel pointof AABC. Itis also the point of concurrence of the cevians that jpaertices of the
triangle to the points of tangency of the excircles on theosjip sides.
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Figure 5.8: Nagel point

Remark 5.1 If D, F, F are the points of tangency of the incircle to the sid#&s C'A andAB, and
DX, EY, FZ are the diameters of the incircle respectively, theXi, BY, C'Z concurs at the Nagel
point. In fact we can prove that the extensiondoX, BY andCZ meetBC, CA andAB atA’, B’
andC’, respectively. To see this, we show that the peihbn BC which is the point of tangency
of the excircle with the sid&C together with the pointX and A are collinear. This is because a
homothetymapping the incircle to this excircle must map the highe#ttp& of the incircle to the
highest pointd’ of the excircle.

s—b C
v

B A/\\

Figure 5.9: The incircle and excircle

Exercise 5.1Let ABC'D be a trapezium wittd B parallel toC'D. Let M and N be the midpoints
of AB andC'D respectively. Prove that/ N, AC' and BD are concurrent.

Exercise 5.2 Suppose a circle cuts the sides of a triangjel; A3 at the pointsXy, Y1, Xo, Y3, X3, V3.
Show that ifA; X1, A5 X5, A3 X3 are concurrent, thed, Y7, A>Y>, A3Y3 are concurrent.

[Hint: Observe that{; A5 - Y1 45 = X34, - Y3A2]
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Exercise 5.3Let P be a point inside the triangld BC. The bisector o/ BPC, Z/CPA, and
/ZAPB meetBC,CAandAB atX,Y andZ, respectively. Prove thatX, BY, C'Z are concurrent.

Figure 5.10:AX, BY, CZ are concurrent

Exercise 5.4 LetI" be a circle with centef, the incentre of triangldd BC'. Let D, E, I be points of
intersection of” with the lines from/ that are perpendicular to the sidB§’, C A, AB respectively.
Prove thatdD, BE, C'F are concurrent.

Figure 5.11: A generalization of the Gergonne point

[Hint: Letthe intersection oiD, BE, CF with BC, CA, ABbeD’, E’, F' respectively. Itis easy
to establish tha¥ FAF' = /EAE', FBF' = /DBD', /DCD’' = ZECE'. Also AE = AF,
BF = BD,CD = CE. The ratioAF’/F’'B equals to the ratio of the altitudes frashand B on

CF of the trianglesA F'C and BF'C' and hence equals to the ratio of their areas. Now apply Ceva’s

theorem.]
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Exercise 5.5Let A;, B; andC, be points in the interiors of the sidéx”, C A andAB of a triangle
ABC respectively. Prove that the perpendiculars at the paintd3;, C; are concurrent if and only
if BA? — A1C? + CB? — B1A? + AC? — C1B% = 0. This is known as Carnot’s lemma.

C1 B

B ™ c

Figure 5.12: Carnot’s lemma

Solution. Suppose the three perpendiculars concur at a gairitlote thatO is inside the triangle
ABC. As BA? — A1C? = (OB? — 0OA?) — (OC? — OA?%) = OB? — OC?,CB? — B1A? =
(0OC? — OB?) — (OA? — OB%) = 0C? — 0A?,andAC? — C1B% = (0OA% — OC?) — (OB? —
OC?) = OA? — OB?, we thus haveBA? — A,C? + CB? — B1 A% + AC? — C1B? = 0.
Conversely, supposBA? — A,C? + OB} — B A% + AC? — 01 B? = 0. Let the perpendiculars at
B; andC; meet at a poin®. Note thatO is inside the triangled BC. Drop the perpendicula® A’
from O onto BC. We want to proved’ = A;. By the proven forward implication, we know that
BA? — A'C%* + CB? — B1A? + AC} — C,B? = 0. Together with the given relation, we obtain
BA”? - A'C? = BA? — A,C?. Thatis(BA'+ A'C)(BA' — A'C) = (BA; + A,C)(BA; — A, 0).
AsBA'+ A'C = BC = BA; + A,C,we haveBA' — A'C = BA; — A;C. From these equations,
we deduce thaBA’ = BA; andA’C = A;C. ThusA’ = A; and the three perpendiculars are
concurrent.



Chapter 6

Collinearity

Problems on collinearity of points and concurrence of liaesvery common in elementary plane
geometry. To prove that 3 pointé, B, C are collinear, the most straightforward technique is to
verify that one of the angles ABC, ZACB or ZBAC is 180°. We could also try to verify that
the given points all lie on a specific line which is known to Tfiese methods have been applied
in earlier chapters to prove that the Simson line and therHinle are lines of collinearity of cer-
tain special points of a triangle. In this chapter, we shegfilere more results such as Desargues’
theorem, Menelaus’ theorem and Pappus’ theorem which gimdittons on when three points are
collinear.

The concept of collinearity and concurrence are dual to ettodr. For instance, suppose we wish
to prove that 3 lineQ, M N, XY are concurrent. LeP(Q) intersectM N at Z. Now it reduces to
prove thatX, Y, Z are collinear. Conversely, to prove th¥t Y, Z are collinear, it suffices to show
that the 3 lines?Q, M N, XY are concurrent.

6.1 Menelaus’ theorem

Theorem 6.1 (Menelaus)The three point$, @, R on the sidesAC, AB and BC respectively of a
triangle ABC are collinear if and only if
AQ BR CP
QB RC PA
where directed segments are used. That is either 1 or 3 pamisng P, (), R are outside the

triangle.

3

Proof. Suppose thaP, ), R are collinear. Construct a line throughparallel to AB intersecting
the line containing?, @, R at a pointD. See figure 6.1. SincA DCR ~ AQBR andAPDC ~
APQA, we have

QB - RC AQ-CP
BR bC = PA
From this, the result follows.
Conversely, suppose
AQ BR CP _ |
QB RC PA

51
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Figure 6.1: Menelaus’ theorem

Let the line containing? andQ intersectAC at P’. Now P’, Q, R are collinear. Hence,

AQ BR CP' _

ThereforeC'P’'/P'A = CP/PA. This implies that”? and P’ must coincide.

Definition 6.1 The linePQ R that cuts the sides of a triangle is called a transversal efttimngle.

Example 6.1 The sideAB of a squareABCD is A B P
extended taP so thatBP = 2AB. Let M be the
midpoint of CD and @ the point of intersection Q -
betweenAC and BM. Find the position of the
point R on BC such thatP, R, ) are collinear. D M c
Figure 6.2

Solution. First we know thatAP : PB = 3 : —2. Next we haveAABQ ~ ACMQ@Q. Hence,
CQ:QA=CM : AB = % By Menelaus’ theorem applied to triangeBC, the pointsP, R, @

are collinear if and only if

AP BE CQ _
PB RC QA

ThatisBR : RC =4 : 3.

Example 6.2 In the figure, a line intersects
each of the three sides of a triangle3C at
D,E. F. LetX,Y, Z be the midpoints of the
segmentsdD, BE, CF respectively. Prove
thatX, Y, Z are collinear.

