Questions Bonls
 Introduction to Python Course Misthematics 2023-2024

First Python Homework

1. Write a Python program that calculates the area of a circle based on the radius entered by the user.
2. Write a Python program to calculates the value of $z=y^{2}+e^{f(x)}-5$, where

$$
f(x)=\left\{\begin{array}{lr}
x^{2} & x>1 \\
2 & -1 \leq x \leq 1 \\
-x & x<-1
\end{array}\right.
$$

3. Write a Python program to Check if the first and last number of a list is the same.
4. Write a Python program to swap two elements in a list.
5. Write a Python program to check if element exists in list.
6. Write a Python program to find sum and average of List, find smallest number in a list, and find largest number in a list.
7. Write a Python program to reverse words in a given String in Python and remove i'th character from string in Python, also to remove first n characters from a string.
8. Write a Python program that takes a number as input from the user and prints "Even" if the number is even and "Odd" if the number is odd.
9. Write a Python program that takes a number as input from the user and prints "Integer" if the number is integer and "Non Integer" if the number is not integer.
10. Write a Python program that takes two numbers as input from the user and prints the larger of the two numbers.
11. Write a Python program that takes a string as input from the user and prints whether the string is a palindrome or not.
12.Take values of length and breadth of a rectangle from user and check if it is square or not.
12. Take input of age of 3 people by user and determine oldest and youngest among them without using List.

Q01) Write a program to count prime elements in the List L.
Q02) Write a program to find the sum of each List in the Multi-Dimensional List L.

Q03) Write a program to find the frequency of the minimum element in the List L.

Q04) Write a program to find the frequency of each element in the List L.

Q5) Write a program to remove all repeated elements in the List L.

Q06) Write a program to find the maximum value in each List in the Multi-Dimensional List L.

Q07) Write a program to find the sum of series s where

$$
s=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\frac{x^{i} y^{j}}{(i+j)!}\right)
$$

Q08) Let $f: A \rightarrow B$ where A and B are two List, write a program to find elements of $B=f(A)$, where

$$
f(x)=\left\{\begin{array}{l}
1 \text { if } x \text { is even } \\
0 \text { if } x \text { is zero } \\
-1 \text { if } x \text { is odd }
\end{array}\right.
$$

Q09) Write a program to locate and find all intersection points between $y=\sin (x)$ and $y=\frac{1}{10} x-\frac{1}{2}$ use Newton Raphson method.

Q10) Write a function to find the greatest common divisor between two positive integers.

Pseudo Code of the Algorithm-

1. Let a, b be the two numbers
2. $a \bmod b=R$
3. Let $a=b$ and $b=R$
4. Repeat Steps 2 and 3 until $a \bmod b$ is greater than 0
5. $\mathrm{GCD}=\mathrm{b}$
6. Finish

HW3

1. Write a Python function to find the maximum of three numbers.
2. Write a Python function to sum all the numbers in a list.
3. Write a Python function to multiply all the numbers in a list.
4. Write a Python program to reverse a string.
5. Write a Python function to calculate the factorial of a number (a nonnegative integer). The function accepts the number as an argument.
6. Write a Python function that accepts a string and counts the number of upper and lower case letters.
7. Write a Python function that takes a list and returns a new list with distinct elements from the first list.
8. Write a Python program to print the even numbers from a given list.
9. Write a Python function that prints out the first n rows of Pascal's triangle.

HW3

Q1) Let a be a matrix then use Numpy to do the following by one-line statement

1. From a find the minimum positive number.
2. Find the number of negative integer elements in a.
3. Find the number of odd elements in each column of a.
4. Replace the diagonal elements in a to ones.
5. Replace all integer odd number in a to zeros.
6. Find the sum of positive even numbers in matrix a.
7. Find the number of non-zero elements in diagonal of a.
8. Find the number of zero rows in matrix a.
9. Find the sum of positive elements in diagonal of a.

Q2) Use Numpy method concatenate to create the following matrix.
1.

$$
\mathbf{c}=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 0 \\
0 & 4 & 5 & 6 & 0 \\
0 & 7 & 8 & 9 & 0
\end{array}\right)
$$

2.

$$
\mathbf{d}=\left(\begin{array}{llllll}
9 & 0 & 0 & 9 & 6 & 3 \\
0 & 9 & 0 & 8 & 5 & 2 \\
0 & 0 & 9 & 7 & 4 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Q3) Find matrix \mathbf{b} from matrix a where $b_{i j}=\left\{\begin{array}{ll}a_{i j}^{2}+1 & \text { if } a_{i j}>0 \\ \left|a_{i j}\right| & \text { if } a_{i j} \leq 0\end{array}\right.$.

