
Home
Placed Image

INTRODUCTION to MATLAB

 1.1 INTRODUCTION

 MATLAB, which stands for MATrix LABoratory, is a state-of-the-art mathematical

software package, which is used extensively in both academia and industry. It is an

interactive program for numerical computation and data visualization, which along

with its programming capabilities provides a very useful tool for almost all areas of

science and engineering. Unlike other mathematical packages, such as MAPLE or

MATHEMATICA, MATLAB cannot perform symbolic manipulations without the use

of additional Toolboxes. It remains however, one of the leading software packages for

numerical computation

1.1.1 Starting MATLAB

However you start MATLAB, you will briefly see a window that displays the

MATLAB logo as well as some product information, and then a MATLAB Desktop

window will launch. That window will contain a title bar, a menu bar, a tool bar and

four embedded windows. The largest and most important window is the Command

Window on the middle, the Command History Window and the Workspace in right,

the Current Directory Browser in left. For now we concentrate on the Command

Window in order to get you started issuing MATLAB commands as quickly as

possible. At the top of the Command Window, you may see some general information

about MATLAB, perhaps some special instructions for getting started or accessing

help, but most important of all, you will see a command prompt (>>). If the Command

Window is “active,” its title bar will be dark, and the prompt will be followed by a

cursor (a blinking vertical line). That is the place where you will enter your MATLAB

commands. If the Command Window is not active, just click in it anywhere. Figure

1.1 contains an example of a newly launched MATLAB Desktop.

a. Command Window: - Use the Command Window to enter variables and to

run MATLAB functions and scripts. MATLAB displays the results. Press the

up arrow key ↑ to recall a statement you previously typed. Edit the statement

as needed, and then press Enter to run it.

b. Command History:-Statements you enter in the Command Window are

logged with a timestamp in the Command History. From the Command

History, you can view and search for previously run statements, as well as

copy and execute selected statements.

c. Workspace: - The workspace consists of the set of variables built up during a

session of using the MATLAB software and stored in memory. You add

variables to the workspace by using functions, running M-files, and loading

saved workspaces.

d. Current Directory Browser:-the files and subdirectories it contains are listed

in the Current Directory Browser.

Figure 1.1

1.1.2 Typing in Command Window

Abort

In order to abort a command in MATLAB, hold down the control key and press c

to generate a local abort with MATLAB.

The Semicolon (;)

If a semicolon (;) is typed at the end of a command the output of the command is

not displayed.

Typing %

When percent symbol (%) is typed in the beginning of a line, the line is

designated as a comment. When the enter key is pressed the line is not executed.

The clc Command

Typing clc command and pressing enter cleans the command window. Once the

clc command is executed a clear window is displayed.

Help

MATLAB has a host of built-in functions. For a complete list, refer to MATLAB

users

guide or refer to the on line Help. To obtain help on a particular topic in the list,

e.g., inverse, type help inv.

1.1.3 Display Format

MATLAB has several different screen output formats for displaying numbers.

These formats can be found by typing the help command: help format in the

Command Window. A few of these formats are shown in Table

Style Result Example

short Short, fixed-decimal format with 4 digits after the
decimal point. This is the default numeric setting.

3.1416

Style Result Example

long Long, fixed-decimal format with 15 digits after the
decimal point for double values, and 7 digits after the
decimal point for single values.

3.141592653589
793

shortE Short scientific notation with 4 digits after the decimal
point.

3.1416e+00

longE Long scientific notation with 15 digits after the
decimal point for double values, and 7 digits after the
decimal point for single values.

3.141592653589
793e+00

shortG Short, fixed-decimal format or scientific notation,
whichever is more compact, with a total of 5 digits.

3.1416

longG Long, fixed-decimal format or scientific notation,
whichever is more compact, with a total of 15 digits
for double values, and 7 digits for single values.

3.141592653589
79

shortEng Short engineering notation (exponent is a multiple of
3) with 4 digits after the decimal point.

3.1416e+000

longEng Long engineering notation (exponent is a multiple of
3) with 15 significant digits.

3.141592653589
79e+000

bank Currency format with 2 digits after the decimal point. 3.14

hex Hexadecimal representation of a binary double-
precision number.

400921fb54442d
18

rational Ratio of small integers. 355/113

1.2 Arithmetic Operations

The symbols for arithmetic operations with scalars are summarized below in

Table

Symbol Operation Example

+ Addition 6+3=9

- Subtraction 6-3=3

* Multiplication 6*3=18

\ Left Division 6\3=1/2

/ Right Division 6/3=2

^ Power 6^3=216

1.3 Elementary Math Built in Functions

MATLAB contains a number of functions for performing computations which

require the use of logarithms, elementary math functions, and trigonometric math

functions. List of these commonly used elementary MATLAB mathematical built-

in functions are given in Tables.

Modulo Division and Rounding

Function Description

mod Remainder after division (modulo operation)

rem Remainder after division

ceil Round toward positive infinity

fix Round toward zero

floor Round toward negative infinity

round Round to nearest decimal or integer

Exponents and Logarithms

Function Description

exp Exponential

log Natural logarithm

log10 Common logarithm (base 10)

log2 Base 2 logarithm and floating-point number dissection

sqrt Square root

Trigonometry

Sine

https://www.mathworks.com/help/matlab/ref/mod.html
https://www.mathworks.com/help/matlab/ref/rem.html
https://www.mathworks.com/help/matlab/ref/ceil.html
https://www.mathworks.com/help/matlab/ref/fix.html
https://www.mathworks.com/help/matlab/ref/floor.html
https://www.mathworks.com/help/matlab/ref/round.html
https://www.mathworks.com/help/matlab/ref/exp.html
https://www.mathworks.com/help/matlab/ref/log.html
https://www.mathworks.com/help/matlab/ref/log10.html
https://www.mathworks.com/help/matlab/ref/log2.html
https://www.mathworks.com/help/matlab/ref/sqrt.html

Function Description

sin Sine of argument in radians

sind Sine of argument in degrees

sinpi Compute sin(X*pi) accurately

asin Inverse sine in radians

asind Inverse sine in degrees

sinh Hyperbolic sine

asinh Inverse hyperbolic sine

Cosine

Function Description

cos Cosine of argument in radians

cosd Cosine of argument in degrees

cospi Compute cos(X*pi) accurately

acos Inverse cosine in radians

acosd Inverse cosine in degrees

cosh Hyperbolic cosine

acosh Inverse hyperbolic cosine

Tangent

Function Description

tan Tangent of argument in radians

tand Tangent of argument in degrees

atan Inverse tangent in radians

atand Inverse tangent in degrees

atan2 Four-quadrant inverse tangent

atan2d Four-quadrant inverse tangent in degrees

tanh Hyperbolic tangent

atanh Inverse hyperbolic tangent

https://www.mathworks.com/help/matlab/ref/sin.html
https://www.mathworks.com/help/matlab/ref/sind.html
https://www.mathworks.com/help/matlab/ref/double.sinpi.html
https://www.mathworks.com/help/matlab/ref/asin.html
https://www.mathworks.com/help/matlab/ref/asind.html
https://www.mathworks.com/help/matlab/ref/sinh.html
https://www.mathworks.com/help/matlab/ref/asinh.html
https://www.mathworks.com/help/matlab/ref/double.cos.html
https://www.mathworks.com/help/matlab/ref/cosd.html
https://www.mathworks.com/help/matlab/ref/double.cospi.html
https://www.mathworks.com/help/matlab/ref/acos.html
https://www.mathworks.com/help/matlab/ref/acosd.html
https://www.mathworks.com/help/matlab/ref/cosh.html
https://www.mathworks.com/help/matlab/ref/acosh.html
https://www.mathworks.com/help/matlab/ref/tan.html
https://www.mathworks.com/help/matlab/ref/tand.html
https://www.mathworks.com/help/matlab/ref/atan.html
https://www.mathworks.com/help/matlab/ref/atand.html
https://www.mathworks.com/help/matlab/ref/atan2.html
https://www.mathworks.com/help/matlab/ref/atan2d.html
https://www.mathworks.com/help/matlab/ref/tanh.html
https://www.mathworks.com/help/matlab/ref/atanh.html

1.4 Variable Names

A variable is a name made of a letter or a combination of several letters and digits.

Variable names can be up to 63 (in MATLAB 7) characters long (31 characters on

MATLAB 6.0). MATLAB is case sensitive. For instance, XX, Xx, xX, and xx are

the names of four different variables. It should be noted here that not to use the

names of a built-in functions for a variable. For instance, avoid using: sin, cos, exp,

sqrt, ..., etc. Once a function name is used to define a variable, the function cannot

be used.

1.4.1 Predefined Variables

MATLAB includes a number of predefined variables. Some of the predefined

variables that are available to use in MATLAB programs are summarized in Table

Expression Description

pi The number π up to 15 significant digits.

i, j The complex number

inf Represents the mathematical Infinity concept, for example, a result
of division by zero.

NaN Stands for Not-A-Number. Represents the result of a meaningless
mathematical function, like 0/0.

clock Contains the current date and time in the form of a 6-element row
vector: year, month, day, hour, minute, second.

date Contains a string representing today's date.

eps Stands for epsilon. It represents the smallest number that can be
represented by your MATLAB software.

ans A special variable that MATLAB uses to store the result of
MATLAB's command line.

1.4.2 Command for Managing Variables

Table below lists commands that can be used to eliminate variables or to obtain

information about variables that have been created. The procedure is to enter the

command in the Command Window and the Enter key is to be pressed.