Figure 6.3



6.1. MENELAUS’' THEOREM 53

Solution. Let A,, B; and(C; be the midpoints oBC, AC and AB respectively. TheB,C; is
parallel to BC' and B;,C; and X are collinear. HenceBD/DC = C1X/XB;. Similarly,
CE/EA = A1Y/YC, andAF/FB = B1Z/ZA;. Now apply Menelaus’ theorem t& ABC
and the straight lind EF'. We have

BD CE AF _ |

3

That is
Ci1X BiZ AY
XB, ZA, YO,
Then, by Menelaus’ theorem applied fo4, B;C; and the pointsX, Y, Z, the pointsX, Y, Z are
collinear.

(The lineXY Z is called the Gauss ling.

—1.

A
Example 6.3 A line through the centroidr of
ANABC cuts the sidesiB at M andAC at N.
Prove that N
M
AM -NC+ AN -MB =AM - AN.
P B K c
Figure 6.4

Solution. The above relation is equivalentdC /AN + M B/AM = 1. If M N is parallel toBC,
thenNC/AN = MB/AM = GK/AK = 1. Therefore the result is true.

Next consider the case wheklé N meetsBC' at a pointP. Apply Menelaus’ theorem t&A AK B
and the linePMG. We have(BP/PK) - (KG/GA) - (AM/MB) = 1 in absolute value. As
KG/GA = % we haveBP = (2M B - PK)/AM. Similarly, by applying Menelaus’ theorem to
AACK andthe linePGN, we havePC = (2CN - KP)/NA.

Note thatPC — PK = KC = BK = PK — PB. Substituting the above relations into this
equation, we obtain the desired expression.

Theorem 6.2 In the convex quadrilateralCGFE, AG intersectsC'E at H, the extension ofAE
intersects the extension 6fG at I, the extension of/ G intersects the extension @fC' at D, and
the linel H meetsE'G at Fand AD at B. Then

() AB/BC =—-AD/DC,

(i) EF/FG = —ED/DG.

Here directed line segments are used.

Proof. (i) Refer to Figure 6.5. Applying Ceva’s TheoremAcAC'I, we have
IE ABCG _
EABC GI

Next by Menelaus’ Theorem applied foACT with transversaEEG D, we have
ADCG IE

DC GI EA
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Figure 6.5: A complete quadrilateral

Thus,AB/BC = —-AD/DC.
(ii) To prove the second assertion, apply Ceva’s Theore k&G with cevians! F, EC andG A.

They concur af{. Thus, we have
IA EF GC

AEFG CI —
By Menelaus’ Theorem applied th I EG with transversadC D,
EDGC IA

S|

DG CI AE
ThusEF/FG = —ED/DG.

6.2 Desargues’ theorem

Theorem 6.3 (Desargues)et ABC' and A; B1C; be two triangles such thallA,, BB,,CC;
meet at a poinD. (The two triangles are said to be perspective from the pOintLet L. be the
intersection ofBC and B1C1, M the intersection o€ A andC; A; and N the intersection ofAB
and A, B,. ThenL, M and N are collinear.

Figure 6.6: Two triangles in perspective from a point
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Proof. The lineL B,C; cutsAOBC at L, B; andC;. By Menelaus’ theorem,

BL CC\ OB,
Lc C,0 BB

Similarly, the linesM A;C; and NB; A; cut AOCA and AOAB respectively. By Menelaus’
theorem, we have
CM AA; OC AN BB; 0OA;

MA 40 cc- 'y B0 4a- b

Multiplying these together, we obtain

LC MA NB
By Menelaus’ theorem applied th ABC, the pointsL, M andN are collinear.

Exercise 6.1 Prove the converse of Desargues’ theorem: A8 and A; B;C be two triangles
such thatBC intersectsB,C; at L, C A intersectsC; A; at M and AB intersectsA; B, at N.
Supposd., M, N are collinear. Them A;, BB; andCC; are concurrent.

[Hint: Refer to figure 6.6. Letd A; intersectBB; atO. It suffices to prove), C, C; are collinear.
To do so, apply Desargues’ theorem to the triangled A; and L B B, which are perspective from
the pointV.]

6.3 Pappus’ theorem

Theorem 6.4 (Pappus)If A, C, E are three
points on one lineB, D, F' on another, and if the
three linesAB, CD, EF meetDE, FA, BC re-
spectively at pointd,, M, N, thenL, M, N are
collinear.

Figure 6.7

Proof. Extend F'E and DC meeting at a pointU as in the figure. IfF'E and DC' are parallel,
then the point/ is at infinity. The proof is still valid if the problem is sulify translated in terms of
projective geometry. Let’s not worry about this situatiartlais would take us too far in the direction
of projective geometry. We may as well consider the intdisa@oint betweerBC andF A if they
are not parallel. The case whefd& | DC andBC || F'A can be proved directly. The reader is
invited to try by himself or herself.
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Apply Menelaus’ theorem to the five triads of poitdtsD, E; A, M, F; B,C,N; A,C,E; B,D, F
on the sides of the triangléV . We obtain

vi WD vE_ VA WM UF_ VB WC UN _
LW DU EV AW MU FV  'BW CU NV
vAa wc UE_ VB WD UF _

AW CU EV  'BW DU FV

By Menelaus’ theoremy, L, M are collinear.

Exercise 6.2 Prove that the interior angle bisectors of two angles of aisoaceles triangle and the
exterior angle bisector of the third angle meet the oppasites in three collinear points.

Exercise 6.3 (Monge’s Theorem)Prove that the three pairs of common external tangents é thr
circles, taken two at a time, meet in three collinear points.

Figure 6.8: Monge’s theorem

Exercise 6.4 Let I be the centre of the inscribed circle of the non-isoscelasdie ABC, and let
the circle touch the sideBC, C' A, AB at the pointsAd,, By, C respectively. Prove that the centres
of the circumcircles oNAT A, ABIB, andACIC; are collinear.

[Hint: Let the line perpendicular t6¢'I and passing through’ meetAB at C5;. By analogy, we
have the pointsl; and Bs. It is obvious that the centres of the circumcircles™ofAll A,, ABI B,
and ACIC, are the midpoints ofis 7, BoI andCs 1, respectively. So it is sufficient to prove that
Ay, By andCs are collinear.]



Chapter 7

Circles

A circle consists of points on the plane which are of fixedatiser from a given poinO. HereO

is the centre and is the radius of the circle. It has long been known to the Rydheans such as
Antiphon and Eudoxus that the area of the circle is propoaiito the square of its radius. Inevitably
the value of the proportionality is of great importance to science and mathematics. Manganci
mathematicians spent tremendous effort in computing Iteevarchimedes was the first to calculate
the value ofr to 4 decimal places by estimating the perimeter of a 96-gscribed in the circle.
He obtained223/71 < = < 22/7. Around 265AD, Liu Hui in China came up with a simple
and rigorous iterative algorithm to calculateto any degree of accuracy. He himself carried out
the calculation to 3072-gon and obtained= 3.1416. The Chinese mathematician Zu Chongzhi
(429-500) gave the incredible close rational approximafi% to 7, which is often referred to as
“Milu”.

7.1 Basic properties

Circles are the most symmetric plane figures and they possesskable geometric properties. In
this chapter, we shall explore some of these results as webaxal families of circles. In addition,
figures inscribed in a circle or circumscribing a circle adsgoy interesting properties. We begin
with some basic results about circles which we will leaveritier the readers to supply the proofs.

