

Introduction to Python Programming

Python is a modern, general-purpose, object-oriented, high-level programming language

with a clean and expressive syntax. The following features make for easy code develop-

ment and debugging in python:

 Python code is interpreted: There is no need to compile the code. Your code is read

by a python interpreter and made into executable instructions for your computer in

real time.

 Python is dynamically typed: There is no need to declare the type of a variable or the

type of an input to a function.

 Python has automatic garbage collection or memory management: There is no need

to explicitly allocate memory for variables before you use them or deallocate them

after use.

However, keep in mind that these features also make pure python code slower (than,

say C) in repetitious loops because of repeated checking for the type of objects.

Therefore, many python modules (such as numpy, which we shall see in detail soon),

have C or other compiled code, which is then wrapped in python to take advantage of

python’s usability without losing speed.

Installing Python

Go to www.python.org and download the latest version of Python. It should be painless

to install. Then Go to https://www.jetbrains.com and download “PyCharm Community

Edition” the IDE for Pure Python Development.

Input and Output

Output: - The print command

The fastest way to print the value of an object in python is with the print command.

Python print() function prints the message to the screen or any other standard output

device.

Example: -

name = "John"

age = 30

print("Name:", name)

print("Age:", age)

How print() works in Python?

You can pass variables, strings, numbers, or other data types as one or more parameters

when using the print() function. Then, these parameters are represented as strings by

their respective str() functions. To create a single output string, the transformed strings

are concatenated with spaces between them.

In this code, we are passing two parameters name and age to the print function.

name = "Alice"

age = 25

print("Hello, my name is", name, "and I am", age, "years

old.")

or

name = "Alice"

age = 25

print("Hello, my name is{name} and I am {age} years old.")

Input: - The Input command

Developers often have a need to interact with users, either to get data or to provide

some sort of result. Most programs today use a dialog box as a way of asking the user to

provide some type of input. While Python provides us with two inbuilt functions to read

the input from the keyboard.

input (prompt)

input (): This function first takes the input from the user and converts it into a string.

The type of the returned object always will be <class ‘str’>. It does not evaluate the

expression it just returns the complete statement as String. For example, Python

provides a built-in function called input which takes the input from the user. When the

input function is called it stops the program and waits for the user’s input. When the

user presses enter, the program resumes and returns what the user typed.

Example: -

val = input("Enter your value: ")

print(val)

Variable

In Python, variables are names that can be assigned a value and then used to refer to

that value throughout your code.

Variables are fundamental to programming for two reasons:

 1. Variables keep values accessible: For example, you can assign the result of some

time-consuming operation to a variable so that your program doesn’t have to perform

the operation each time you need to use the result.

2. Variables give values context: The number 28 could mean lots of different things,

such as the number of students in a class, the number of times a user has accessed a

website, and so on. Giving the value 28 a name like num_students makes the meaning

of the value clear.

Variable names

There are just a couple of rules to follow when naming your variables.

• Variable names can contain letters, numbers, and the underscore.

• Variable names cannot contain spaces.

• Variable names cannot start with a number.

• Case matters—for instance, temp and Temp are different.

Example: -

x=2

student_name=”arkan”

err1=0.002

The Assignment Operator

An operator is a symbol, such as +, that performs an operation on one or more values.

For example, the + operator takes two numbers, one to the left of the operator and one

to the right, and adds them together.

Values are assigned to variable names using a special symbol called the assignment

operator (=) . The = operator takes the value to the right of the operator and assigns it

to the name on the left.

Example: -

x=2

x = y = z = 6

x, y, z = 1, 2.39, 'cat'

(x, y, z)= (1, 2.39, 'cat')

Python Data Types

Data types are the classification or categorization of data items. It represents the kind of

value that tells what operations can be performed on a particular data. Since everything

is an object in Python programming, data types are actually classes and variables are

instances (object) of these classes. The following are the standard or built-in data types

in Python:

Numeric Data Type in Python

The numeric data type in Python represents the data that has a numeric value. A

numeric value can be an integer, a floating number, or even a complex number. These

values are defined as Python int, Python float, and Python complex classes in Python.