Expression Description

clear Remove items from workspace, freeing up system memory

clc Clear Command Window

who List variables in workspace

whos List variables in workspace, with sizes and types

1.5 Complex Numbers

Complex numbers consist of two separate parts: a real part and an imaginary part.

The basic imaginary unit is equal to the square root of -1. This is represented in

MATLAB by either of two letters: i or j.

1.5.1 Creating Complex Numbers

The following statement shows one way of creating a complex value in MATLAB.

The variable x is assigned a complex number with a real part of 2 and an imaginary

part of 3:

x = 2 + 3i;

Another way to create a complex number is using the complex function. This

function combines two numeric inputs into a complex output, making the first input

real and the second imaginary:

x = 4;

y = -1;

z = complex(x, y)

z =

 4.0000 -1.0000i

jar:file:///C:/Program%20Files/MATLAB/R2010a/help/techdoc/help.jar%21/ref/complex.html

1.5.2 Arithmetic operations with complex numbers

Symbol Operation Example

+ Addition z = x + y

- Subtraction z = x - y

* Multiplication z = x * y

\ Left Division z = x / y

1.5.3 Complex number functions

Function Description

abs Absolute value and complex magnitude

angle Phase angle

complex Create complex array

conj Complex conjugate

i Imaginary unit

imag Imaginary part of complex number

isreal Determine whether array uses complex storage

j Imaginary unit

real Real part of complex number

https://www.mathworks.com/help/matlab/ref/abs.html
https://www.mathworks.com/help/matlab/ref/angle.html
https://www.mathworks.com/help/matlab/ref/complex.html
https://www.mathworks.com/help/matlab/ref/conj.html
https://www.mathworks.com/help/matlab/ref/i.html
https://www.mathworks.com/help/matlab/ref/imag.html
https://www.mathworks.com/help/matlab/ref/isreal.html
https://www.mathworks.com/help/matlab/ref/j.html
https://www.mathworks.com/help/matlab/ref/real.html

VECTORS AND MATRICES

2.1 Arrays

An array is a list of numbers arranged in rows and/or columns. A one-dimensional

array is a row or a column of numbers and a two-dimensional array has a set of

numbers arranged in rows and columns. An array operation is performed element-by-

element.

2.1.1 Row Vector

A vector is a row or column of elements.

In a row vector the elements are entered with a space or a comma between the

elements inside the square brackets. For example,

x = [7 – 1 2 – 5 8]

2.1.2 Column Vector

In a column vector the elements are entered with a semicolon between the elements

inside the square brackets. For example,

x = [7 ; – 1 ; 2 ; – 5 ; 8]

2.2 Matrix

A matrix is a two-dimensional array which has numbers in rows and columns. A

matrix

is entered row-wise with consecutive elements of a row separated by a space or a

comma, and

the rows separated by semicolons or carriage returns. The entire matrix is enclosed

within

square brackets. The elements of the matrix may be real numbers or complex

numbers. For

example to enter the matrix,

The MATLAB input command is

A = [1 3 – 4 ; 0 – 2 8]

Similarly, for complex number elements of a matrix B

The MATLAB input command is

B = [– 5 * x log(2 * x) + 7 * sin (3 * y) ; 3i 5 – 13i]

2.3 Addressing Arrays

A colon can be used in MATLAB to address a range of elements in a vector or a

matrix.

2.3.1 Colon for a vector

Va(:) – refers to all the elements of the vector Va (either a row or a column vector).

Va(m : n) – refers to elements m through n of the vector Va.

For instance

>> V = [2 5 – 1 11 8 4 7 – 3 11]

>> u = V(2 : 8)

u = 5 – 1 11 8 4 7 – 3 11

2.3.2 Colon for a matrix

Table below gives the use of a colon in addressing arrays in a matrix.

 A(:,n) is the nth column of matrix A.

 A(m,:) is the mth row of matrix A.

 A(:,:,p) is the pth page of three-dimensional array A.

 A(:) reshapes all elements of A into a single column vector. This has no effect

if A is already a column vector.

 A(:,:) reshapes all elements of A into a two-dimensional matrix. This has no

effect if A is already a matrix or vector.

 A(j:k) uses the vector j:k to index into A and is therefore equivalent to the

vector [A(j), A(j+1), ..., A(k)].

 A(:,j:k) includes all subscripts in the first dimension but uses the vector j:k to

index in the second dimension. This returns a matrix with columns [A(:,j),

A(:,j+1), ..., A(:,k)].

2.3.3 Deleting Elements

An element, or a range of elements, of an existing variable can be deleted by

reassigning

blanks to these elements. This is done simply by the use of square brackets with

nothing typed in between them.

2.3.4 Adding Elements to a Vector or a Matrix

A variable that exists as a vector, or a matrix, can be changed by adding elements to

it. Addition of elements is done by assigning values of the additional elements, or by

appending existing variables. Rows and/or columns can be added to an existing

matrix by assigning values to the new rows or columns.

2.4 Element-by-element operations

Element-by-element operations can only be done with arrays of the same size.

Elementby- element multiplication, division, and exponentiation of two vectors or

matrices is entered in MATLAB by typing a period in front of the arithmetic

operator. Table below lists these operations

Operator Purpose Description
Reference
Page

+ Addition A+B adds A and B. plus

+ Unary plus +A returns A. uplus

- Subtraction A-B subtracts B from A minus

- Unary minus -A negates the elements of A. uminus

.* Element-wise
multiplication

A.*B is the element-by-element product

of A and B.

times

.^ Element-wise
power

A.^B is the matrix with elements A(i,j) to

the B(i,j) power.

power

./ Right array division A./B is the matrix with

elements A(i,j)/B(i,j).

rdivide

.\ Left array division A.\B is the matrix with

elements B(i,j)/A(i,j).

ldivide

.' Array transpose A.' is the array transpose of A. For complex

matrices, this does not involve conjugation.

transpose

Matrix Operations
Matrix operations follow the rules of linear algebra and are not compatible with

multidimensional arrays. The required size and shape of the inputs in relation to one

another depends on the operation. For non-scalar inputs, the matrix operators

generally calculate different answers than their array operator counterparts.

https://www.mathworks.com/help/matlab/ref/plus.html
https://www.mathworks.com/help/matlab/ref/uplus.html
https://www.mathworks.com/help/matlab/ref/minus.html
https://www.mathworks.com/help/matlab/ref/uminus.html
https://www.mathworks.com/help/matlab/ref/times.html
https://www.mathworks.com/help/matlab/ref/power.html
https://www.mathworks.com/help/matlab/ref/rdivide.html
https://www.mathworks.com/help/matlab/ref/ldivide.html
https://www.mathworks.com/help/matlab/ref/transpose.html

The following table provides a summary of matrix arithmetic operators in MATLAB.

Operator Purpose Description
Reference
Page

* Matrix
multiplication

C = A*B is the linear algebraic product of the

matrices A and B. The number of columns of A must

equal the number of rows of B.

mtimes

\ Matrix left
division

x = A\B is the solution to the equation Ax = B.

Matrices A and B must have the same number of rows.

mldivide

/ Matrix right
division

x = B/A is the solution to the equation xA = B.

Matrices A and B must have the same number of

columns. In terms of the left division operator, B/A =
(A'\B')'.

mrdivide

^ Matrix power A^B is A to the power B, if B is a scalar. For other

values of B, the calculation involves eigenvalues and

eigenvectors.

mpower

' Complex
conjugate
transpose

A' is the linear algebraic transpose of A. For complex

matrices, this is the complex conjugate transpose.

ctranspose

2.5 Identity, Ones and Zeros Matrix

The function eye(m,n), ones(m,n) , zeros(m,n) returns an m-by-n rectangular identity

,all elements ones, all elements zero matrix and eye(n) returns an n-by-n square

identity matrix and same for others.

2.6 Built-in Functions for Arrays

Table below lists some of the many built-in functions available in MATLAB for

analyzing

arrays.

a. Transpose

 In MATLAB, the transpose of the matrix A is denoted by A'

b. Diagonal of matrix

diag (A) :-When A is a matrix, creates a vector from the diagonal elements of A.

https://www.mathworks.com/help/matlab/ref/mtimes.html
https://www.mathworks.com/help/matlab/ref/mldivide.html
https://www.mathworks.com/help/matlab/ref/mrdivide.html
https://www.mathworks.com/help/matlab/ref/mpower.html
https://www.mathworks.com/help/matlab/ref/ctranspose.html

diag (v) When v is a vector, creates a square matrix with the elements of v in the

diagonal.

2.7 Matrix dimension functions

 length(A): - Length of vector or largest array dimension.

 size(A): - returns the sizes of each dimension of array.

 ndims(A): - Number of array dimensions.

 reshape (A, m, n): - Rearrange a matrix A that has r rows and s columns to have

m rows and n columns. r times s must be equal to m times n.

Example: - Let

 𝐴 = (
2 5 0 7
3 4 − 1 4

)

Then

>> length(A)

ans =

 4

>> size(A)

ans =

 2 4

>> ndims(A)

ans =

 2

>> reshape(A,4,2)

ans =

 2 0

 3 -1

 5 7

 4 4

2.8 Relational and Logical Operators

A relational operator compares two numbers by finding whether a comparison

statement is true (1) or false (0). A logical operator examines true/false statements

and produces a result which is true or false according to the specific operator.