1.Let AB andCD be two chords in a circle. The
followings are equivalent.

() AAB:CAD, whereAAB is the length arc oA B.

(i) AB = CD.
(i) ZAOB = 2COD.
(iv) OF = OF.

Figure 7.1

57
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2.Let AB andCD be two chords in a circle. The

followings are equivalent.
() AB>CD

(i) AB > CD.

(i) LAOB > £COD.
(iv) OF < OF.

3.Let D be a point on the ard B. The followings
are equivalent.

() AD=DB.

(i) AC = CB.

(i) ZAOD = /BOD.
(v) OD L AB.

4. The angle subtended by an &@¢ at a pointA

on a circle is half the angle subtended by the arc

BC at the centre of the circle.

ThatisZBOC = 2/BAC.

5. The angle subtended by the same segment at any

point on the circle is constant.

Thatis/BAC = ZBDC.

CHAPTER 7. CIRCLES

Figure 7.2
@
A C B
D
Figure 7.3
A
A
S
B c
Figure 7.4

Figure 7.5
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6. A chord BC is a diameter if and only if the an-
gle subtended by it at point on the circle is a right
angle. B

That isZBAC = 90° for any pointA # B or C
on the circle.

D

Figure 7.6

7.Let ABCD be a convex quadrilateral. The fol-
lowings are equivalent.

(i) ABCD is a cyclic quadrilateral

(i) LBAC = /BDC.

(iii)) LA+ £ZC = 180°.

(v) ZABE = /D. B

S
@
Q
S)

Figure 7.7

8. Alternate Segment TheoremLet A, B, C be \J

three points on a circle. L&t A be a line through B
A with T"and B lying on the same side of the line

AC. Then the followings the equivalent.

(i) AT is tangent to the circle .
(i) OA L AT. J

(i) LBAT = ZBCA. A
Figure 7.8

~

9.Let PS andPT be tangents to the circle. Then

() PS = PT,

(i) OP bisects/SPT

(iii) OP bisects/SOP

(iv) OP is the perpendicular bisector of the seg-
mentST.

Figure 7.9

Definition 7.1 Four points are concyclic if they lie on a circle.
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Theorem 7.1 (Euclid’s theorem) Let A, B, C, D be 4 points on the plane suchB and CD or
their extensions intersect at the poiit ThenA, B, C, D are concyclic if and only if

PA-PB=PC-PD.

Figure 7.10: Euclid’s theorem

Proof. The result follows from the fact the trianglds?C and D BC' are similar.
Definition 7.2 The power of a poin® with respect to the circle centred & with radius R is
defined a®) P?2 — R2.
(i) If Pisoutside the circle, then
the Power ofP
=0P% - R?
= PT? = PA . PB,

which is positive.

B
. ) ) Figure 7.11
(i) If P lies onthe circumference, then
the power ofP = OP? — R? = 0.
Z
(i) If Pisinside the circle, then
the power ofP R B
=OP%? - R?=-PZz? . v
o/P
=—PX-PY
=—-PA-PB,
which is negative. 4
Figure 7.12

Exercise 7.1Let D, E and F' be three points on the sidéC, CA and AB of a triangleABC
respectively. Show that the circumcircles of the triangldsF', BDF andC DE meet a common
point. This point is called the Miquel point.
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Theorem 7.2 (Euler’s formula for OI)

LetO andI be the circumcentre and the incen-
tre, respectively, of\ ABC' with circumradius
R and inradiusr. Then

OI?> = R?> — 2rR.

Proof. As ZCBQ = /A, it follows that
/QBI = ZQIB and@B = QI. The abso-
lute value of the power of with respect to the
circumcircle of ABC is R? — OI?, which is
also equal tdlA - QI = IA- QB = = -
2R sin é = 2Rr. ’

Figure 7.13

Corollary 7.3 R > 2r. Equality holds if and only iA BC' is equilateral.

Exercise 7.2 Prove thdsoperimetric inequalitg? > 3v/3A, whereA is the area and is the semi-
perimeter of the triangle. Show that equality holds if antydginthe triangle is equilateral.

7.2 Coaxal circles

Let C be acircle and® a point. Supposd A’ and BB’ are two chords of” intersecting aP®. Then
PA-PA' = PB- PB’. Let R be the radius o€ andd the distance fron® to the centre of®. We

havePA - PA' = d*> — R? or R? — d?, depending on whethé? is outside or insid€’. Recall that
the quantityd® — R? is called thepowerof P with respect to the circl€'. Note that the power aP

with respect ta”' is positive if and only ifP is outsideC'.

A
B/
B P ‘
B/
B
A/

Figure 7.14: The power of a point with respect to a circle

If P isoutsideC andPT is a tangent t@” at7’, then the power of with respect ta” is PT2. The
power of P with respect ta”' can also be expressed in terms of the equatiaii.dfThe coefficients
of 22 andy? are both 1.)

The standard equation of a circle centred-af, —g) is of the form

C(x,y) =2* +y* +2fx + 29y +h =0.
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Theorem 7.4 The power of a poinP(a, b) with respect to a circle' = 0 is also given by’ (a, b).

Definition 7.3 The locus of the points having equal power with respect tawveconcentric circles
C1 and(; is called the radical axis of’'; andCs.

Theorem 7.5 For any two non-concentric circle§; = 0 andCs = 0, the radical axis is given by
Cy —Cy=0.

Proof. If P(a,b) is on the radical axis, thefi; (a,b) = Cs(a, b), i.e, P is on the lineC; — Cy = 0.
Conversely, any poinP(a, b) on the line has equal power with respect to the two circles.

(D P O

Figure 7.15: Radical axis

Exercise 7.3 Show that the radical axis of 2 circles is perpendicular ®lithe joining the centres
of the 2 circles.

Theorem 7.6 LetCs = A\C; + pCs = 0, whereX + p = 1.

(i) Any pointP(a,b) on the lineC: (z,y) — Ca2(z, y) = 0 has equal power with respect to the three
circlesCy, Cs, Cs.

(i) For any pointQ(c, d) on Cs, the ratio of the powers a w.rt C; andC5 is —u /A, which is a
constant.

Proof. (i) The power ofP with respect taC;, andC, are equal tok = C(a,b) = Cs(a,b). Its
power with respect t@’; is

ACi(a,b) + nCa(a,b) = (A + p)k = k.
(i) Since @ is onC3, we have\Ci (¢, d) + uCs(c,d) = 0 or Cy(e,d)/Ca(c,d) = —u/A.

Definition 7.4 The collection of all circles of the fort's = AC; + uCs, whereX + o = 1, forms
a so-called pencil of circles. Any two such circles have trae radical axis, and they are called
coaxal circles.

Theorem 7.7 Suppos&’;, Cs, Cs are three circles such that for any poif{a, b) on Cs, the ratio
of the powers oP w.rtto Cy, Cs is a constank(# 1), thenCs = ACy +uCs, wherep = k/(k—1)
andA =—-1/(k—1).