Integers – This value is represented by int class. It contains positive or negative whole

numbers (without fractions or decimals). In Python, there is no limit to how long an

integer value can be.

Float – This value is represented by the float class. It is a real number with a floating-

point representation. It is specified by a decimal point. Optionally, the character e or E

followed by a positive or negative integer may be appended to specify scientific

notation.

Complex Numbers – Complex number is represented by a complex class. It is

specified as (real part) + (imaginary part)j. For example – 2+3j

Example: -

a = 5

print("Type of a: ", type(a))

b = 5.0

print("\nType of b: ", type(b))

c = 2 + 4j

print("\nType of c: ", type(c))

Arithmetic Operators in Python

There are 7 arithmetic operators in Python. The lists are given below:

Operator Description Syntax

+ Addition: adds two operands x + y

– Subtraction: subtracts two operands x – y

* Multiplication: multiplies two operands x * y

/ Division (float): divides the first operand by the second x / y

// Division (floor): divides the first operand by the second x // y

% Modulus: returns the remainder when the first operand is
divided by the second

x % y

** Power (Exponent): Returns first raised to power second x ** y

Example: -

val1 = 2

val2 = 3

using the addition operator

res = val1 + val2

print(res)

Precedence of Arithmetic Operators in Python

Let us see the precedence and associativity of Python Arithmetic operators.

Operator Description Associativity

** Exponentiation Operator right-to-left

%, *, /, // Modulos, Multiplication, Division, and Floor
Division

left-to-right

+, – Addition and Subtraction operators left-to-right

Variable modifying operators

Some additional arithmetic operators that modify variable values:

Operator Effect Equivalent to…

x += y Add the value of y to x x = x + y

x -= y Subtract the value of y from x x = x - y

x *= y x *= y Multiply the value of x by y x = x * y

x = x / y x /= y Divide the value of x by y x = x / y

Comparison Operators in Python

In Python Comparison of Relational operators compares the values. It either

returns True or False according to the condition.

Operator Description Syntax

> Greater than: True if the left operand is greater than the right x > y

< Less than: True if the left operand is less than the right x < y

== Equal to: True if both operands are equal x == y

!= Not equal to – True if operands are not equal x != y

>= Greater than or equal to True if the left operand is greater than or equal

to the right

x >= y

<= Less than or equal to True if the left operand is less than or equal to the

right

x <= y

= is an assignment operator and == comparison operator.

Logical Operators in Python

Python Logical operators perform Logical AND, Logical OR, and Logical

NOT operations. It is used to combine conditional statements.

Operator Description Syntax

and Logical AND: True if both the operands are true x and y

or Logical OR: True if either of the operands is true x or y

not Logical NOT: True if the operand is false not x

Precedence of Logical Operators in Python

The precedence of Logical Operators in python is as follows:

1. Logical not

2. logical and

3. logical or

https://www.geeksforgeeks.org/python-object-comparison-is-vs/
https://www.geeksforgeeks.org/python-object-comparison-is-vs/
https://www.geeksforgeeks.org/relational-operators-in-python/
https://www.geeksforgeeks.org/python-logical-operators-with-examples-improvement-needed/

String Data Type

Strings in Python are arrays of bytes representing Unicode characters. A string is a

collection of one or more characters put in a single quote, double-quote, or triple-

quote. In python there is no character data type, a character is a string of length one. It

is represented by str class.

Creating String

Strings in Python can be created using single quotes or double quotes or even triple

quotes.

Example: -

String1 = 'Welcome to the Geeks World'

String2 = "I'm a Geek"

String3 = '''I'm a Geek and I live in a world of

"Geeks"'''

String4 = '''Geeks

 For

 Life'''

String5= String1+ String2

print(String1)

print(type(String1))

print(String2)

print(String3)

print(String4)

print(String5)

Accessing elements of String

In Python, individual characters of a String can be accessed by using the method of

Indexing. Negative Indexing allows negative address references to access characters

from the back of the String, e.g. -1 refers to the last character, -2 refers to the second

last character, and so on.

Example: -

String1 = "GeeksForGeeks"

print("Initial String: ")

print(String1)

print("\nFirst character of String is: ")

print(String1[0])

Printing Last character

print("\nLast character of String is: ")

print(String1[-1])

Printing range of characters

print("\n characters of String is: ")

print(String1[2:5])

Python Built-in Functions

The Python interpreter has a number of functions and types built into it that are always

available. They are listed some of them here.