Relational operators Table

Logical operators Table

Symbol Role More Information

& Find logical AND and

| Find logical OR or

&& Find logical AND (with short-circuiting) Short-Circuit AND

|| Find logical OR (with short-circuiting) Short-Circuit OR

~ Find logical NOT not

Symbol Function Equivalent Description

< lt Less than

<= le Less than or equal to

> gt Greater than

>= ge Greater than or equal to

== eq Equal to

~= ne Not equal to

https://www.mathworks.com/help/matlab/ref/and.html
https://www.mathworks.com/help/matlab/ref/or.html
https://www.mathworks.com/help/matlab/ref/shortcircuitand.html
https://www.mathworks.com/help/matlab/ref/shortcircuitor.html
https://www.mathworks.com/help/matlab/ref/not.html

Additional logical built-in functions Table

Function Description

xor Find logical exclusive-OR

all Determine if all array elements are nonzero or true

any Determine if any array elements are nonzero

find Find indices and values of nonzero elements

islogical Determine if input is logical array

logical Convert numeric values to logical

true Logical 1 (true)

false Logical 0 (false)

https://www.mathworks.com/help/matlab/ref/xor.html
https://www.mathworks.com/help/matlab/ref/all.html
https://www.mathworks.com/help/matlab/ref/any.html
https://www.mathworks.com/help/matlab/ref/find.html
https://www.mathworks.com/help/matlab/ref/islogical.html
https://www.mathworks.com/help/matlab/ref/logical.html
https://www.mathworks.com/help/matlab/ref/true.html

PROGRAMMING IN MATLAB

3.1 M-files: Scripts and functions

To take advantage of MATLAB’s full capabilities, we need to know how to

construct long (and sometimes complex) sequences of statements. This can be done

by writing the commands in a file and calling it from within MATLAB. Such files

are called “m-files” because they must have the filename extension “.m”. This

extension is required in order for these files to be interpreted by MATLAB.

There are two types of m-files: script files and function files.

Script files contain a sequence of usual MATLAB commands, that are executed (in

order) once the script is called within MATLAB. For example, if such a file has the

name compute .m , then typing the command compute at the MATLAB prompt will

cause the statements in that file to be executed. Script files can be very useful when

entering data into a matrix.

Example:- Create the script file then write a program to find the roots of equation

2x2 -3x+1=0.

Sol:
% This Program written to Find the Roots of Equation 2x^2-

3x+1=0%

 a=2; b=-3; c=1;

 x1=(-b+sqrt(b^2-4*a*c))/2

 x2=(-b-sqrt(b^2-4*a*c))/2

3.2 Input and output command

a. Disp(X)

disp(X) displays an array, without printing the array name. If X contains a text

string, the string is displayed. Another way to display an array on the screen

is to type its name, but this prints a leading "X=," which is not always

desirable. Note that disp does not display empty arrays.

 >> disp('string expression');

 string expression

 >> A=[3,2;2,3];

 disp(A);

 3 2

 2 3

b. Input

The input function can be used for requesting user input. For example,

 r=input('value for r: ');

 displays value for r:

 to the screen and waits for the user to enter an expression which is then

assigned to r.

c. fprintf

The fprintf command displays output (text and data) on the screen or saves it

to a file. The output can be formatted using this command.

fprintf (format,A,...) writes to standard output—the screen. The format string

specifies notation, alignment, significant digits, field width, and other aspects

of output format. It can contain ordinary alphanumeric characters; along with

escape characters, conversion specifiers, and other characters, organized as

shown below:

For more information, see “Tables” and “References”

Example:-

 >> x = 2; y = sqrt(x);

 >> fprintf('The squrt root of %g is %9.4f\n',x,y)

 The squrt root of 2 is 1.4142

Example:-

>> x = 1:4; y = sqrt(x);

>> fprintf('The squrt root of %d is %4.2f\n',[x;y])

The squrt root of 1 is 1.00

The squrt root of 2 is 1.41

The squrt root of 3 is 1.73

The squrt root of 4 is 2.00

3.3 Conditional Execution

3.3.1 Conditional Execution or Branching:

As the result of a comparison, or another logical (true/false) test, selected blocks of

program code are executed or skipped. Conditional execution is implemented with

if, if...else, and if...elseif constructs, or with a switch construct.

There are three types of if constructs

1. Plain if

2. if...else

3. if...elseif

if Constructs

Syntax:
 if expression

 block of statements

 end

The block of statements is executed only if the expression is true.

Example:

 if a < 0

 disp(’a is negative’);

 end

One-line format uses comma after if expression

if a < 0, disp(’a is negative’); end

if. . . else

Multiple choices are allowed with if. . . else and if. . . elseif constructs

if x < 0

 error(’x is negative; sqrt(x) is imaginary’);

else

 r = sqrt(x);

end

if. . . elseif

It’s a good idea to include a default else to catch cases that don’t match preceding

if and elseif blocks

if x > 0

 disp(’x is positive’);

elseif x < 0

 disp(’x is negative’);

else

 disp(’x is exactly zero’);

end

3.3.2 The switch Construct

A switch construct is useful when a test value can take on discrete values that are

either integers or strings.

Syntax:

switch expression

 case value1,

 block of statements

 case value2,

 block of statements

 ...

 otherwise,

 block of statements

end

Example:

color = ’...’; % color is a string

switch color

 case ’red’

 disp(’Color is red’);

 case ’blue’

 disp(’Color is blue’);

 case ’green’

 disp(’Color is green’);

 otherwise

 disp(’Color is not red, blue, or green’);

end

3.4 Repetition or Looping

A sequence of calculations is repeated until either

1. All elements in a vector or matrix have been processed

or

2. The calculations have produced a result that meets a predetermined termination

criterion

Looping is achieved with for loops and while loops.

3.4.1 for loops

for loops are most often used when each element in a vector or matrix is to be

processed.

Syntax:
 for index = expression

 block of statements

 end

Example: Sum of elements in a vector

 x = 1:5; % create a row vector

 sumx = 0; % initialize the sum

 for k = 1:length(x)

 sumx = sumx + x(k);

 end

3.4.2 for loop variations

Example: A loop with an index incremented by two

 for k = 1:2:n

 ...

 end

Example: A loop with an index that counts down

 for k = n:-1:1

 ...

 end

Example: A loop with non-integer increments

 for x = 0:pi/15:pi

 fprintf(’%8.2f %8.5f\n’,x,sin(x));

 end

Note: In the last example, x is a scalar inside the loop. Each time through the loop,

x is set equal to one of the columns of 0:pi/15:pi.

3.4.3 while loops

while loops are most often used when an iteration is repeated until some

termination criterion is met.

Syntax:

 while expression

 block of statements

 end

The block of statements is executed as long as expression is true.

Example: Here is a simple example of a script M-file that uses while to

numerically sum the infinite series 1/14 + 1/24 + 1/34 +· · ·, stopping only when the

terms become so small (compared to the machine precision) that the numerical

sum stops changing:

 n = 1; oldsum = -1; newsum = 0;

 while newsum > oldsum

 oldsum = newsum;

 newsum = newsum + nˆ(-4);

 n = n + 1;

 end

 newsum

Note:-It is (almost) always a good idea to put a limit on the number of iterations to

be performed by a while loop.

An improvement on the preceding loop,

 n = 1; oldsum = -1; newsum = 0;

 maxit = 25; it = 0;

 while newsum > oldsum & it<maxit

 oldsum = newsum;

 newsum = newsum + nˆ(-4);

 n = n + 1;

 it = it + 1;

 end

 newsum

4.1 Function files

on the other hand, play the role of user defined commands that often have input and

output. You can create your own commands for specific problems this way, which

will have the same status as other MATLAB commands. Let us give a simple

example. The text below is saved in a file called log3.m and it is used to calculate

the base 3 logarithm of a positive number. The text file can be created in a variety

of ways, for example using the built-in MATLAB editor through the command edit

(that is available with MATLAB 5.0 and above), or your favorite (external) text

editor (e.g. Notepad or Wordpad in Microsoft Windows). You must make sure that

the filename has the extension “.m” !

function [a] = log3(x)

a = log(abs(x))./log(3);

end

» log3(5)

ans =

 1.4650

Syntax:
The first line of a function m-file has the form:

 function [outArgs] = funName(inArgs)

outArgs are enclosed in []
• outArgs is a comma-separated list of variable names

• [] is optional if there is only one parameter

• functions with no outArgs are legal

inArgs are enclosed in ()
• inArgs is a comma-separated list of variable names

• functions with no inArgs are legal

Example:- Write the function to find Fibonnaci sequence.

function f = Fib1(n)

F=zeros(1,n+1);

F(2) = 1;

for i = 3:n+1

F(i) = F(i-1) + F(i-2);

End

End

Example:- Write the function to find area and perimeter of triangle.

function [A s] = area(a,b,c)

s = (a+b+c)/2;

A = sqrt(s*(s-a)*(s-b)*(s-c));

End

4.2 Loop and Function Cotroal

a. return

return is used to force an exit from a function. This can have the effect of escaping

from a loop. Any statements following the loop that are in the function body are

skipped.

b. break

break is used to escape from an enclosing while or for loop. Execution continues at

the end of the enclosing loop construct.

Example: - write a function to check that the input number is prime or not.

function [p] = prim(x)

p=0;

for i=2:x-1

 if rem(x,i)==0

 p=1;

 return

 end

end

end

in above example we have only one element input but if we write program to work

with array of element as an input we must write the program as follow

function p = prim(a)

p=zero(size(a));

for i=1:length(a)

 for j=2:a(i)-1

 if rem(a(i),j)==0

 p(i)=1;

 Break

 end

 end

end

end

c. continue

The continue statement passes control to the next iteration of the for loop or while

loop in which it appears, skipping any remaining statements in the body of the

loop. In nested loops, continue passes control to the next iteration of the for loop or

while loop enclosing it.

