Maxwell’s Equations

Lecture 6

Introduction
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Faraday’s Law

* Faraday discovered that the induced emf. Vemf(in
volts), in any closed circuit is equal to the time
rate of change of the magnetic flux linkage by the
circuit. d¥

chf = =N—=
dt

* where N is the number of turns in the circuit and
V is the flux through each turn. The negative sign
shows that the induced voltage acts in such a way
as to oppose the flux producing it. This is known
as Lenz's law.

Faraday’s Law ( Con,d)

d
Vemf=§E-dl=——}'B-dS
L dtS

aB
Vs = % E-dl=—[—-ds
% s 0t

By applying Stokes's theorem to the middle term in eq.

B
f(VXE)-dS= —Jm-ds
; ot
VX E = _JB It shows that the time varying
at E field is not conservative (V X E # ()
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DISPLACEMENT CURRENT

For static EM fields, we recall that
VXH=]

But the divergence of the curl of any vector field is identically zero
Hence,

V(VXH)=0=V-]
The continuity of current however, requires that

_de,
ot

V-J= # 0

VXH=]J+ ],

DISPLACEMENT CURRENT

where J; is to be determined and defined. Again, the divergence of the curl of any vector is
zero. Hence:
V(VXH)=0=V-J+ V-],

dp, 0 oD
V-],=-V:J=—"2=—(V- =V —
e d ot ar(v ) at
dD
Y=
VXH=J+Q

Jt
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DISPLACEMENT CURRENT

This is Maxwell's equation (based on Ampere’s circuit law) for a time-varying field. The
term J, = 9D/at s known as displacement current density and J is the conduction current

density (J = oE)

Maxwell’s Equations

Generalized Forms of Maxwell’s Equations

Differential Form Integral Form Remarks
V:D=p, jL D:-dS = Jp,. dv Gauss’s law
5 v
V-B=20 % B-dS=0 Nonexistence of isolated
s magnetic charge®
oB o
VXE=— %E-dl=——JB'dS Faraday’s law
a1 . B

aD
VXH=J+Q %H-dI=J(J+—)'dS Ampere’s circuit law
a ] L at

*This is also referred to as Gauss’s law for magnetic fields.
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ELECTROMAGNETIC WAVE
PROPAGATION

In general, waves are means of transporting
energy or information.

All forms of EM energy share three
fundamental characteristics:

they all travel at high velocity;

in traveling, they assume the properties of
waves;
and they radiate outward from a source

Solution of Maxwell’s Equations

goal is to solve Maxwell's equations and
derive EM wave motion in the following

media:

1. Free space (0 = 0,& = €, 4 = po)

2. Lossless dielectrics (¢ =0, & = £,60, g = pifho, 07 0 <K wE)
3. Lossy dielectrics (0 # 0, & = £,80, p = trito)

4. Good conductors (6 = %, £ = £, u = pjty, OF 0 2> WE)

where w is the angular frequency of the wave




Solution of Maxwell’s Equations

Consider a linear, isotropic, homogeneous, lossy dielectric medium that is charge frec
{p, = 0). Assuming and suppressing the time factor ™', Maxwell’s equations become

V.E =0
V-H =0
VX E; = ~jouH,

VXH,= (o + jwe,
Taking the curl of both sides of ¥ X E, = ~jupH,
VX VXE, = —jup VX H,

Solution of Maxwell’s Equations

Applying the vector identity
VX VXA=V(V:-A)-~- VA

ylm ~ VE, = ~jup(o + jue)E,

V2E5 - vYE, =0 | wave equation,

or

where

YV = jopo + jee)
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BY a Similﬂr Fdl"'e vZHS . TEHJ =0 wave equation.

v is called the propagation constant (in per meter) of the mediur

Yy=a+jB

~Rey’ = F — o = wlue

V| =8+ o = op Vo' + o€’

ue o |? « is known as the attenuation constant
= w ) 1+ '(:JE -1 - . - -

o= /g [2] 4]

{3 is phase shift per length and is called the phase constant or wave number.

assume that the wave propagates along +a, and that
E, has only an x-component, then

ES = E,{S(Z)ax
(V7 — yHE(2)

a’ ERS %K
afz(Z) N ?a:;(Z) * ajz(z)‘ — Y Eulz) = 0

0 0
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d2
{p - 72JExs(Z) =0

E.(2) = Ee™ " + Ele™
where E, and E, are constants. The fact that the field must be finite at infinity requires that
E,=0
E(z 1) = Re [E(2)e"a,] = Re (E,e” e a,)

E(z, 1) = Eje” “cos(wt — S7)a,

H(z,f) = Re (Hoe_"‘zej(“"qm a)

Eq
b

7= 5 aiw?ws = [nl/0, = [nle™

H, =

718 a complex quantity known as the intrinsic impedance (in ohms) of the medium

the wave velocity « and wavelength A are, respectively, given by

u =
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the ratio of the magnitude of the conduction
current density J to that of the displacement current density J, in a lossy medium

&L—ﬂ—iztmﬂ tan § = —

Ju|  jweE,| e we

f s known as the loss tangent and 15 the loss angle of the medium

VXH,=(o +jws)Es=jwe[1 _Jﬂ} E,

wE
= juweE,

.o
s B 1_}E

g, =& — j&'

and &’ = g, &" = o/w; &, s called the complex permittivity of the medium. We observe that
the ratio of £” to &' is the loss tangent of the medium; that is,

g

£ [
tanf = — =—
1 we
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PLANE WAVES IN LOSSLESS
DIELECTRICS

In a lossless dielectric, ¢ << we

0=0, e=&8, B = por

o= 6=w\/;;
w 1 2T _ |
H=—= : N=— u VAL
8 Ve 8 :

and thus E and H are in time phase with each other.

PLANE WAVES IN FREE SPACE

U=Oa £ = &g B Mo
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E = E, cos(wt — Bz) a,

E,
H = H,cos (wt — fz)a, = TT”cos(wr —i3%) A,
0

PLANE WAVES IN GOOD
CONDUCTORS

o >>> we s0 that g/lwe — =

g 0, & = &y, = Moltr

a=0= w,uo \ o

w
" \/; -G
n=\/%uﬂ
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E = E.¢e” “cos(wt — B2) a,

H= e ¢ “ens(upr— Pz~ 455)a,
wp
o
Ee “=FEe"
The distance 6 through which the wave amplitude
1 decreases by a factor ¢ ' (about 37%)is called
6 = E skin depth or penetration depth of the medium

* The skin depth is a measure of the depth to
which an EM wave can penetrate the
medium.
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* The net electric flux through any closed (
Gaussian) surface is proportional to the net
charge inside the surface.

* The net Magnetic flux through any closed (
Gaussian) surface is equal to zero, means
there is no Magnetism Monopole.

* The line integral of the electric field vector
around any closed path equals the rate of
change in the magnetic flux through any
surface bounded by that path.

* The circulation of the magnetic field vector
around any amperian loop is proportional to
the sum of the total conduction and
displacement current through any surface
bounded by the path.
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