Function Description

abs() Returns the absolute value of a number

all() Returns True if all items in an iterable object are true

any() Returns True if any item in an iterable object is true

bool() Returns the Boolean value of the specified object

chr() Returns a character from the specified Unicode code.

complex() Returns a complex number

https://www.w3schools.com/python/ref_func_abs.asp
https://www.w3schools.com/python/ref_func_all.asp
https://www.w3schools.com/python/ref_func_any.asp
https://www.w3schools.com/python/ref_func_bool.asp
https://www.w3schools.com/python/ref_func_chr.asp
https://www.w3schools.com/python/ref_func_complex.asp

float() Returns a floating point number

input() Allowing user input

int() Returns an integer number

len() Returns the length of an object

list() Returns a list

max() Returns the largest item in an iterable

min() Returns the smallest item in an iterable

next() Returns the next item in an iterable

ord()

Convert an integer representing the Unicode of the specified
character

pow() Returns the value of x to the power of y

print() Prints to the standard output device

range()

Returns a sequence of numbers, starting from 0 and

increments by 1 (by default)

reversed() Returns a reversed iterator

round() Rounds a numbers

sorted() Returns a sorted list

str() Returns a string object

sum() Sums the items of an iterator

tuple() Returns a tuple

Example: -

x = input('x=')

y = input('y=')

z=int(x)+int(y)

print(z)

https://www.w3schools.com/python/ref_func_float.asp
https://www.w3schools.com/python/ref_func_input.asp
https://www.w3schools.com/python/ref_func_int.asp
https://www.w3schools.com/python/ref_func_len.asp
https://www.w3schools.com/python/ref_func_list.asp
https://www.w3schools.com/python/ref_func_max.asp
https://www.w3schools.com/python/ref_func_min.asp
https://www.w3schools.com/python/ref_func_next.asp
https://www.w3schools.com/python/ref_func_ord.asp
https://www.w3schools.com/python/ref_func_pow.asp
https://www.w3schools.com/python/ref_func_print.asp
https://www.w3schools.com/python/ref_func_range.asp
https://www.w3schools.com/python/ref_func_reversed.asp
https://www.w3schools.com/python/ref_func_round.asp
https://www.w3schools.com/python/ref_func_sorted.asp
https://www.w3schools.com/python/ref_func_str.asp
https://www.w3schools.com/python/ref_func_sum.asp
https://www.w3schools.com/python/ref_func_tuple.asp

1

Python Data Types

Data types are the classification or categorization of data items. It represents the kind of

value that tells what operations can be performed on a particular data. Since everything

is an object in Python programming, data types are classes and variables are instances

(objects) of these classes. The following are the standard or built-in data types in

Python:

 Numeric

 Sequence Type

 Boolean

 Set

 Dictionary

 Binary Types (memory view, byte array, bytes)

Sequence Data Type in Python

The sequence Data Type in Python is the ordered collection of similar or different data

types. Sequences allow storing of multiple values in an organized and efficient fashion.

There are several sequence types in Python:

 Python String

 Python List

 Python Tuple

2

String Data Type

Strings in Python are arrays of bytes representing Unicode characters. A string is a

collection of one or more characters put in a single quote, double-quote, or triple-quote.

In python there is no character data type, a character is a string of length one. It is

represented by str class.

Creating String

Strings in Python can be created using single quotes or double quotes or even triple

quotes.

Example: -

String1 = 'Welcome to the Geeks World'

String2 = "I'm a Geek"

String3 = '''I'm a Geek and I live in a world of "Geeks"'''

String4 = '''Geeks

 For

 Life'''

String5= String1+ String2

print(String1)

print(type(String1))

print(String2)

print(String3)

print(String4)

print(String5)

Accessing elements of String

In Python, individual characters of a String can be accessed by using the method of

Indexing. Negative Indexing allows negative address references to access characters

from the back of the String, e.g. -1 refers to the last character, -2 refers to the second

last character, and so on.