Example:- find the s where

𝑠 =∑
1

𝑖 − 3

𝑛

𝑖=0
𝑖≠3

n=input('n=')

s=0;

for i=0:n

 if i==3, continue, end

 s=s+1/(i-3);

end

s

d. error (‘text’)

Terminates execution and displays the message contained in text on the screen.

Example: - Write the function to replace the last row with last column of input

matrix.

 function b = lr2lc(a)

 [n m]=size(a);

 if n~=m

 error('The matrix must be square')

 else

 b=a;

 b(n,:)=a(:,m);

 b(:,m)=a(n,:);

 end

 end

STRINGS

5.1 Character Strings

While Matlab is primarily intended for number crunching, there are times when it is

desirable to manipulate text, as is needed in placing labels and titles on plots. In

Matlab, text is referred to as character strings or simply strings.

5.1.1 String Construction

Character strings in Matlab are special numerical arrays of ASCII values that are

displayed as their character string representation. For example:

>> text = ’This is a character string’

 text =

 This is a character string

>> size(text)

 ans =

 1 26

>> whos

 Name Size Bytes Class

 ans 1x2 16 double array

 text 1x26 52 char array

Grand total is 28 elements using 68 bytes

5.1.2 ASCII Codes

Each character in a string is one element in an array that requires two bytes per

character for storage, using the ASCII code. This differs from the eight bytes per

element required for numerical or double arrays. The ASCII codes for the letters 'A'

to 'Z' are the consecutive integers from 65 to 90, while the codes for 'a' to 'z' are 97

to 122. The function abs returns the ASCII codes for a string.

>> text = ’This is a character string’

text =

 This is a character string

>> d = abs(text)

 d =

 Columns 1 through 12

 84 104 105 115 32 105 115 32 97 32 99

104

 Columns 13 through 24

 97 114 97 99 116 101 114 32 115 116 114

105

 Columns 25 through 26

 110 103

The function char performs the inverse transformation, from ASCII codes to a

string:

>> char(d)

ans =

 is a character string

The relationship between strings and their ASCII codes allow you to do the

following:

>> alpha = abs(’a’):abs(’z’);

>> disp(char(alpha))

 Abcdefghijklmnopqrstuvwxyz

5.2 Strings are Arrays

Since strings are arrays, they can be manipulated with array manipulation tools:

>> text = ’This is a character string’;

>> u = text(11:19)

u =

 character

As with matrices, character strings can have multiple rows, but each row must have

an equal number of columns. Therefore, blanks are explicitly required to make all

rows the same length.

For example:

>> v = [’Character strings having more than’

 ’one row must have the same number ’

 ’of columns - just like matrices ’]

v =

 Character strings having more than

 one row must have the same number

 of columns - just like matrices

>> size(v)

 ans =

 3 34

5.3 Concatenation of Strings

Because strings are arrays, they may be concatenated (joined) with square brackets.

For example:

>> today = ’May’;

>> today = [today, ’ 18’]

 today =

 May 18

5.4 String Conversions

num2str(x) :- Converts the matrix x into a string representation with about 4 digits

and an exponent if required.

The num2str function can be used to convert numerical results into strings for use

in formatting displayed results with disp. For example;

a=input('a=');

for i=1:length(a);

 if isprime(a(i))

 disp([num2str(a(i)) ' is prime'])

 else

 disp([num2str(a(i)) ' is not prime'])

 end

end

 run

 a=[2 8 5]

 2 is prime

 8 is not prime

 5 is prime

str2num(s) :- converts the string s which is an ASCII character representation of a

numeric value, to numeric representation. str2num also converts string matrices to

numeric matrices. If the input string does not represent a valid number or matrix,

str2num(s) returns the empty matrix. For example;

 s='423' » str2num(s)=423

 s='3 0 2 5' » a=str2num(s)

 a= 3 0 2 5 is matrix

 str2num('2 4; 6 8')

 ans =

 2 4

 6 8

eval(s):- Execute the string s as a Matlab expression or statement.

Example:- write a program to draw the graph of input function.

f = input(’Enter function (of x) to be plotted: ’,

’s’);

x = 0:0.01:10;

y= eval(f);

plot(x,y),grid

Here’s how the command line looks after you enter the function:

>> Enter function (of x) to be plotted:

 exp(-0.5*x) .* sin(x)

Example:- You can concatenate strings to create a complete expression for input

to eval. This code shows how eval can create 10 variables named P1, P2, ...P10,

and set each of them to a different value.

for i=1:10

 eval(['P',int2str(i),'= i.^2'])

 end

fprintf(formatspec,var)

formats var as specified in formatSpec.

Formatting Operator

A formatting operator starts with a percent sign, %, and ends with a conversion

character. It is mandatory to specify the conversion character. Optionally, you can

specify identifier, flags, field width, precision, and subtype operators between %

and the conversion character. Spaces are invalid between operators and are shown

here only for readability.

Conversion Character

This table shows conversion characters to format numeric and character data as

text.

Value Type Conversion Details

Integer,
signed

%d or %i Base 10

Integer,
unsigned

%u Base 10

%o Base 8 (octal)

%x Base 16 (hexadecimal), lowercase letters a–f

%X Same as %x, uppercase letters A–F

Floating-
point number

%f Fixed-point notation (Use a precision operator to
specify the number of digits after the decimal
point.)

%e Exponential notation, such as 3.141593e+00 (Use
a precision operator to specify the number of
digits after the decimal point.)

%E Same as %e, but uppercase, such
as 3.141593E+00 (Use a precision operator to
specify the number of digits after the decimal
point.)

%g The more compact of %e or %f, with no trailing
zeros (Use a precision operator to specify the
number of significant digits.)

%G The more compact of %E or %f, with no trailing
zeros (Use a precision operator to specify the
number of significant digits.)

Characters or
strings

%c Single character

%s Character vector or string array. The type of the
output text is the same as the type of formatSpec.

5.5 Some necessary subjects

5.5.1 Function handles

A function handle (@) is a reference to a function that can then be treated as a

variable. It can be copied, placed in cell array, and evaluated just like a regular

function.

Function handles can refer to built-in MATLAB functions, to your own function in

an M-file, or to anonymous functions. An anonymous function is defined with a

one-line expression, rather than by an M-file. Try:

g = @(x) x^2-5*x+6-sin(9*x)

g(1)= 1.5879

Some MATLAB functions that operate on function handles need to evaluate the

function on a vector, so it is often better to define an anonymous function (or M-

file)so that it can operate entry-wise on scalars, vectors, or

 matrices. Try this instead:

g = @(x) x.^2-5*x+6-sin(9*x)

g([-1 0 2 3])

ans =

 12.4121 6.0000 0.7510 -0.9564

The general syntax for an anonymous function is

fname = @(var1, var2, ...) expression

Here is an example with two input arguments:

norm2 = @(x,y) sqrt(x^2 + y^2)

norm2(4, 5)

Example 2.9: - Write a program to draw the surface of input function on square

region around origin point.

f=input('input handle f(x,y)=');

[x1,y1]=meshgrid(-3:0.1:3);

z1=f(x1,y1);

surf(x1,y1,z1)

should input the function as @(x,y)x.^2+y.^2

5.5.2 Cell arrays

Cell arrays are arrays which contain elements of arbitrary types. They are

identified by curly braces instead of square ones:

>> c = {[3,4],18.2,[1,2;2,1],'string'};

defines a cell array c. We can access elements of c in the following way:

>> c{3}

ans =

 1 2

 2 1

Example 2.10: - You can substitute multiple symbolic expressions, numeric

expressions, or any combination, using cell arrays of symbolic or numeric values.

Try:

syms x y

S = x^y

subs(S, x, 3)

subs(S, {x y}, {3 2})

subs(S, {x y}, {3 x+1})

Example 2.11: - Let

D = {‘red’;‘blue’;‘green’;‘yellow’}

D =

‘red’

‘blue’

‘green’

‘yellow’

sort(D)

ans =

 'blue'

 'green'

 'red'

 'yellow'

5.5.3 Structure

A structure is a MATLAB data type that provides the means to store hierarchical

data together in a single entity. A structure consists mainly of data containers,

called fields, and each of these fields stores an array of some MATLAB data type.

You assign a name to each field as you create the structure. The figure below

shows a structure s that has three fields: a, b, and c.

Example 2.12: -

s.a=[1 4 7 2 9 3];

s.b=’James’

s.c=[8 1 6;3 5 7;4 9 2];

Like all MATLAB data types, the structure is an array. The class of a structure is

called struct, so an array of structures is often referred to as a struct array. Like

other MATLAB arrays, a struct array can have any dimensions. The struct array

shown below has the dimensions 1-by-2 and is composed of two elements: s(1) and

s(2). Each of these elements is a structure with fields a, b, and c of its own.

Example 2.13: -

s(1).a=[1 4 7 2 9 3];

s(1).b=’James’

s(1).c=[8 1 6;3 5 7;4 9 2];

s(2).a=’Anne’;

s(2).b=pi;

s(2).c=[1;2;3;4;5;6;7];

Polynomials

A polynomial is a function of a single variable that can be expressed in the following form:

𝑓(𝑥) = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + … + 𝑎𝑛–1𝑥1 + 𝑎𝑛

where the variable is x and the coefficients of the polynomial are represented by the values

a0, a1, … and so on. The degree of a polynomial is equal to the largest value used as an

exponent.

2.1 Input Polynomial

A vector represents a polynomial in MATLAB. When entering the data in MATLAB,

simply enter each coefficient of the polynomial into the vector in descending order.

 Example 2.1:- consider the polynomial 𝑝(𝑠) = 5𝑠5 + 7𝑠4 + 2𝑠2 – 6𝑠 + 10

To enter this into MATLAB, we enter this as a vector as

>> p = [5 7 0 2 – 6 10]

p =

 5 7 0 2 – 6 10

It is necessary to enter the coefficients of all the terms.