Proof. We haveC (a, b)/Cs(a,b) = k. SoC(a,b) — kCs(a,b) = 0. ThusCs = AC; + uCs.
Note that for the above statement to be true we need the gamttithold for 3 points o’ because
3 points determine a unique circle, i.e.(f (a;, b;)/Ca(a;, b;) = k for 3 distinct points(a;, b;),
1 = 1,2, 3, thenC; above is the circumcircle of the triangle whose verticeq arg;).
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Example 7.1 Let C; andC; be two circles tangent at a poiff. If A is any point onCy, with AP
as the tangent t@'s, thenAP/AM is a constant ad varies onC1.

Solution. Regard)M as a circle of O radius. Then the 3 circlég, M, Cs are coaxal with the tangent
at M the radical axis. ThusAP/AM is the ratio of the powers ofl with respect toC; and M
which is constant.

Figure 7.16:AP/AM is a constant ad varies onC}

Theorem 7.8 The three radical axes of three non-concentric ciralgsCs, Cs, taken in pairs, are
either parallel or concurrent.

Proof. The three radical axes af§ — Cy = 0, Co — C3 = 0, C3 — C; = 0. Any point that satisfies
two of the equations must satisfy the third. Thus if two of lines intersect, then the third must
also pass through the point of intersection, i.e., they aregrrent. Otherwise, they are pairwise
parallel.

Definition 7.5 The point of concurrence of the 3 radical axes of 3 circlesifed the radical centre
of the 3 circles.

Figure 7.17: Coaxal circles and the radical centre of thmrecoaxal circles

Exercise 7.4 Consider the pencil of circles? + y? — 2az + ¢ = 0, wherec is fixed anda is the
parameter. (It > 0, a varies in the rang® \ (—+/c, \/c).) Any two of its members have the same
line of centres and the same radical axis. Hence it is a pehcdaxal circles. Prove the following.
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(@) If ¢ < 0, each circle in the pencil meets theaxis at the same two point§, ++/—c), and the
pencil consists of circles through these two points.

(b) If ¢ = 0, the pencil consists of circles touching thaxis at the origin.

(c) If ¢ > 0, the pencil consists of non-intersecting circles. Also whe= +./c (c > 0), the circle
degenerates into a point@t+/c, 0).

7.3 Orthogonal pair of pencils of circles

Two non-intersecting circles give rise to a pencil of noteisecting coaxal circles together with
two degenerate circles, called tlmit pointsof the pencil. For any point on the radical axis of this
pencil of circles, the tangents to these circles are all@ktime length. Therefore, the circle centred
at that point with radius equal to the length of the tangerrthogonal to all the circles in this
pencil. All such circles form another pencil and any two adrthuniquely determine the original
pencil. Moreover, each circle in one pencil is orthogonaddoh circle of the other pencil.

\l
N

A\
JEP

\’))I—\\\
,ojv{{gzl'.
S — XL
S,

Figure 7.18: Two orthogonal pencils of coaxal circles

Exercise 7.5 Consider the two pencils of circlé®, : 22 + 4% — 2ax +c=0andP, : 22 + 3% —
2by — ¢ = 0 wherec > 0 is fixed,a andb are the parameters.

(a) Show thatP; consists of non-intersecting circles, afd consists of intersecting circles all
passing through the poinfs+/c, 0).
(b) Show that each circle iR, is orthogonal to each circle iRs.
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7.4 The orthocentre

A
Theorem 7.9 Let AD, BE and C'F be the altitudes of
the triangle ABC. The circle with diameteA B passes » N
throughD andE. HenceHA- HD = HB - HE. Sim-
ilarly, HB- HE = HC - HF.

-

B D C
Figure 7.19

Theorem 7.10If X, Y, Z are any points on the respective side€’, C A, AB of a triangle ABC,
then the circles constructed on the ceviah&, BY, C'Z as diameters will pass through the feet of
the altitudesD, E, F respectively.

Theorem 7.11 If circles are constructed on 2 cevians of a triangle as diterse then their radical
axis passes through the orthocentre of the triangle.

Theorem 7.12 For any 3 non-coaxal circles having cevians of a triangl8C' as diameters, their
radical centre is the orthocentre d ABC'.

Theorem 7.13 If circles are constructed having the medians, (or altitside angle bisectors) of
AABC as diameters, then their radical centre is the orthocenfre\el BC.

7.5 Pascal's theorem and Brianchon’s theorem

Theorem 7.14 (Pascal)lf all 6 vertices of a hexagon lie on a circle and the 3 pairs pposite sides
intersect, then the three points of intersection are celin

Theorem 7.15 (Brianchon) If all 6 sides of a hexagon touch a circle, then the three dred® are
concurrent (or possibly parallel).

Figure 7.20: Pascal’'s Theorem Figure 7.21: Brianchon’s theorem

Proof of Pascal's theorem We assume the lined B, C'D, EF form a triangle. LetAB intersect
CD atW. The intersection points between various lines are showimarigure.
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Figure 7.22: Proof of Pascal’'s theorem

Apply Menelaus’ theorem to the transvers&lé. D, AM F, BNC' with respect toAUVW. We
have

VLWDUE  VAWMUF _ VBWCUN _

LW DU EV AW MU FV 7 BW CU NV

Therefore
VLWMUN DU EV AW FV BW CU

LW MU NV _ WDUE VAUF VBWC
sinceDU -CU =UE -UF,EV -FV =VA-VBandAW - BW = WC - WD. By Menelaus’
theorem,L, N, M are collinear.

Note that the 3 equations obtained by applying Menelaus'rira to the transversalsL D, AM F,
BNC with respect toAUVW are the same as those in the proof of Pappus’ theorem. In Pap-
pus’ theorem, there are two more such equations arising fhen® original lines which are also
transversals te\U V' W. In Pascal's theorem, these are replaced by the 3 equatigitggrom the
condition on equality of powers of the three verticeg\df VIV with respect to the circle.

Proof of Brianchon’s theorem. Let R, Q, T, S, P,U be the points of contact of the six tangents
AB,BC,CD,DE,EF,FA, as in the figure. For simplicity, we assume the hexagon ise&080
that all three diagonald D, BE, C'F' are chords of the inscribed circles and they are not parallel
OnthelinesFE,BC,BA, DE, DC, F A extended, take point8’, Q’, R’, S’,T’, U’ so that

PP'=QQ =RR =SS =TT =UU,

with any convenient length, and construct circles | toughit®’ and@QQ’ at P’ and(’, Il touching
RR' andSS’ at R’ andS’, and Il touchingTT" andUU’ atT’ andU’. This is possible because
ABCDEF has an incircle.
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Figure 2.23: Proof of Brianchon’s theorem

Now AU’ = UU’' — AU = RR' — AR = AR’ andDT' = DT+ TT' = DS+ 558 = DS so
that A and D are of equal power with respect to the circles Il and Ill. TBUS is the radical axes
of Il and Ill. Similarly, BE is the radical axis of | and Il, an@'F' is the radical axis of | and III.
ConsequentlyAD, BE andC'F are concurrent.

Example 7.2 Tangents to the circumcircle @k ABC' at pointsA, B, C meet sidesBC, AC, and
AB at pointsP, Q and R respectively. Prove that poinf3 Q and R are collinear.