3

Example: -

String1 = "GeeksForGeeks"

print("Initial String: ")

print(String1)

print("\nFirst character of String is: ")

print(String1[0])

Printing Last character

print("\nLast character of String is: ")

print(String1[-1])

Printing range of characters

print("\n characters of String is: ")

print(String1[2:5])

List Data Type

Lists are just like arrays, declared in other languages which is an ordered collection of

data. It is very flexible as the items in a list do not need to be of the same type.

Creating List

Lists in Python can be created by just placing the sequence inside the square brackets[].

Example: -

List1 = []

print(List)

 List2 = ['GeeksForGeeks']

print(List2)

List3 = ["Geeks", "For", "Geeks"]

print(List3[0])

List4 = [2,5,8,3,-2,0,12]

print(List4[3])

4

Multi-Dimensional List:

Example: -

List1 = [[2, 4, 6, 8, 10], [3, 6, 9, 12, 15], [4, 8, 12,

16, 20]]

print(List1)

print(List1[1])

print(List1[1][3])

Python Access List Items

In order to access the list items refer to the index number. Use the index operator [] to

access an item in a list. In Python, negative sequence indexes represent positions from

the end of the array. Instead of having to compute the offset as in List[len(List)-3], it is

enough to just write List[-3]. Negative indexing means beginning from the end, -1

refers to the last item, -2 refers to the second-last item, etc.

Tuple Data Type

Just like a list, a tuple is also an ordered collection of Python objects. The only

difference between a tuple and a list is that tuples are immutable i.e. tuples cannot be

modified after it is created. It is represented by a tuple class.

Creating a Tuple

In Python, tuples are created by placing a sequence of values separated by a ‘comma’

with or without the use of parentheses for grouping the data sequence. Tuples can

contain any number of elements and of any datatype (like strings, integers, lists, etc.).

Note: Tuples can also be created with a single element, but it is a bit tricky. Having one

element in the parentheses is not sufficient, there must be a trailing ‘comma’ to make it

a tuple.

Example: -

Creating an empty tuple

Tuple1 = ()

print("Initial empty Tuple: ")

5

print(Tuple1)

Creating a Tuple with

the use of Strings

Tuple1 = ('Geeks', 'For')

print("\nTuple with the use of String: ")

print(Tuple1)

Creating a Tuple with

the use of list

list1 = [1, 2, 4, 5, 6]

print("\nTuple using List: ")

print(tuple(list1))

Creating a Tuple with the

use of built-in function

Tuple1 = tuple('Geeks')

print("\nTuple with the use of function: ")

print(Tuple1)

Creating a Tuple

with nested tuples

Tuple1 = (0, 1, 2, 3)

Tuple2 = ('python', 'geek')

Tuple3 = (Tuple1, Tuple2)

print("\nTuple with nested tuples: ")

print(Tuple3)

Access Tuple Items

In order to access the tuple items refer to the index number. Use the index operator []

to access an item in a tuple. The index must be an integer. Nested tuples are accessed

using nested indexing.

6

Example: -

Python program to

demonstrate accessing tuple

tuple1 = tuple([1, 2, 3, 4, 5])

Accessing element using indexing

print("First element of tuple")

print(tuple1[0])

Accessing element from last

negative indexing

print("\nLast element of tuple")

print(tuple1[-1])

print("\nThird last element of tuple")

print(tuple1[-3])

Membership Operators in Python

In Python, in and not in are the membership operators that are used to test whether a

value or variable is in a sequence.

Operators Description

in True if value is found in the sequence

not in True if value is not found in the sequence

Example: -

a=[2,5,-2,5,0,3]

k=2 in a

print(k)

Methods in Python

In Python, methods are functions that are associated with an object and can manipulate

its data or perform actions on it. They are called using dot notation, with the object name

7

followed by a period and the method name. Methods are an important part of object-

oriented programming in Python.

String Methods

Python has a set of built-in methods that you can use on strings. They are listed some of

them here.