2.2 Polynomial multiplication and division

MATLAB contains functions that perform polynomial multiplication and division, which

are listed below:

conv(p, q)

Let 𝑝(𝑥) and 𝑞(𝑥) be two polynomial of degree n and m respectively, to find

 ℎ(𝑥) = 𝑝(𝑥) ∗ 𝑞(𝑥) using h=conv(p, q) computes a coefficient vector that contains the

coefficients of the product of polynomials represented by the coefficients in p and q. The

vectors p and q do not have to be the same size.

Example 2.2:- consider the polynomials

 𝑝(𝑥) = 𝑥4 − 4𝑥2 + 2𝑥 + 1 and 𝑞(𝑥) = 𝑥 + 2

then to find ℎ(𝑥) = 𝑝(𝑥) ∗ 𝑞(𝑥) write Matlab code as follows

p=[1 0 -4 2 1];

q=[1 2];

h=conv(p,q)

result is

h =

 1 2 -4 -6 5 2

or

ℎ(𝑥) = 𝑥5 + 2𝑥4 − 4𝑥3 − 6𝑥2 + 5𝑥 + 1

deconv(p, q)

Let 𝑝(𝑥) and 𝑞(𝑥) be two polynomial of degree n and m respectively, to find

 ℎ(𝑥) = 𝑝(𝑥)/𝑞(𝑥) using [h, r]=deconv(p, q)

Returns two vectors. The first vector contains the coefficients of the quotient and the

second vector contains the coefficients of the remainder polynomial.

Example 2.3: - consider the polynomials

𝑝(𝑥) = 𝑥4 − 4𝑥2 + 2𝑥 + 1 and 𝑞(𝑥) = 𝑥2 + 2

then to find ℎ(𝑥) = 𝑝(𝑥)/𝑞(𝑥) write Matlab code as follows

p=[1 0 -4 2 1];

q=[1 0 2];

[h,r]=deconv(p,q)

result is

h =

 1 0 -6

r =

 0 0 0 2 13

or

ℎ(𝑥) = 𝑥2 − 6 and 𝑟(𝑥) = 2𝑥 + 13

2.3 Polynomial Algebraic

roots(p)

Let 𝑝(𝑥) is a polynomial the MATLAB function for determining the roots of a

polynomial is the roots function. r=roots(p) determines the roots of the polynomial

represented by the coefficient vector p. The roots function returns a column vector

containing the roots of the polynomial, the number of roots is equal to the degree of the

polynomial.

Example 2.4: - consider the polynomial 𝑝(𝑥) = 𝑥4 − 4𝑥2 + 2𝑥 + 1 then to find the

roots of p write Matlab code as follows

p=[1 0 -4 2 1];

r=roots(p)

result is

r =

 -2.1701

 1.4812

 1.0000

 -0.3111

are four real roots of polynomial p.

poly(r)

When the roots of a polynomial are known, the coefficients of the polynomial are

determined when all the linear terms are multiplied, we can use the poly function

p=poly(r) Determines the coefficients of the polynomial whose roots are contained in the

vector r. The output of the function is a row vector containing the polynomial

coefficients.

Example 2.5: - consider the polynomial 𝑟 = [1 2 0 − 4] ,then to find the 𝑝(𝑥) with

roots r, write Matlab code as follows

r=[1 2 0 -4];

p=poly(r)

result is

p =

 1 1 -10 8 0

or

𝑝(𝑥) = 𝑥4 + 𝑥3 − 10𝑥2 + 8𝑥

polyval (p, x)

The value of a polynomial can be computed using the polyval function

y=polyval(p, x) it evaluates a polynomial with coefficients p for the values in x. The

result is a matrix the same size of x.

Example 2.6: - consider the polynomial 𝑝(𝑥) = 𝑥4 − 4𝑥2 + 2𝑥 + 1 and x=2, then to

find the 𝑝(2) write Matlab code as follows

p=[1 0 -4 2 1];

x=2;

y=polyval(p,x)

result is

y =

 5

2.4 Polynomial Calculus

polyder(p)

Let 𝑝(𝑥) is a polynomial the MATLAB function for determining the derivative of 𝑝(𝑥) is

q=polyder(p) returns the derivative of the polynomial represented by the coefficients

in p,

𝑞(𝑥) =
𝑑

𝑑𝑥
𝑝(𝑥) .

e

h = polyder(p,q) returns the derivative of the product of the polynomials p and q,

ℎ(𝑥) =
𝑑

𝑑𝑥
[𝑝(𝑥) ∗ 𝑞(𝑥)] .

le

[h,r] = polyder(p,q) returns the derivative of the quotient of the polynomials p and q,
ℎ(𝑥)

𝑟(𝑥)
=

𝑑

𝑑𝑥

𝑝(𝑥)

𝑞(𝑥)

Example 2.7: - consider the polynomial 𝑝(𝑥) = 𝑥4 − 4𝑥2 + 2𝑥 + 1, then to find the

derivative of p write Matlab code as follows

p=[1 0 -4 2 1];

q=polyder(p)

result is

q =

 4 0 -8 2

file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23busqmq2-2
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23outputarg_k
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23inputarg_ab
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23busqmq2-3
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23outputarg_q
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23outputarg_d
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyder.html%23inputarg_ab

or

𝑞(𝑥) = 4𝑥3 − 8𝑥 + 2

polyint

Let 𝑝(𝑥) is a polynomial the MATLAB function for determining the integration of

𝑝(𝑥) is q = polyint(p,k) returns the integral of the polynomial represented by the

coefficients in p using a constant of integration k. q = polyint(p) assumes a constant of

integration k = 0.

Example 2.8: - consider the polynomial 𝑝(𝑥) = 4𝑥3 − 3𝑥2 + 8𝑥 + 1, then to find the

integration of p write Matlab code as follows

p=[4 -3 8 1];

q=polyint(p)

result is

q =

 1 -1 4 1 0

or

𝑞(𝑥) = 𝑥4 − 𝑥3 − 4𝑥2 + 𝑥

polyfit

polyfit returns a vector of coefficients representing the fitted polynomial in descending

order.

p = polyfit(x,y,n)

where x and y are vectors of the same length representing the x- and y-coordinates of the

data points, respectively, n is the degree of the polynomial, and p is a vector of

coefficients representing the fitted polynomial in descending order.

[p,S] = polyfit(x,y,n)

also returns a structure S that can be used as an input to polyval to obtain error estimates.

[p,S,mu] = polyfit(x,y,n)

performs centering and scaling to improve the numerical properties of both the

polynomial and the fitting algorithm. This syntax additionally returns mu, which is a two-

file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyint.html%23outputarg_q
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyint.html%23inputarg_p
file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/polyint.html%23inputarg_k

element vector with centering and scaling values. mu(1) is mean(x), and mu(2) is std(x).

Using these values, polyfit centers x at zero and scales it to have unit standard deviation,

Example 2.9:-

Let 𝑥 = [1, 2, 3, 4, 5] and 𝑦 = [2,5,10,17,26] then

p = polyfit(x,y,2)

Symbolic Processing

We have focused on the use of Matlab to perform numerical operations, involving

numerical data represented by double precision floating point numbers. We also given

some consideration to the manipulation of text, represented by character strings. In this

section, we introduce the use of Matlab to perform symbolic processing to manipulate

mathematical expressions, in much the way that we do with pencil and paper.

The objective of symbolic processing is to obtain what are known as closed form solutions,

expressions that don’t need to be iterated or updated in order to obtain answers. An

understanding of these solutions often provides better physical and mathematical insight

into the problem under investigation.

2.1 Declaring Symbolic Variables and Constants

To enable symbolic processing, the variables and constants involved must first be

declared as symbolic objects.

Syms var1,var2,……

For example, to create the symbolic variables with names x and y:

>> syms x y

If x and y are to be assumed to be real variables, they are created with the command:

>> syms x y real

Sym(var)

To declare symbolic constants, the sym function is used. Its argument is a string

containing the name of a special variable, a numeric expression, or a function evaluation.

It is used in an assignment statement which serves as a declaration of a symbolic variable

for the assigned variable. Examples include:

>> pi = sym(’pi’);

>> delta = sym(’1/10’);

>> sqroot2 = sym(’sqrt(2)’);

If the symbolic constant pi is created this way, it replaces the special variable pi in the

workspace. The advantage of using symbolic constants is that they maintain full accuracy

until a numeric evaluation is required.

Example 2.1: -

>> x=sym(1/2)

x = 1/2

>> y=sym(2/3)

y = 2/3

>> x*y

ans = 1/3

>> x+y

ans = 7/6

>> x/y

ans = 3/4

>> x^2

ans = 1/4

Symbolic variables and constants are represented by the data type symbolic object.

>> whos

Name Size Bytes Class

delta 1x1 132 sym object

pi 1x1 128 sym object

sqroot2 1x1 138 sym object

x 1x1 126 sym object

2.2 Symbolic Expressions

Symbolic variables can be used in expressions and as arguments of functions in much the

same way as numeric variables have been used. The operators + - * / ^ and the built-

in functions can also be used in the same way as they have been used in numeric

calculations.