Solution. As ARC A is similar to ARBC, we have
RB/RC = RC/RA = BC/AC. Hence, RB/RA =

(RC/RA)? = (BC/AC)?. Similarly, we have
QA/QC = (BA/BC)? and PC/PB=(AC/BA)*.

ConsequentlBR/RA) - (AQ/QC) - (CP/PB) =

1. Therefore, by Menelaus’ theorenk), @, R are
collinear.

Figure 2.24
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2nd solution. Alternatively, the result can be proved by applying Pds¢héorem to the degenerate
‘hexagon’AABBCC.

Example 7.3 Let ABC be any triangle ané® any pointin its interior. Let?;, P, be the feet of the
perpendiculars fron® to the sidesAC' and BC'. Draw AP andB P and fromC drop perpendiculars
to AP andBP. Let@Q; and@- be the feet of these perpendiculars. Prove that the (hd%, Q. P,
andAB are concurrent.

Solution. Since ZCP P, /ZCP,P, ZCQsP,
/CQ1 P are all right angles, one sees that the points
C,Q1, P, P, Py,Q- lie on a circle withC'P as di-
ameter.C' P, and@Q, P intersect atd andQ-, P and

C P, intersect atB. If we apply Pascal's Theorem
to the crossed hexagd@hP; Q2 PQ; P, we see that
P,@Q, and P; Q- intersect at a poink on the line
AB.

Figure 2.25

Example 7.4 A, E, B, D are points on a circle in a clockwise sense. The tangeriisaaid B meet
at a pointN, lines AE and DB meet atM and the diagonalg B and DE meet atL. Prove that
L, N, M are collinear.

Solution. Apply Pascal’'s theorem to the de-
generate hexagoABCDEF with B = C
andFE = F'. The sidesBC andE'F' degener-
ate into the tangents & and E respectively.

Figure 2.26

Example 7.5 Prove that the lines joining the tangency point of the ifeiaf a triangle to its oppo-
site vertices concur at a common point.

Solution. The result is obvious by Ceva’'s theorem. Alternatively thsult follows by applying
Brianchon’s theorem to the hexagdi®’ BA’CB’, whereA’, B’, C’ are the tangency points of the
incircle of AABC to its sides. This pointis called the Gergonne pointof BC. See also example
5.1 in chapter 5.
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A
B/
C/
B c
Al
Figure 2.27

Example 7.6 SupposeABC D has an inscribed circle. Show that the lines joining the {soaf
tangency of the inscribed circle on opposite sides are aoactwith the two diagonals.

D
4

Solution. The proof is by a degenerate case of Brianchon’s c
theorem. For example, by taking the hexagéBY C DWW, w

we see thatAC, BD,Y W are concurrent; and by taking the Y
hexagonAX BCZD, AC,BD, X Z are concurrent. Conse-

quently, AC, BD,YW and XZ are concurrent. Moreover,

WZ, AC, XY (same folV X, ZY, D B) are concurrentby suit- 4 X B
ably applying Brianchon’s theorem. Figure 2.28

Exercise 7.6 Let ABC be a triangle, and draw isosceles triangi®sD,C AE,ABF externally to
ABC, with BC',C'A,AB as their respective bases. Prove that the lines thrayghC perpendicular
tolinesE'F, FD, DE, respectively, are concurrent.

[Hint: Draw three circles with centreB, F, F' and radiiD B, EC and AF respectively.]

Exercise 7.7 A convex quadrilateradk BC D is inscribed in a circle centred &. The diagonals
AC andBD meet atP. PointsE andF, distinct fromA, B, C, D, are chosen on this circle. The
circle determined by, P, F' and the circle determined by, P, £ meet at a poinf) distinct from
P. Prove that the line®@Q, CE andDF are either all parallel or concurrent.

[Hint: Let R be the intersection o F' and BE. Apply Pascal’s theorem to the crossed hexagon
AFDBEC.]



Chapter 8

Using Coordinates

Coordinate geometry is invented and developed by Ren Diescdr596-1650). First a coordinate
system in which two mutually perpendicular axes intersgctt the origin is set up. In such a
system, points are denoted by ordered pairs of real numbgts lines are represented by linear
equations. Other objects such as circles can be repredeptddebraic equations. Finding inter-
sections between lines and curves reduces to solving eqsatit has the advantage of translating
geometry into purely algebra. For instance, concurrendi@es and collinearity of points can also
be expressed in terms of algebraic conditions.

8.1 Basic coordinate geometry

In this section, we shall review some basic formulas in civate: geometry.

1. Ratio formula. Let A = (a1,a2) and B = (by,bs). If P is the point that divides the line
segmentd B in the ratior : s, (i.e. AP : PB = r : s), then the coordinates @? is given by

sai; +1rby sas + rbe
r+s ' r4+s

( )-

2. Incentre. Letthe coordinates of the vertices of a trianglBC be (x4, y4), (zB,yB), (zc, yc)
respectively. The coordinates of the incentraf A ABC are

axa + bxp + cxo _aya +bys + cyc

= and
o at+b+c b a+b+c

Proof. Let the sidesBC, AC, AB of AABC bea,b, c respectively. LetBI meetAC at B’.
Then using the Angle Bisector Theorem3’ : B'C = c: a,andBI : IB' = (a+¢) : b. (For
the second ratio, extendlB to AB; so thatBB; = a and extendd to meetB;C atI’. Then
B1Cis parallel toBB'. HenceBI : IB’ = B1I' : I'C = (a + ¢) : b. From this, we obtain the
coordinates of .

81
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Family of lines. If a1z + b1y + ¢1 = 0 andaqx + bay + c2 = 0 are two lines intersecting at a
point P (i.e. a1b2 # asby), then the family of lines passing thoughcan be expressed as

A(a1z 4+ bry + ¢1) + Ae(agx + bay + ¢2) = 0.

Area. The algebraic area of a triangle with verticé&e 4, y4), B(xp,yB), C(xc, yc) is given

by 1(ya +yB)(za —z5) + 3(ys + yc)(@p — xc) + 3(yc + ya)(zc — a) = 3(xpyc —
oy + Toya — xayc + rays — rpya) Which can be expressed as a determinant

1| Ea va 1
5| T8 B 1
zc yco 1

This is only the algebraic area. If the ordering of the vediof the triangled BC' is changed to
AC B, then the value of this area changes by a sign. THBC) is the absolute value of this
determinant.

The determinant can also be expressed as
0 0 1
1

5| ¥B—Ta Yp—Ya 01,
Tc—rA Yo —ya O

which is just (AB x AC) - k.

. Tangent to a circle Let C be the circle with equation® + y? + 2fx + 29y + h = 0 and

P = (z,yo) be a point orC. The equation of the tangent line to the cir€lat P is given by
zox + Yoy + f(z +x0) + 9y +yo) +h = 0.

Proof. The center of the circle i6— f, —g). Thus if (z,y) is a point on the tangent line, then
((z — 0,y — y0), (w0 + f,y0 +g)) = 0. Usingzg + y§ + 2fzo + 2gy0 + h = 0, the result
follows.

Coaxal circles The standard equation of a circle is of the form
C(z,y) =x* +y* +2fx + 29y + h =0.

