

Curl					
Given a vector function $\vec{v}(x, y)$	v, z)				
$\vec{v}(x, y, z) \equiv v_x \hat{x} + v_y \hat{y} + v_z \hat{z}$	$\equiv (v_x, v_y,$	(v_z)			
we define its curl as: $\vec{ abla} \times \vec{ abla}$	$\equiv \frac{\hat{x}}{\frac{\partial}{\partial x}}$		\hat{z} $\frac{\partial}{\partial z}$		
 Observations: The curl is a vector Geometrical interpretation: it m "curls around a point". 	v_x neasures h	v_y ow mu	v_z ch the fun	iction $\vec{v}($	x, y, z) 8

15

Electricity and Magnetism HISTORY...

19

continuous distribution of charges

Charges are distributed inside a volume V:

$$\vec{F}_{\varrho} = \int_{V} \frac{\rho \, dV \, Q}{|\mathbf{r}|^2} \, \hat{\mathbf{r}}$$

Charges are distributed on a surface A:

$$\vec{F}_{Q} = \int_{A} \frac{\sigma \, \mathrm{da} \, Q}{\left|\mathbf{r}\right|^{2}} \, \hat{\mathbf{r}}$$

Charges are distributed on a line L:

$$\vec{F}_{Q} = \int_{L} \frac{\lambda \, \mathrm{dl} \, \mathrm{Q}}{\left|\mathbf{r}\right|^{2}} \, \hat{\mathbf{r}}$$

Where:

- ρ = charge per unit volume: "volume charge density"
- σ = charge per unit area: "surface charge density"
- λ = charge per unit length: "line charge density"