Example 2.2:-

>> syms x y

f = x^2*y + 5*x*sqrt(y)

f =

 x^2*y + 5*x*y^(1/2)

syms s t A

g = s^2 + 4*s + A

g =

 s^2 + 4*s + A

 >> h=f*g

 h =

 (x^2*y + 5*x*y^(1/2))*(s^2 + 4*s + A)

The variable x is the default independent variable, but as can be seen with the expressions

above, other variables can be specified to be the independent variable. It is important to

know which variable is the independent variable in an expression. The command to find

the independent variable is:

symvar (S)

Finds the symbolic variables in a symbolic expression or matrix S by returning a string

containing all of the symbolic variables appearing in S. The variables are returned in

alphabetical order and are separated by commas. If no symbolic variables are found,

symvar returns the empty string.

Use example 2.2

>> symvar(f)

ans =

 [x,y]

>> symvar(z)

ans =

 [A,s,t]

2.3 Manipulating Polynomial Expressions

In the examples above, symbolic variables were declared and were used in symbolic

expressions to create polynomials. We now wish to manipulate these polynomial

expressions algebraically.

The Matlab commands for this purpose include:

expand(S)

Expands each element of a symbolic expression S as a product of its factors. expand is

most often used on polynomials, but also expands trigonometric, exponential and

logarithmic functions.

Example 2.3:-

syms x;

expand((x-2)*(x-4))

ans = x^2 - 6*x + 8

syms x y;

expand(cos(x+y))

ans = cos(x)*cos(y) - sin(x)*sin(y)

syms a b;

expand(exp((a+b)^2))

ans = exp(2*a*b)*exp(a^2)*exp(b^2)

syms t;

expand([sin(2*t), cos(2*t)])

ans =[2*cos(t)*sin(t), cos(t)^2 - sin(t)^2]

factor(S)

Factors each element of the symbolic matrix S.

Example 2.4:-

syms x y;

factor(x^3-y^3)

ans = (x - y)*(x^2 + x*y + y^2)

syms a b;

factor([a^2 - b^2, a^3 + b^3])

ans = [(a - b)*(a + b), (a + b)*(a^2 - a*b + b^2)]

x=sym(5678)

x = 5678

factor(x)

ans = 2*17*167

simplify(S)

Simplifies each element of the symbolic matrix S.

Example 2.5:-

syms s

H = (s^3 +2*s^2 +5*s +10)/(s^2 + 5);

H = simplify(H)

H = s+2

syms x;

simplify(sin(x)^2 + cos(x)^2)

ans =1

syms a b c;

simplify(exp(c*log(sqrt(a+b))))

ans =(a + b)^(c/2)

S = [(x^2 + 5*x + 6)/(x + 2), sqrt(16)];

R = simplify(S)

R =[x + 3, 4]

[n , d] = numden(S)

Returns two symbolic expressions that represent the numerator expression num and the

denominator expression den for the rational representation of the symbolic expression S.

Example 2.6:-

[n, d] = numden(sym(4/5))

ans

n =4

d =5

syms x y;

[n,d] = numden(x/y + y/x)

ans

n = x^2 + y^2

d = x*y

 syms s

G = s+4 + 2/(s+4) + 3/(s+2);

[N, D] = numden(G)

N = s^3+10*s^2+37*s+48

D =(s+4)*(s+2)

collect(f)

views f as a polynomial in its symbolic variable, say x, and collects all the coefficients

with the same power of x. A second argument can specify the variable in which to collect

terms if there is more than one candidate.

Example 2.7:-

f=(x-1)*(x-2)*(x-3)

collect(f)

ans= x^3-6*x^2+11*x-6

f=x*(x*(x-6)+11)-6

collect(f)

ans= x^3-6*x^2+11*x-6

f=(1+x)*t + x*t

collect(f)

ans=2*x*t+t

subs(S,old,new)

Symbolic substitution, replacing symbolic variable old with symbolic variable new in the

symbolic expression S.

Example 2.8:-

f = 2*x^2 - 3*x + 1

subs(f,2)

ans =3

syms x y

f = x^2*y + 5*x*sqrt(y)

subs(f, x, 3)

ans = 9*y+15*y^(1/2)

syms s

H = (s+3)/(s^2 +6*s + 8);

G = subs(H,s,s+2)

G = (s+5)/((s+2)^2+6*s+20)

E = s^3 -14*s^2 +65*s -100;

F = subs(E,s,7.1)

F =13671/1000

2.5 Polynomial and Solving Equations

Polynomials divisor function

[q, r] = quorem(p, h) Divided p by h and return quotient q and remainder r.

Example 2.14: -

syms x

p=x^3-4*x^2+3*x+1;

h=x^2+1;

[q, r] = quorem(p, h)

q = x - 4

r =2*x + 5

Coefficients of polynomial

C = coeffs(p) returns the coefficients of the polynomial p with respect to all the in

determinates of p.

C = coeffs(p, x) returns the coefficients of the polynomial p with respect to x.

Example 2.15: -

syms x

 f=2*x^3-6*x+2;

coeffs(f)

ans =[2, -6, 2]

Example 2.16: -

syms x y

z = 3*x^2*y^2 + 5*x*y^3;

coeffs(z)

coeffs(z,x)

ans =[5, 3]

ans =[5*y^3, 3*y^2]

Conversions

sym2poly(P):- Converts from a symbolic polynomial P to a row vector containing the

polynomial coefficients.

poly2sym(p) :-Converts from a polynomial coefficient vector p to a symbolic

polynomial in the variable x. poly2sym(p,v) uses the symbolic the variable v.

Example 2.17: - consider the polynomial A(s) = s3 + 4s2 − 7s − 10

In Matlab:

a = [1 4 -7 -10];

A = poly2sym(a,s)

A = s^3+4*s^2-7*s-10

Example 2.18: - For the polynomial B(s) = 4s3 − 2s2 + 5s − 16

syms s

B = 4*s^3 -2*s^2 +5*s -16;

b = sym2poly(B)

b = 4 -2 5 -16

double

The function double(c) converts the symbolic object c (constants, scalar, or matrix) into a

double precision floating point variable.

Example 2.19: -

 a=sym(2/3)

 b=sym(1/5);

 a+b=13/15

 double(a+b)= 0.8667

Solving Equations

You can solve equations involving variables with solve.

Example 2.20: - to find the solutions of the quadratic equation x2 − 2x − 4 = 0, type

solve(’xˆ2 - 2*x - 4 = 0’)

ans =

[5^(1/2)+1]

[1-5^(1/2)]

Or

syms x

f=x^2-2*x-4;

solve(f)

ans =

 1 - 5^(1/2)

 5^(1/2) + 1

Note that the equation to be solved is specified as a string; that is, it is surrounded by

single quotes. The answer consists of the exact (symbolic) solutions 1 ±√5. To get

numerical solutions, type double(ans), or vpa(ans) to display more digits.

double(solve(f))

ans =

 -1.2361

 3.2361

Or

vpa(solve(f))

ans =

 -1.2360679774997896964091736687313

 3.2360679774997896964091736687313

The command solve can solve higher-degree polynomial equations, as well as many

other types of equations. It can also solve equations involving more than one variable. If

there are fewer equations than variables, you should specify (as strings) which variable(s)

to solve for.

Example 2.21: - to solve 2x − log y = 1 for y in terms of x.

syms x y

solve(2*x - log(y) ==1, x)

ans =

log(y)/2 + 1/2

You can specify more than one equation as well.

Example 2.22: -

syms x y

[xsol, ysol] = solve(x^2 - y == 2, y - 2*x ==5,[x,y])

Calculus Applications

The Symbolic Math Toolbox provides functions to do the basic operations of calculus;

differentiation, limits, integration, summation, and Taylor series expansion.

4.1 Limits

limit:-Compute limit of symbolic expression

Syntax
limit(expr, x, a)

limit(expr, a)

limit(expr)

limit(expr, x, a, 'left')

limit(expr, x, a, 'right')

Description

limit(expr,x,a):- computes bidirectional limit of the symbolic expression expr

when x approaches a.

limit(expr,a):- computes bidirectional limit of the symbolic expression expr

when the default variable approaches a.

limit(expr):- computes bidirectional limit of the symbolic expression expr when

the default variable approaches 0.

limit(expr,x,a,'left'):-computes the limit of the symbolic expression expr

when x approaches a from the left.

limit(expr,x,a,'right'):- computes the limit of the symbolic expression expr

when x approaches a from the right.

Example 4.1:- Find the following limits

1) lim
𝑥→2

𝑥2 − 4

𝑥 − 2
 2) lim

𝑦→0
(𝑥𝑦 + 𝑥) 3) lim

𝑥→0+

1

𝑥
 4) lim

𝑡→∞

1 − 𝑡2

3𝑡2 + 𝑡
 5) lim

𝑥→0−

|𝑥|

𝑥

1) syms x y

 limit((x^2-4)/(x-2),2)

 ans =4

or

limit((x^2-4)/(x-2),x,2)

 ans =4

2) limit(x*y+x,y,0)

 ans = x

if we write

 limit(x*y+x,0)

 ans = 0

3) limit(1/x,x,0,'right')

 ans = Inf

4) syms t

 limit((1-

t^2)/(3*t^2+t),t,inf)

 ans =-1/3 5) limit(abs(x)/x,x,0,'left')

 ans = -1

4.2 Differentiation

diff:- Differentiate symbolic expression

Syntax
diff(expr)

diff(expr, v)

diff(expr, n)

diff(expr, v, n)

Description

diff(expr):- differentiates a symbolic expression expr with respect to its free

variable as determined by symvar.

diff(expr, v):- differentiate expr with respect to v.

diff(expr, n):- differentiates expr n times. n is a positive integer.

diff(expr, v, n):- differentiate expr with respect to v n times.