The power of a poinP(a, b) with respect to a circl€' = 0 is also given byC'(a, b).
The locus of the points having equal power with respecti@ndCs is called theradical axis
of C7 andC5. For any 2 circle€”; = 0 andC; = 0, the radical axis is given by

Ci—Cy=0

The collection of all circles of the for@'s = A\C; + uCs, whereX + . = 1, forms a so-called
pencil of circles Any two such circles have the same radical axes, and theyadlexl coaxal
circles
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(P P OC

Figure 8.1: Coaxal circles

Example 8.1 Let C; : x2 4+ y2 = 10 andCy : z? + y?> — 22 + y = 10. Find the equation of the
circle passing through the points of intersectiorfbfandC> and the point5, 5).

Solution. The radical axis of”; andC, has the equation given by + y? — 10) — (22 + y? —

2z +y — 10) = 0. Thatisy — 22 = 0. Thus the equation of the required circle is of the form
(x2 +y? — 10) + My — 22) = 0. Since it passes through the po{t5), we find that\ = 8.
Consequently, the equationa$ + y? — 10 4+ 8y — 16z = 0.

Example 8.2 Let ¢ be a line outside a circlé. Take any poinf” on/. LetT A andT B be the two
tangents fron¥" to C. Prove that the chord B passes through a fixed point.

Figure 8.2: The chord\ B passes through a fixed point

Solution. Let the centre) of the circle be the origin. Choose coordinate axes sodtisparallel to
they-axis. Letr be the radius of the circle arfd, ¢) the coordinates df'. Herer < ¢. The equation
of the circle isz? + y? = r2.

Next, we wish to find the equation of the chafdB. To do this, it is not necessary to find the
coordinates ofd andB. Let the coordinates ol be (x4, y4). The equation of the tangent lifed
iszaz +yay = r2. (Itis a straight line passing throughand perpendiculart® A.) As it passes
throughT', we haver sc + yat = r2. Therefore A lies on the straight line

cx +ty =12, (8.1.1)

Similarly, B lies on ( 8.1.1). So ( 8.1.1) is the equation4B! Clearly, the line defined by (8.1.1)
passes through the poifit? /c, 0) which is independent of

There is also another easy way to find the equation of thediBe Observe tha®, A, T, B lie on a
circle ¢’ with diameterOT'. The equation of this circle i&c — ¢)z + (y — t)y = 0. (Take a point
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X on(’. ThenOX is perpendicular td"X . The scalar product gives the equation satisfiedthy
Now C andC’ both pass through and B. Hence the difference of their equations is the equation of
AB. Note that the lined B is the radical axis of andC’.

Exercise 8.1Let P = (a,b) be a point outside the unit circle + 32 = 1 and letPT; and PT; be
the tangents to it. Show that the coordinate$’o&ndT; are given by

a—bva?+b2 -1 b+ava®+b> -1 a+bva?+b -1 b—ava®z+b?-1

a? + b? ’ a? + b? ’ a? 4 b2 ’ a? 4+ b2 '
Exercise 8.2Let C be the circle with equation? + y? + 2ax + 2by + f = 0 andP = (z¢,yo) @
point outsideC'. The tangents fron® touchC' at the pointsX andY . Show that the equation of the
line XY is given by

Tox + Yoy + a(x 4 o) + b(y +yo) + f = 0.

Exercise 8.3 Show that the equation of the circle passing through thete@in, p2), (¢1, g2), (11, r2)
is given by

r—p1 y—p2 pi+ps—a®—y?

P—q p2—q ¢G+a¢—pi—ps |=0.

Q-r -T2 TIHTE -4 — @
[Hint: The form of this determinant shows that it is an eqomtdf a circle. The substitution of the
coordinates of each of the three points clearly makes trerm@iant zero. Consider the 4 points:
(z,y), (p1,p2), (@1, ¢2), (11, 72) on the circle, the perpendicular bisectors of any three®ttiords
among these 4 points must concur at the centre of the cirblgs  points are concyclic if and only
if the above determinant is zero. ]

8.2 Barycentric and homogeneous coordinates
Let A; A5 A3 be atriangle on the plane. For any paldt, the ratio of the (signed) areas
[MAQAg] . [MAgAl] . [MAlAQ]

is called thebarycentric coordinatesr areal coordinate®f M.

Here[M Az As] is the signed area of the trianglé A, As. It is positive, negative or zero according
to both A/ and A, lie on the same side, opposite side, or on the lihed;. Generally, we use
(11 : pe : ps) to denote the barycentric coordinates of a pdint

Theorem 8.1 Let [M As As] = i, [MAsAi] = ua, [MA1As] = pus and[A1 Az As] = 1 so that
1+ p2 + pg = 1. Then

1. A3Ny: NoAy = g @ s, etc.

2.A1M : MNy = (ug + p3) : p1-

3. AoM = pu3AzAz + 1 AzA,.
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Ay

Ao As As M3 Ny H2 Az

Figure 8.3: Barycentric coordinates

Proof. Let prove 2. Le{M Ny As] = o, [M A;N1] = B. Thenfigt = £ and4i4f = 4. Thus

M N, M Ny

AM pot s potops
M Ny a+ 3 p

Properties

1.

The barycentric coordinates of a point are homogeneousg.idha, : ps : u3) = (kg : kus :
kus) for any nonzero real numbér As such, it can also be identified with the homogeneous
coordinates of the point.

For the pointsd,, A andAs, we haved; = (1:0:0),42=(0:1:0)andAs =(0:0:1)
respectively.

Let the Cartesian coordinates df, B,C be (z4,y4), (vB,yB), (xc,yc) respectively. If

the barycentric coordinates @f is (u1 : pe : us), then the Cartesian coordinates &f is

przatperptpusre pryatpusystusyc
p1t+pe+ps ’ p1tp2tps

The centroid ofA 4; A3 As is the pointG = (1:1:1).

The circumcentre ofA A; A; A3 is the pointO = (sin 2A4; : sin 24 : sin 243).

SUppOSG‘hMg/MgAg =my andAng/MlAg = ms. ThenM = (1 tma o mlmg).
Ay

mi

As ma2 M, 1 As
Figure 8.4: The barycentric coordinatesidf

Proof. As [MA2A3] : [MA3A1] = M3As : A1 M3 =1 :m4, and[MA3A1] : [MAlAQ] =1:
mo = M1 : M1Mmo, WE have{MA2A3] : [MAgAl] : [MAlAQ] =1:mq:mimo.

. The incentre oA A; As A3 is the point(a; : as : as), whereay, as, ag are lengths of the sides

A A1 As As. This follows from the angle bisector theorem.
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8. Forthe excentres o A; A5 A3, we have
L =(—a1:a2:a3), Io=(a1:—as:a3), Is= (a1 :az2:—a3).
9. The orthocentre of\ A; A; A3 is the point
1 . 1 . 1

—a?+a3+a3 a2

H = (tan A; : tan As : tan As) = ( 5)-

—a3+ad? a?+dd—a

10. The Gergonne point oh A; A5 A3 is the point

(1:1:1).

