

Gauss's Law

 Gauss's law states that "the net electric flux emanating from a close surface S is equal to the total charge contained within the volume V bounded by that surface."

$$\oint_{S} \overline{D} \bullet d\overline{s} = Q_{encl}$$

1- Construct a family of Gaussian surfaces, Spheres of radius R where

 $0 \le R \le \infty$

2- Evaluate the total charge within the volume enclosed by each Gaussian surface

$$Qencl = \int_{v} \rho dv$$

11

12

MORE APPLICATIONS OF GAUSS'S LAW

- Electric Flux Density of an Infinite Line Charge Using Gauss's Law
- Electric Flux Density of an surface Charge Using Gauss's Law

ELECTRIC POTENTIAL

- An electric field is a *force field*.
- If a body being acted on by a force is

moved from one point to another, then *work* is done.

• The concept of *scalar electric potential* provides a measure of the work done in moving charged bodies in an electrostatic field.

Electrostatic Potential (Cont'd)

• The work done per unit charge in moving a test charge from point *a to point b is the electrostatic potential difference between the two points:*

$$V_{ab} = \frac{W_{a \to b}}{q} = -\int_{a}^{b} \overline{E} \bullet d\overline{l}$$

Electrostatic potential difference

<text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Electrostatic Potential and Electric Field

The work done in moving from point *a to* point *b can be written as*

$$W_{a \to b} = q V_{ab} = q \left\{ V_{(b)} - V_{(a)} \right\} = -q \int_{a}^{b} \overline{E} \bullet d\overline{l}$$

Along a short path of length Δl we have

 $\Delta W = q \Delta V = -q \overline{E} \bullet dl$

$$\Delta V = -\overline{E} \bullet \Delta \overline{l}$$

Along an incremental path of length **dl we** have

th **dI we** have $dV = -\overline{E} \bullet d\overline{l}$

Recall from the definition of *directional derivative*: $dV = \nabla V \bullet d\bar{l}$

Thus:

$$\overline{E} = -\nabla V$$

18

Electrostatic Potential Resulting from Continuous Charge Distributions	
$V(\overline{R}) = \frac{1}{4 \pi \varepsilon_{0}} \int_{L_{1}} \frac{\rho_{l}(\overline{R}') dl'}{\left \overline{R} - \overline{R}'\right }$	⇐ line charge
$V(\overline{R}) = \frac{1}{4 \pi \varepsilon_{0}} \int_{S'} \frac{\rho_{s}(\overline{R'}) ds'}{\left \overline{R} - \overline{R'}\right }$	← surface charge
$V(\overline{R}) = \frac{1}{4 \pi \varepsilon_{0}} \int_{v'} \frac{\rho_{v}(\overline{R'}) dv'}{\left \overline{R} - \overline{R'}\right }$	⇐ volume charge
	21