Example 4.2: - Find the following derivative

1)
𝑑

𝑑𝑥
(𝑒𝑥 sin 𝑎𝑥) 2)

𝑑3

𝑑𝑡3
(𝑡3 + tan 𝑡) 3)

𝜕

𝜕𝑦
(𝑥2 + 𝑦2 − 3𝑥𝑦)

 syms x y t a

1) diff(exp(x)*sin(a*x))

 ans = exp(x)*sin(a*x) + a*exp(x)*cos(a*x)

 diff(exp(x)*sin(a*x),x)

 ans = exp(x)*sin(a*x) + a*exp(x)*cos(a*x)

2) diff(t^3+tan(t),t,3)

 ans =2*(tan(t)^2 + 1)^2 + 4*tan(t)^2*(tan(t)^2 + 1) + 6

3) diff(x^2+y^2-3*x*y,y)

 ans =2*y - 3*x

jacobian

Compute Jacobian matrix

Syntax

jacobian(f, v)

Description

jacobian(f, v):- computes the Jacobian of the scalar or vector f with respect to

v. The (i, j)-th entry of the result is 𝜕𝑓(𝑖)/𝜕𝑣(𝑗). If f is scalar, the Jacobian of f is

the gradient of f. If v is a scalar, the result equals to diff(f, v).

Example 4.3: - Let 𝑥 = 𝑟𝑐𝑜𝑠𝜃 and 𝑦 = 𝑟𝑠𝑖𝑛𝜃 then find 𝐽 =
𝜕(𝑥,𝑦)

𝜕(𝑟,𝜃)
 .

 syms x y r th

 J=jacobian([x; y], [r th])

 x=r*cos(th);

 y=r*sin(th);

 J=jacobian([x; y], [r th])

 J = [cos(th), -r*sin(th)]

 [sin(th), r*cos(th)]

 det(J)

 ans = r*cos(th)^2 + r*sin(th)^2

 simplify(ans)

 ans = r

4.3 Integration

int:-Integrate symbolic expression

Syntax

int(expr)

int(expr, v)

int(expr, a, b)

int(expr, v, a, b)

Description

int(expr) :- returns the indefinite integral of expr with respect to its symbolic

variable as defined by symvar.

int(expr,v) :- returns the indefinite integral of expr with respect to the symbolic

scalar variable v.

int(expr,a,b) :- returns the definite integral from a to b of expr with respect to

the default symbolic variable. a and b are symbolic or double scalars.

int(expr,v,a,b) :- returns the definite integral of expr with respect to v from a to

b.

Example 4.4: - Find the following integral

1) ∫
1

2 + 𝑥2
𝑑𝑥 2) ∫ 𝑥𝑒𝑥𝑑𝑥 3) ∫ √1 − 𝑥2𝑑𝑥

1

0

1) syms x

 int(1/(2+x^2),x)

 ans =(2^(1/2)*atan((2^(1/2)*x)/2))/2

2) int(x*exp(x))

 ans = exp(x)*(x - 1)

3) int(sqrt(1-x^2),x,0,1)

 ans = pi/4

4.4 Symbolic Summation

symsum:- Evaluate symbolic sum of series

Syntax

r = symsum(expr)

r = symsum(expr, v)

r = symsum(expr, a, b)

r = symsum(expr, v, a, b)

Description

r = symsum(expr) :- evaluates the sum of the symbolic expression expr with

respect to the default symbolic variable defaultVar determined by symvar. The

value of the default variable changes from 0 to defaultVar - 1.

jar:file:///C:/Program%20Files/MATLAB/R2010a/help/toolbox/symbolic/help.jar%21/symvar.html

r = symsum(expr,v):- evaluates the sum of the symbolic expression expr with

respect to the symbolic variable v. The value of the variable v changes from 0 to v -

1.

r = symsum(expr,a,b):- evaluates the sum of the symbolic expression expr

with respect to the default symbolic variable defaultVar determined by symvar. The

value of the default variable changes from a to b.

r = symsum(expr,v,a,b):- evaluates the sum of the symbolic expression expr

with respect to the symbolic variable v. The value of the default variable changes from a

to b.

Example 4.5:- Find the sum of the following series

1) ∑ 𝑖

𝑛

𝑖=0

 2) ∑
1

𝑛2

∞

𝑛=1

 3) ∑ 𝑥𝑘

𝑛

𝑘=0

 4) ∑
1

𝑘
−

1

𝑘 + 1

𝑛

𝑘=1

1) syms x n k

 symsum(k,1,n)

 ans = (n*(n + 1))/2

 or

 symsum(n+1)

 ans = n^2/2 + n/2

2) s1=symsum(1/k^2,1,inf)

 s1 = pi^2/6

3) s2=symsum(x^k,k,0,inf)

 s2 = piecewise([1 <= x, Inf], [abs(x) < 1, -1/(x - 1)])

4) symsum(1/k-1/(k+1),k,1,n)

 ans = psi(n + 1) - psi(n + 2) + 1

 simplify(ans)

 ans = 1 - 1/(n + 1)

4.5 Taylor Series

taylor:- Taylor series expansion

Syntax

taylor(f)

taylor(f, n)

taylor(f, a)

jar:file:///C:/Program%20Files/MATLAB/R2010a/help/toolbox/symbolic/help.jar%21/symvar.html

taylor(f, n, v)

taylor(f, n, v, a)

Description

taylor(f) :- returns the fifth order Maclaurin polynomial approximation to f.

taylor(f,n):- returns the (n-1)-order Maclaurin polynomial approximation to f.

Here n is a positive integer.

taylor(f,a) :- returns the fifth order Taylor series approximation to f about point a.

Here a is a real number. If a is a positive integer or if you want to change the expansion

order, use taylor(f,n,a) to specify the base point and the expansion order.

taylor(f,n,v):- returns the (n-1)-order Maclaurin polynomial approximation to

f, where f is a symbolic expression representing a function and v specifies the

independent variable in the expression. v can be a string or symbolic variable.

taylor(f,n,v,a):- returns the Taylor series approximation to f about a. The

argument a can be a numeric value, a symbol, or a string representing a numeric value or

an unknown. If a is a symbol or a string, do not omit v.

Example 4.6:- Find Maclaurin series of 𝑒𝑥 and Taylor series of it about 𝑥0 = 1.

syms x

taylor(exp(x))

ans = x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1

taylor(exp(x),10)

ans = x^9/362880 + x^8/40320 + x^7/5040 + x^6/720 + x^5/120

+ x^4/24 + x^3/6 + x^2/2 + x + 1

taylor(exp(x),3,1)

ans = exp(1) + exp(1)*(x - 1) + (exp(1)*(x - 1)^2)/2

4.8 Functional composition

compose:-Functional composition

Syntax

compose(f,g)

compose(f,g,z)

compose(f,g,x,z)

compose(f,g,x,y,z)

Description

compose(f,g) :- returns f(g(y)) where f = f(x) and g = g(y). Here x is the

symbolic variable of f as defined by symvar and y is the symbolic variable of g as

defined by symvar.

compose(f,g,z) :- returns f(g(z)) where f = f(x), g = g(y), and x and y

are the symbolic variables of f and g as defined by symvar.

compose(f,g,x,z) :- returns f(g(z)) and makes x the independent variable for f.

That is, if f = cos(x/t), then compose(f,g,x,z) returns cos(g(z)/t)

whereas compose(f,g,t,z) returns cos(x/g(z)).

compose(f,g,x,y,z) :- returns f(g(z)) and makes x the independent variable

for f and y the independent variable for g. For f = cos(x/t) and g = sin(y/u),

compose(f,g,x,y,z) returns cos(sin(z/u)/t) whereas

compose(f,g,x,u,z) returns cos(sin(y/z)/t).

Examples 4.9: -

Suppose

syms x y z t u;

f = 1/(1 + x^2); g = sin(y); h = x^t; p = exp(-y/u);

Then

a = compose(f,g)

b = compose(f,g,t)

c = compose(h,g,x,z)

d = compose(h,g,t,z)

e = compose(h,p,x,y,z)

f = compose(h,p,t,u,z)

returns:

a = 1/(sin(y)^2 + 1)

b = 1/(sin(t)^2 + 1)

c = sin(z)^t

d = x^sin(z)

e =(1/exp(z/u))^t

f = x^(1/exp(y/z))

Linear Algebra

5.1 Solving Linear Systems

 Using mldivide or x=A\b

 Suppose that A is a non-singular n × n matrix and b is a column vector of length n.

Then typing x = A\b numerically computes the unique solution to A*x = b. Type

help mldivide for more information.

Example 5.1:- use MATLAB to solve the following linear system

𝑥 − 2𝑦 + 𝑧 = −1
𝑥 + 𝑦 − 𝑧 = 0
2𝑥 + 𝑦 − 3𝑧 = 2

solve:-

>>A=[1 -2 1;1 1 -1;2 1 -3]

>> b=[-1;0;2]

>> X=A\b

X =

 -0.8000

 -0.6000

 -1.4000

Using inv(A)

 Suppose that A is a non-singular n × n matrix and b is a column vector of length n.

Then can solved linear system 𝐴𝑥 = 𝑏 by 𝑥 = 𝑖𝑛𝑣(𝐴) ∗ 𝑏

Example 5.1 can be solving by

X=inv(A)*b

Using linsolve

X = linsolve(A,B) solves the linear system AX = B using LU factorization with partial

pivoting when A is square and QR factorization with column pivoting otherwise. The

number of rows of A must equal the number of rows of B.

5.2 Calculating Eigenvalues and Eigenvectors

The eigenvalues of a square matrix A are calculated with eig(A). The command

[U, R] = eig(A) calculates both the eigenvalues and eigenvectors. The eigenvalues

are the diagonal elements of the diagonal matrix R, and the columns of U are the

eigenvectors.