Figure class and Axes Class

```
import numpy as np
import matplotlib.pyplot as plt
x = np.arange (1, 5)
y=x**2
fig = plt.figure(figsize =(7, 5))
ax=fig.add_axes([0.1,0.1,0.5,0.5])
ax.plot(x,\overline{y})
ax.set_title('Squre')
ax.set_xlabel('x-axis')
ax.set_xlim([-1,6])
plt.show()
import numpy as np
import matplotlib.pyplot as plt
x = np.arange (1, 5)
y=x**2
fig = plt.figure(figsize =(7, 5))
ax1=fig.add_axes([0.1, 0.1, 0.5, 0.5])
ax1.plot(x, y)
ax1.set_title('Squre')
ax1.set_xlabel('x-axis')
ax1.set_xlim([-1, 6])
ax2=fig.add_axes([0.65, 0.65, 0.2, 0.2])
ax2.plot(x, y)
ax2.set_title('Squre')
ax2.set_xlabel('x-axis')
ax2.set_xlim([0, 10])
plt.show()
```


Subplot

```
import numpy as np
import matplotlib.pyplot as plt
x = np.arange (-2, 2,0.1)
y1=x
y2=x**2
y3=np.sin(x)
y4=np.exp (x)
plt.figure()
plt.subplot(221)
plt.title('Linear')
plt.plot(x, yl)
```

```
plt.subplot(222)
plt.title('Squre')
plt.plot(x, y2)
plt.subplot(223)
plt.title('Sin')
plt.plot(x, y3)
plt.subplot(224)
plt.title('Exp')
plt.plot(x, y4)
plt.show()
```


3D Plots

```
import numpy as np
import matplotlib.pyplot as plt
from math import pi
t = np.arange(0,10*pi,pi/50)
x=np.cos(t)
y=np.sin(t)
z=t
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot3D(z, y, x)
plt.show()
```

import numpy as np
import matplotlib.pyplot as plt
from math import pi
t = np.arange(-pi,pi,pi/20)
$\mathrm{x}, \mathrm{y}=\mathrm{np} . m e s h g r i d(\mathrm{t}, \mathrm{t})$
$z=(n p . s i n(x * * 2)+n p \cdot \cos (y * * 2)$)
fig = plt.figure(figsize=(6, 5))
ax = plt.axes(projection='3d')
my_cmap = plt.get_cmap('hot')
surf=ax.plot_surface(x, y, z,cmap=my_cmap)
fig. colorbar(surf, $a x=a x)$
ax.set_xlabel('X-axis')
ax.set_xlim(-5, 5)
ax.set_ylabel('Y-axis')
ax.set_ylim(-5, 5)
ax.set_zlabel('z-axis')
ax.set_zlim(np.min(z), np.max(z))
ax.set_title('3D surface having 2D contour plot

```
projections')
```

plt.show()

List Comprehension

```
numbers = [1, 2, 3, 4, 5]
squared = [x ** 2 for x in numbers]
print(squared)
List = [c**2 for c in [1, 2, 3]]
print(List)
list = [i for i in range(11) if i % 2 == 0]
print(list)
matrix = [[j+i for j in range(3)] for i in range(3)]
print(matrix)
List = [character for character in 'Geeks 4 Geeks!']
print(List)
lis = ["Even number" if i % 2 == 0 else "Odd number" for i
in range(8)]
print(lis)
```

Q) Let

$$
\mathbf{a}=\left(\begin{array}{cccc}
-2 & 0 & 1 & 0 \\
3.1 & 2 & 1 & 1 \\
0 & 2.3 & -5 & 2 \\
2 & 4 & 1.5 & 0
\end{array}\right)
$$

Find the following use numpy

1. Finding the sum of diagonal elements of \mathbf{a}.
2. Finding the $\mathbf{b}=\mathbf{a}^{2}$.
3. Finding the Eigen values of a.
4. Finding how many rows contain zero elements in a.
5. Finding all elements between 1 and 3 .
6. Finding number of even elements in each column.
7. Replace all zero elements in a with one.

Solution:

```
import numpy as np
import numpy.linalg as alg
a=np.array([[-2,1,1,0],[3.1,2,1,1],[0,2.3,-
5,2],[2,4,1.5,0]])
# 1
sd=np.trace(a)
print(sd)
#2
b=a.dot(a)
print(b)
#3
e=alg.eigvals(a)
print(e)
#4
nrz=sum(np.any (a==0,1))
print(nrz)
#5
c=a[(a>1) & (a<3)]
print(c)
#6
noe=sum (a%2==0,0)
print(noe)
#7
```

$$
\begin{aligned}
& \mathrm{a}[\mathrm{a}==0]=1 \\
& \text { print }(\mathrm{a})
\end{aligned}
$$