S—ay S — ag S —as

Az s —aq M, s—as Az

Figure 8.5: Gergonne point

11. The Nagel point ofA A; A3 A5 is the pointN = (s — a1 : s —ag : s — as).
12. The equation of the line passing through the points: as : as) and(b; : by : bs) is

r1 T2 X3
a2 as ay asg ay a2

ar az a3 | =0 X1 — To + x3 = 0.
by b3 b1 b3 b1 bo

by by b3

This is a linear relation of the homogeneous coordinatesaofigt. In general the equation of a
straight line in homogeneous coordinates is of the form

0 pizy + poxa + ps3rs = 0.
Usually, the coefficients are used to denote such a line. tation, we write
€= [p1 o pis).
Thus the line passing through; : as : as) and(b; : by : bs) is given by

{= [a2b3 —agbs 1 —a1bs + asbs : ar1by — agbl].

13. Three pointsd = (a1 : as : a3), B = (b1 : ba : b3),C = (c1 : c2 : ¢3) are collinear if and only

if
ayp a2 as

by by b3 | =0.

1 C2 (3
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14. The intersection of the line§ = [a; : as : az] andlz = [by : ba : bs] is given by

P= (Clgbg — asbs : —a1bs + asbs : a1by — agbl).

15. Threelined = [a; : as : az],m = [by : ba : b3],n = [c1 : ¢2 : ¢3] @re concurrent if and only if

ay az ag
by by b3 | =0.
C1 Co C3

Proof. The intersection of andm is (agbs — asby : —a1bs + agbs : a1ba — azby). It lies onn
al as
b1 bs

az a3 ap asg

if and only if
b1 b3

c1 — co + c3 = 0.

2 b3
16. LetP = (p1 : p2 : p3) and@ = (q1 : g2 : g3) With p1 +p2 +p3 = 1 andg; +qa+q3 = 1. If M
divides PQ in the ratioPM : M@Q = 8 : «, then the poinf\/ has homogeneous coordinates
(ap1 + Bq1 = apz2 + Bga : aps + Bg3).

17. LetA = (a1, az2), B = (b1,b2), C = (c1, c2) be three non-collinear points on the plane. Let the

homogeneous coordinates.4f B andC be(1:0:0), (0:1:0)and(0: 0 : 1) respectively.
Show that for any poinP = (A1 : A2 : A3), its cartesian coordinates is given by

()\10,1 + Xoby + Azcy Ajas + Asba + )\302>
A1+ Ao+ A3 ’ A1+ A2+ A3

Example 8.3 In any triangleA; As As, the centroid7, the incentrel and the Nagel poinV are
collinear.

1 1 1
Proof. This is because a; as as = 0. In factG divides the segmentV in the
sSs—ay S—az2 S—as
ratio 1:2.

Theorem 8.2 (Menelaus)In the triangleA; A> A3, points By, B2, and Bs are on the sidesi; A3,
A3A1 andA1A2 reSpeCtiVEly such tha‘“gBl : BlAg = o1 : ﬁl, A3B2 : BgAl = Q9 : ﬁg and
A1 B3 : B3As; = a3 : f3. ThenBy, By and Bs are collinear if and only ifvyasas = — 51 5253.

Proof. TakeA; = (1 :0:0),A42 =(0:1:0),A3 =(0:0:1). ThenB; = (0: 51 : a1),
By = (042 :0: 52) andBs = (53 Qg 0) Thus

0 51 aq
ag 0 fo | = arasaz + B1520s.
Bz az O

Therefore B, B, and B3 are collinear if and only itvy asais = — 1 58253.
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Theorem 8.3 Let B; and C1, By and Cs, B3 and C3 be respective pairs of points on the sides
AsAs, A3 A1, A1 A5 or their extensions of\ A; A5 A3 such that

ABy \ A3By \ A1Bs \
B1A3 = Al, BQAl = N2, BgAQ — N3,
AzCy ACy AyCy

ClAQ = M1, CQA3 = M2, 03A1 = H3.
ThenB;,Cs, BoC3, B3C are concurrent if and only if

AtAoAz + pipiops + Apr + Aope + Agpuz — 1 = 0.

Ay
B3
Cy
C3 BQ
. N\,
B4 Cy

Figure 8.6: A generalization of Ceva’s theorem

Remark 8.1 Suppos&’; = A3, Cy = A1, C3 = As so thatu; = us = pg = 0. The conclusion is
that By Ao, Bo Az, B3 A; are concurrent if and only ik; A2 A3 = 1, which is Ceva’s Theorem.

Proof. TakeA; =(1:0:0), A2 =(0:1:0),A3=(0:0:1). Then
Bi=(0:1:X1),Ba=(A2:0:1),B3=(1:A3:0)
and
Ci=0:p1:1),Co=(1:0:p2),C5=(uz:1:0).

r1 X2 I3
The line ByCy is givenby| 0 1 ) |=0. ThatisBiCy = [u2 : Ay : —1]. Similarly,

1 0 125
ByC3 =[—1: puz: A2JandBsCy = [As : —1: us]. They are concurrent if and only if

o Ar —1
-1 3 )\2 - Oa
Az =1

which is the required expression.

Exercise 8.4 Prove that in any triangle the 3 lines each of which joins tldpmint of a side to the
midpoint of the altitude to that side are concurrent.
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[Hint. TakeA; = (1:0:0),A2 =(0:1:0),A3 =(0:0: 1). Let Fy, F» andF3 be the midpoints
of the altitudesA; N1, As N, and A3 N3 respectively. IfM;, Ms and M3 are the midpoints of the
sidesA; As, A3 A; andA; A; respectively, show that/; F; = [tan A5 —tan As : tan Ao +tan As :
—tan Ay — tan As], MaFy = [—tan Ay — tan Az : tan A; — tan A3 : tan A; + tan As], and
M3F5 = [tan Ay + tan Ap : —tan Ay — tan Ao : tan As — tan A4]. ]

Exercise 8.5 (Euler line) Prove that the circumcentre, the centroid dwedarthocentre of a triangle
are collinear.

Exercise 8.6 (Newton line) In a quadrilatersd BC' D, AB intersect®' D at E/, AD intersectsBC'
atF. Let L, M and N be the midpoints ofAC, BD and E'F respectively. Prove thdt, M, N are
collinear.

[Hint.LetA=(1:0:0),B=(0:1:0),C=(0:0:1)andD = (u:v:w)withu+v+w = 1.
Show thatV = (u — u? : v + v? : w — w?).]

8.3 Projective plane

The real projective plane usually denotediyconsists of all lines ifR3 passing through the origin.
That is
P? = {L : Lisaline througtO in R?}.

We can represent each lidethroughO by any non-zero vectdd A alongL. This suggests we can
represenf by homogeneous coordinates consisting of a triple of thueebers(« : 8 : ). (That
is(a:f:v)=(ka: kB : ky)forany non-zerd.) Thus

P?={(a:B:7) : a,B,7 € Randnotall, 3,7 = 0}.

For any two distinct line€.; and L. throughO, it determines a planer + by + xz = 0 throughO.

We can represent this plane by the three coefficienisc. As any non-zero multiple afx + by +

xz = 0 represents the same plane, this plane can be represented bgrhogeneous coordinates
[a: b : c]. Furthermore, the vectdr, b, ) is a normal vector to this plane. Thuslif = (ay : 54 :

v1) andLs = (ag : B2 : 2), the planel determined byL; and L, has a normal vector given by
the cross producdf (a; : 51 : 1) and{as : B2 : ¥2). That is the homogeneous coordinates of the

plane/ is
f1 M
B2 e .