Here is an example illustrating the use of eig.

Example 5.2:-

>> A = [3 -2 0; 2 -2 0; 0 1 1];

>> eig(A)

ans =

 1

 -1

 2

>> [U, R] = eig(A)

U =

 0 -0.4082 -0.8165

 0 -0.8165 -0.4082

 1.0000 0.4082 -0.4082

R =

 1 0 0

 0 -1 0

 0 0 2

The eigenvector in the first column of U corresponds to the eigenvalue in the first column

of R, and so on.

5.3 MATLAB Linear Algebra Functions

Euclidean Norm

The length of a vector is called the norm of the vector. From Euclidean geometry, the

distance between two points is the square root of the sum of the squares of the distances

in each dimension. Thus, the notation and definition of the Euclidean norm is

‖X‖ = √𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2

Note that the norm can be defined in terms of the inner product:

‖X‖ = √(X, X)

Vector norm

n = norm(X) returns the Euclidean Norm of vector X.

n = norm(X,p) returns a different kind of norm, depending on the value of p.

Example 5.3: - Let a=(2 3 -4) and b=(7 -4 5) then find the norm and unit vector

for each of a and b then find the angle between a and b.

>> a=[2 3 -4];

>> b=[7 -4 5];

>> na=norm(a)

na = 5.3852

>> nb=norm(b)

nb = 9.4868

>> ua=a/norm(a)

ua = 0.3714 0.5571 -0.7428

>> ub=b/norm(b)

ub = 0.7379 -0.4216 0.5270

>> theta = acos(dot(a,b)/(norm(a)*norm(b)))

theta = 1.9309

Rank of Matrix

rank(A) :- Returns the rank of the matrix A, which is the number of independent rows of

A.

Example 5.4:- Let M = [0 2 2 3 -4; -2 4 2 -1 -6; 3 -4 -1 2 8];

then

 rank(M)=3

Reduced row echelon form

R = rref(A) produces the reduced row echelon form of A using Gauss Jordan elimination

with partial pivoting.

Example 5.5:- Use rref to solve the following linear system

𝑥 − 2𝑦 + 𝑧 = −1
𝑥 + 𝑦 − 𝑧 = 0
2𝑥 + 𝑦 − 3𝑧 = 2

sol:- >> A=[1 -2 1;1 1 -1;2 1 -3];

 >> b=[-1;0;2];

 >> R=rref([A b]);

 >> Sol=R(:,4)’

Sol = -0.8000 -0.6000 -1.4000

Other functions

There are useful function listed in below table

1 C = dot(A,B) returns the scalar dot product of A and B.

2 C = cross(A,B) returns the cross product of A and B.

3 L = tril(A) returns the lower triangular part of A.

4 U = triu(A) returns the Upper triangular part of A.

5 b = trace(A) is the sum of the diagonal elements of the matrix A.

6 Q = orth(A)

returns an orthonormal basis for the range of A. The

columns of Q are vectors, which span the range of A. The

number of columns in Q is equal to the rank of A.

file:///C:/Program%20Files/MATLAB/R2016a/help/matlab/ref/dot.html%23bt9pw32-2

Solving Differential Equation

6.1 Single Differential Equation

The function dsolve computes symbolic solutions to ordinary differential equations. The

equations are specified by symbolic expressions containing the letter D to denote

differentiation. The symbols D2, D3, ... DN, correspond to the second, third, ..., Nth

derivative, respectively. Thus, D2y is the Symbolic Math Toolbox equivalent of d2y /dt 2 .

The dependent variables are those preceded by D and the default independent variable is

t. Note that names of symbolic variables should not contain D. The independent variable

can be changed from t to some other symbolic variable by including that variable as the

last input argument.

Syntax
dsolve('eq','cond1','cond2',...,'v')

or

dsolve(eq,cond1,'cond2)

Example 6.1:- Find the general solution of the first order differential equation
𝑑𝑦

𝑑𝑡
+ 𝑦 = 𝑡𝑒𝑡

sol:-

>> dsolve('Dy + y = t*exp(t)')

ans =

 1/2*t*exp(t)-1/4*exp(t)+exp(-t)*C1

Or

>> syms y(t)

>> dsolve(diff(y)+y==t*exp(t))

ans =

(exp(t)*(2*t - 1))/4 + C1*exp(-t)

Example 6.2:- Find the partical solution of the first order differential equation
𝑑𝑦

𝑑𝑡
= 1 + 𝑦2, 𝑦(0) = 1

dsolve('Dy=1+y^2')

uses y as the dependent variable and t as the default independent variable.

The output of this command is

ans = tan(t+C1)

To specify an initial condition, use

y = dsolve('Dy=1+y^2','y(0)=1')

This produces

y =tan(t+1/4*pi)

or

>> dsolve(diff(y)==1+y^2,y(0)==1)

ans =

tan(t + pi/4)

Example 6.3: - Nonlinear equations may have multiple solutions, even when initial

conditions are given:

x = dsolve('(Dx)^2+x^2=1','x(0)=0')

results in

x =

 [sin(t)]

 [-sin(t)]

Or

>> syms x(t)

>> x = dsolve(diff(x)^2+x^2==1,x(0)==0)

x =

 cosh(t*1i + (pi*1i)/2)

 cosh(t*1i - (pi*1i)/2)

Example 6.4:- Here is a second order differential equation with two initial conditions.

The commands

y = dsolve('D2y=cos(2*x)-y','y(0)=1','Dy(0)=0', 'x');

simplify(y)

produce

ans = 4/3*cos(x)-2/3*cos(x)^2+1/3

or

>> y = dsolve(diff(y,2)==cos(2*x)-y,y(0)==1',diff(y(0))==0)

y =

(5*cos(x))/3 + C20*sin(x) + sin(x)*(sin(3*x)/6 + sin(x)/2)

- (2*cos(x)*(6*tan(x/2)^2 - 3*tan(x/2)^4 +

1))/(3*(tan(x/2)^2 + 1)^3)

>> simplify(y)

ans =

(4*cos(x))/3 - (2*cos(x)^2)/3 + C20*sin(x) + 1/3

6.2 Several Differential Equations

The function dsolve can also handle several ordinary differential equations in several

variables, with or without initial conditions. For example, here is a pair of linear, first-

order equations.

dsolve('eq1','eq2','eq3', ...,'cond1','cond2',...,'v')

or

dsolve(eq1,eq2,eq3,...,cond1,'cond2,...,)

Example 6.5: - solve linear system of differential equations

𝑥 =́ 3𝑥 + 4𝑦

𝑦 =́− 4𝑥 + 3𝑦

S = dsolve('Dx = 3*x+4*y', 'Dy = -4*x+3*y')

The computed solutions are returned in the structure S. You can determine the

values of f and g by typing

x = S.x

x = exp(3*t)*(C1*sin(4*t)+C2*cos(4*t))

y = S.y

y = exp(3*t)*(C1*cos(4*t)-C2*sin(4*t))

If you prefer to recover f and g directly as well as include initial conditions,

type

[x,y] = dsolve('Dx=3*x+4*y,Dg =-4*x+3*y', 'x(0) = 0,y(0) =

1')

f = exp(3*t)*sin(4*t)

g = exp(3*t)*cos(4*t)

or

>> syms x(t) y(t)

>> S = dsolve(diff(x) == 3*x+4*y, diff(y) == -4*x+3*y);

>> S.x

ans =

C22*cos(4*t)*exp(3*t) + C21*sin(4*t)*exp(3*t)

>> S.y

ans =

C21*cos(4*t)*exp(3*t) - C22*sin(4*t)*exp(3*t)

	Advanced Computer Skills-MSc-Lecture1
	a. Command Window: - Use the Command Window to enter variables and to run MATLAB functions and scripts. MATLAB displays the results. Press the up arrow key ↑ to recall a statement you previously typed. Edit the statement as needed, and then press Ente...
	b. Command History:-Statements you enter in the Command Window are logged with a timestamp in the Command History. From the Command History, you can view and search for previously run statements, as well as copy and execute selected statements.
	c. Workspace: - The workspace consists of the set of variables built up during a session of using the MATLAB software and stored in memory. You add variables to the workspace by using functions, running M-files, and loading saved workspaces.
	d. Current Directory Browser:-the files and subdirectories it contains are listed in the Current Directory Browser.
	1.1.2 Typing in Command Window
	1.2 Arithmetic Operations
	1.3 Elementary Math Built in Functions
	1.4 Variable Names
	1.4.1 Predefined Variables
	1.4.2 Command for Managing Variables
	1.5 Complex Numbers
	1.5.1 Creating Complex Numbers

	 length(A): - Length of vector or largest array dimension.
	 size(A): - returns the sizes of each dimension of array.
	 ndims(A): - Number of array dimensions.

	Advanced Computer Skills-MSc-Lecture2
	Advanced Computer Skills-MSc-Lecture3
	Advanced Computer Skills-MSc-Lecture5
	limit:-Compute limit of symbolic expression
	Syntax
	Description
	diff:- Differentiate symbolic expression
	Syntax
	Description

	jacobian
	Compute Jacobian matrix
	Syntax
	Description

	int:-Integrate symbolic expression
	Syntax
	Description

	4.4 Symbolic Summation
	symsum:- Evaluate symbolic sum of series
	Syntax
	Description

	4.5 Taylor Series
	taylor:- Taylor series expansion
	Syntax
	Description

	compose:-Functional composition
	Syntax
	Description
	Examples 4.9: -

	Advanced Computer Skills-MSc-Lecture6
	Reduced row echelon form
	Other functions

	Advanced Computer Skills-MSc-Lecture7

