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Gausses law, Electric potential

Lecture 3
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Electric Displacement (Electric Flux)

• The density of electric displacement is the electric 
(displacement) flux density, D.
• In free space the relationship between flux density   
and electric field is
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• The electric (displacement) flux 
density for a point charge centered 
at the origin is
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Gauss’s Law

• Gauss’s law states that “the net electric flux 
emanating from a close surface S is equal to 
the total charge contained within the volume 
V bounded by that surface.”
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Gausses law in differential form
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Applications of Gauss’s Law

• Gauss’s law is an integral equation for the 
unknown electric flux density resulting from a 
given charge distribution.
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Applications of Gauss’s Law (Cont’d)

• In general, solutions to integral equations must 
be obtained using numerical techniques.

• However, for certain symmetric charge 
distributions closed form solutions to Gauss’s law 
can be obtained.

• Closed form solution to Gauss’s law relies on our 
ability to construct a suitable family of Gaussian 
surfaces.

• A Gaussian surface is a surface to which the 
electric flux density is normal and over which 
equal to a constant value.
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Electric Flux Density of a Point Charge Using
Gauss’s Law

• Consider a point charge at the origin:
1- Construct a family of Gaussian surfaces,  

Spheres of radius R where 

2- Evaluate the total charge within the volume 
enclosed by each Gaussian surface
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Electric Flux Density of a Point Charge Using
Gauss’s Law (Cont’d)
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Electric Flux Density of a Point Charge Using
Gauss’s Law (Cont’d)

3- For each Gaussian surface, evaluate the 
integral

 
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Magnitude of D on Gaussian 
surface

Surface area 
of Gaussian 
surface
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Electric Flux Density of a Point Charge Using
Gauss’s Law (Cont’d)

• Solve for D on each Gaussian surface
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MORE APPLICATIONS OF
GAUSS’S LAW

• Electric Flux Density of an Infinite Line Charge 
Using Gauss’s Law

• Electric Flux Density of an surface Charge 
Using Gauss’s Law
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ELECTRIC POTENTIAL

• An electric field is a force field.
• If a body being acted on by a force is
moved from one point to another, then work is 

done.
• The concept of scalar electric potential 

provides a measure of the work done in 
moving charged bodies in an electrostatic 
field.
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Electrostatic Potential (Cont’d)

• The work done in moving a test charge from 
one point to another in a region of electric 
field:
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Electrostatic Potential (Cont’d)

• The electrostatic field is conservative:
– The value of the line integral depends only on 

the end points and is independent of the path 
taken.

– The value of the line integral around any 
closed path is zero.
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Electrostatic Potential (Cont’d)

• The work done per unit charge in moving a 
test charge from point a to point b is the 
electrostatic potential difference between the 
two points:
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Electrostatic Potential (Cont’d)

• Since the electrostatic field is conservative we 
can write
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Electrostatic Potential (Cont’d)

• Thus the electrostatic potential V is a scalar 
field that is defined at every point in space.

• In particular the value of the electrostatic 
potential at any point P is given by
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Reference Point
The reference point (P0) is where the potential is
zero (analogous to ground in circuit theory).
• Often the reference is taken to be at infinity so 
that the potential of a point in space is defined as
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Electrostatic Potential and Electric 
Field

The work done in moving from point a to point b can be written as
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Along a short path of length Δl we have

lEV
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ldEdV Along an incremental path of length dl we have

Recall from the definition of directional derivative: ldVdV 
Thus:
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Electrostatic Potential of a Point Charge at the
Origin
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Electrostatic Potential Resulting from Multiple
Point Charges
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Electrostatic Potential Resulting from 
Continuous

Charge Distributions

 


'0 '

')'(

4

1
)(

L

l

RR

dlR
RV




 


'0 '

')'(

4

1
)(

s

s

RR

dsR
RV




 


'0 '

')'(

4

1
)(

v

v

RR

dvR
RV




⇐ line charge

⇐ surface charge

⇐ volume charge
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