If we denote the collection of all planes through the origyrif3”, then

a; B
az [

ar M

Q2 72

P> ={[a:b:¢| : a,b,c e Randnotalla,b,c = 0}.

There is a one-to-one correspondence betWieandP>" given by associating a liné the plane
perpendicular td..

Consider the plang : z = 1, or any plane not containing the origin. Any eleménbf P? not
contained in thecy plane intersectg in a unique pointP;. See figure 8.7. In this way we can
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Figure 8.7: The projective plane

think of R? = p lying insideP?. Any plane containing two distinct lines; and L, in P2 (both L,
and L. are not contained in they-plane) intersects in a line ¢ joining Py, and Pr,,. Thus we can
represents a point iR? = p by the homogeneous coordinates: 3 : ), and a line inR? = p by
[a:b:cl.

In fact we can think ofP? asR? with a “line” w added at infinity. This “line’w corresponds to
the zy-plane. With this correspondence, every “line’BA meetsw in a unique point, and any two
“lines” in P2 meet.

If S2 denotes the unit spherelk?, then every line iR? intersectsS? in a pair of antipodal (diamet-
rically opposite) points. In this way, we can reg@-das thespaceobtained by identifying antipodal
points of the unit sphere.

Though the geometry d#? is different fromR?2, the properties of concurrence and collinearity are
equivalent in boti?? andR2. Thus many of the results involving concurrence and cadliitg in R?
can be stated and proveds.

8.4 Quadratic curves

A quadratic curve (or a conic) is a curve with equatiart + by + cy? + dx + ey + f = 0. Thus
the general equation of a quadratic curve is determined lmgBicients. So it only requires 5 points
to determine a quadratic curve. Quadratic curves are fildénto the following types: parabola,
circle, ellipse, hyperbola, and 2-straight line. They aeegossible cross-sections obtained by slicing
a double cone with a plane, thus they are also called corfids.(&,y) = 0 andFy(x,y) = 0 are
two such curves, their intersection points are given by dloésrof the system of these two equations.
SinceF; and F, are quadratic, there are generally 4 solutions for thisesgstThus two quadratic
curves generally intersect in 4 points (or less). Supgase, y) = 0 andF>(z,y) = 0 intersect in
Py, P>, P;, Py. Then for any real numbers and); not both equal to O\ F; + A2 F5 = 0 is also

a quadratic curve, and it passes through P, P3, P,. Conversely, any quadratic curve passing
throughPy, P», P3, P, is of the formA; F1 + Ao F5 = 0 for some suitablé; and ..

Theorem 8.4 (Butterfly theorem) Through the midpoin© of a chordGH of a circle, two other
chordsAB andC' D are drawn; chordsAC and BD meetG H at E and F' respectively. The® is
the midpoint ofE' F'.
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Proof. Let the equation of the circle b€ 4y — 2by + f = 0. Let the equations of the line&B and
CD bey = kix andy = kqx respectively. Therefore the pair of lineg— k12)(y — k2z) = 0 passes
through the 4 pointsl, B, C, D. Each quadratic curve passing through the 4 paiht8, C, D is
represented by

22 +y? =20y + f+ My — k12)(y — ko) = 0.

Figure 8.8: Butterfly theorem

In particular the pair of lineglC' and BD is of this form for some suitablg. Settingy = 0 for the
equation of this pair of lines, we gét + \k1k2)x? + f = 0. From this we see that the roots of
this equation give the interceptsand F' of this pair of lines with ther-axis, and they are of equal
magnitude but opposite sign. ThO¥ = OF.

Remark 8.2 We can also take the linesD and BC' meeting thev-axis atFE’ and F’ respectively.
ThenOFE' = OF".

Example 8.4 Supposed B andC D are non-intersecting chords in a circle and tRas a point on
the arcAB remote fromC andD. Let PC and PD intersectAB at Q and R respectively. Prove
that AQ - RB/QR is a constant independent of the positionfof

Solution. Let AQ = z, QR = y andRB = z. Suppose we draw the circle through@ and D to
crossAB extended aF. In this circle, the chord) D will subtend equal anglesat P andE. Now,
as P varies,Z/CPD = # remains the same in the given circle, implying that, for asigons of
P, this second circle througR, @ and D always goes through the same paifibn AB extended.
Consequently, the segmeBf always has the same length

Therefore(x + y)z = PR - RD = y(z + k) giving zz = yk, thuszz/y = k is a constant. [This
is called Haruki's lemma and can be used to prove the Butt&tfigorem and the double Butterfly
Theorem. See Mathematics Magazine vol 63, No 4, October, 1256.]

Exercise 8.7 Using the result of Example 8.4, deduce the Butterfly theddein

Exercise 8.81n Figure 8.10, the poin® is the midpoint ofBC'. Prove thaD X = OY'.
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Figure 8.9: Haruki’'s lemma

Figure 8.10: Butterfly theorem for 2-straight lines

Exercise 8.9Let A, B,C, D, E, F be 6 points on the plane such th&B intersectsDF at L, BC'
intersectsE F' at N andC'D intersectd’ A at M. Prove thatifL, N, M are collinear, then there is a
conic passing through, B,C, D, E, F.

[Hint: Use the fact that for any 5 points in general positithere is a conic passing through them.
Let « be a conic passing through B, C, D, E. Let EN meeta at F’ and let the intersection of
AF’ andCD beM’. By Pascal’s theorem which also holds for six points on agahere is a conic
passing throughll, B, C, D, E, F'. Show thatM’ = M and hence”’ = F. This is the converse of
Pascal’s theorem.]

Exercise 8.10Show that the Butterfly theorem holds for any quadratic cumxve+ bxy + cy? +
dr+ey+ f=0.

[Hint: Position the chord?@ of the quadratic curve so th&andQ@ lie on thez-axis with the origin
as their midpoint. Show that in this coordinate system, tedfficientd = 0. Then follow the proof
of theorem 8.4.]

Remark 8.3 A direct proof of the Butterfly theorem is as follow.
In figure 8.11,M is the midpoint ofGH. Let K and L be the midpoints of the chordsC and BD
respectively. Joitk(, £, M, F, L to the centr& of the circle. Joink M andL M . Since the triangles
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AMC andDM B are similar, we haveCK/CM = CA/CM = BD/BM = 2BL/M B so that
the trianglesK C M and LBM are similar. ThusCKM = Z/BLM.

Figure 8.11: A direct proof of the Butterfly Theorem

AsO, K, E, M andO, L, F, M are concyclic, we havé EOM = /CKM = /BLM = ZFOM.
SinceOM is perpendicular ta: H, we conclude thad/ is the midpoint ofE' F'.



94 CHAPTER 8. USING COORDINATES

Exercise 8.11(A generalized Butterfly theorem) Let AB be a chord of a circle with midpoir#,
and let the chordX W andZY intersectAB at M and N respectively. LetA B intersectsX'Y” at
C andZW at D. Prove thatifM P = PN, thenCP = PD.

Figure 8.12: A generalized Butterfly theorem

[Hint: Use Haruki’'s lemma.]
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