Method Description

count()

Returns the number of times a specified value occurs in a

string

endswith() Returns true if the string ends with the specified value

find()

Searches the string for a specified value and returns the

position of where it was found

index()

Searches the string for a specified value and returns the

position of where it was found

isalnum() Returns True if all characters in the string are alphanumeric

isalpha() Returns True if all characters in the string are in the alphabet

isdecimal() Returns True if all characters in the string are decimals

isdigit() Returns True if all characters in the string are digits

islower() Returns True if all characters in the string are lower case

isnumeric() Returns True if all characters in the string are numeric

isspace() Returns True if all characters in the string are whitespaces

isupper() Returns True if all characters in the string are upper case

join() Converts the elements of an iterable into a string

lower() Converts a string into lower case

partition() Returns a tuple where the string is parted into three parts

replace()

Returns a string where a specified value is replaced with a

specified value

rfind()

Searches the string for a specified value and returns the last

position of where it was found

rindex()

Searches the string for a specified value and returns the last

position of where it was found

rpartition() Returns a tuple where the string is parted into three parts

rsplit() Splits the string at the specified separator, and returns a list

split() Splits the string at the specified separator, and returns a list

splitlines() Splits the string at line breaks and returns a list

startswith() Returns true if the string starts with the specified value

strip() Returns a trimmed version of the string

swapcase() Swaps cases, lower case becomes upper case and vice versa

upper() Converts a string into upper case

https://www.w3schools.com/python/ref_string_count.asp
https://www.w3schools.com/python/ref_string_endswith.asp
https://www.w3schools.com/python/ref_string_find.asp
https://www.w3schools.com/python/ref_string_index.asp
https://www.w3schools.com/python/ref_string_isalnum.asp
https://www.w3schools.com/python/ref_string_isalpha.asp
https://www.w3schools.com/python/ref_string_isdecimal.asp
https://www.w3schools.com/python/ref_string_isdigit.asp
https://www.w3schools.com/python/ref_string_islower.asp
https://www.w3schools.com/python/ref_string_isnumeric.asp
https://www.w3schools.com/python/ref_string_isspace.asp
https://www.w3schools.com/python/ref_string_isupper.asp
https://www.w3schools.com/python/ref_string_join.asp
https://www.w3schools.com/python/ref_string_lower.asp
https://www.w3schools.com/python/ref_string_partition.asp
https://www.w3schools.com/python/ref_string_replace.asp
https://www.w3schools.com/python/ref_string_rfind.asp
https://www.w3schools.com/python/ref_string_rindex.asp
https://www.w3schools.com/python/ref_string_rpartition.asp
https://www.w3schools.com/python/ref_string_rsplit.asp
https://www.w3schools.com/python/ref_string_split.asp
https://www.w3schools.com/python/ref_string_splitlines.asp
https://www.w3schools.com/python/ref_string_startswith.asp
https://www.w3schools.com/python/ref_string_strip.asp
https://www.w3schools.com/python/ref_string_swapcase.asp
https://www.w3schools.com/python/ref_string_upper.asp

8

Example: -

txt = "I love applers, apple are my favorite fruit"

x = txt.count("apple")

print(x)

Example: -

txt = "Hello, welcome to my world."

x = txt.find("welcome")

print(x)

Example: -

txt = "welcome to the jungle"

x = txt.split()

print(x)

List Methods

Python has a set of built-in methods that you can use on lists. They are listed some of

them here.

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend()

Add the elements of a list (or any iterable), to the end of the

current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp

9

pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

Example: -

fruits = ['apple', 'banana', 'cherry']

fruits.append("orange")

Example: -

fruits = ['apple', 'banana', 'cherry']

fruits.insert(1, "orange")

Example: -

fruits = ['apple', 'banana', 'cherry']

cars = ['Ford', 'BMW', 'Volvo']

fruits.extend(cars)

Tuple Methods

Python has two built-in methods that you can use on tuples.

Method Description

count()

Returns the number of times a specified value occurs in a

tuple

index()

Searches the tuple for a specified value and returns the

position of where it was found

Example: -

thistuple = (1, 3, 7, 8, 7, 5, 4, 6, 8, 5)

x = thistuple.count(5)

print(x)

https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp
https://www.w3schools.com/python/ref_tuple_count.asp
https://www.w3schools.com/python/ref_tuple_index.asp

	Title
	Lecture1, Introduction to Python Programming
	Lecture2, Sequence Data Type

