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2.  Moment Generating Function Technique (MGF) 

 Monents 

What is the Moments in Probability/ Statistics? 
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Therefore,  
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Now, take a derivative with respect to t. 

 

but we can calculate moments using the definition of expected values. Why do we need MGF 

exactly? 

Moments and Moment Generating Function Technique 

A population can be identified through the complete sequence of its moments. If all the moments 

exist then there exists a function into which they are all summarized. If such a function exists then 

any required moment can be extracted. 
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Definition:-The Kth moment of a random variable X taken about the origin is defined as 𝐸(𝑋𝑟) and 

denoted by Mk
’ or 𝜇𝑘

′ (if X is representing a population variable) or denoted by mk
’(if X is 

representing a sample variable) . 

Definition:- Let X be a random variable for which the mathematical expectation 𝐸(𝑒𝑡𝑥)existis for 

every value of t in some interval−𝛿 < 𝑡 < 𝛿, then 𝐸(𝑒𝑡𝑥) is called the moment generating 

function (m.g.f.) of X or equivalently m.g.f. for the distribution function of X and generally denoted 

by 𝑀𝑋(𝑡),  i.e,            m.g.f. 𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑥) 

Theorem(1):- Let the mathematical expectation corresponding to the function g(x)=etx exists for 

every t, −𝛿 < 𝑡 < 𝛿 for the random variable X, if 𝑀𝑋(𝑡) stands for mathematical expectation then     

𝜇𝑟
′ = [

𝑑𝑟𝑀𝑋(𝑡)

𝑑𝑡𝑟
]

𝑡=0

   , 𝑟 = 1,2, …  

Proof:- Since   𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ +

𝑥𝑟

𝑟!
+ ⋯ 

𝑒𝑡𝑥 = 1 + 𝑡𝑥 +
𝑡2𝑥2

2!
+

𝑡3𝑥3

3!
+ ⋯ +

𝑡𝑟𝑥𝑟

𝑟!
+ ⋯ 

and   𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑥) = 1 + 𝑡𝐸(𝑥) +
𝑡2

2!
𝐸(𝑥2) +

𝑡3

3!
𝐸(𝑥3) + ⋯ +

𝑡𝑟

𝑟!
𝐸(𝑥𝑟) + ⋯ 

𝑀𝑋(𝑡) = 𝐸 [∑
𝑡𝑟𝑥𝑟

𝑟!

∞

𝑟=0

]      If X is discrete  

𝑀𝑋(𝑡) = 𝐸 [∫
𝑡𝑟𝑥𝑟

𝑟!

∞

0

 𝑑𝑥]      If X is continuous 

For continuous random variable, 

𝑀𝑋(𝑡) = 1 + ∫ 𝑡𝑥 𝑑𝑥

∞

0

+ ∫
𝑡2

2!
𝑥2 𝑑𝑥

∞

0

+ ∫
𝑡3

3!
𝑥3 𝑑𝑥

∞

0

+ ⋯ + ∫
𝑡𝑟

𝑟!
𝑥𝑟 𝑑𝑥

∞

0

+ ⋯ 

= 1 + 𝑡𝜇1
′ +

𝑡2

2!
𝜇2

′ +
𝑡3

3!
𝜇3

′ + ⋯ +
𝑡𝑟

𝑟!
𝜇𝑟

′ + ⋯ 

[
𝑑𝑀𝑋(𝑡)

𝑑𝑡
]

𝑡=0
= 𝜇1

′   ,     [
𝑑2𝑀𝑋(𝑡)

𝑑𝑡2 ]
𝑡=0

= 𝜇2
′  ,    … . , [

𝑑𝑟𝑀𝑋(𝑡)

𝑑𝑡𝑟 ]
𝑡=0

= 𝜇𝑟
′   ,    𝑟 = 1,2, … 

 

Note:-  

1- From the theory of mathematical analysis, it can be shown that the existence of 

𝑀𝑋(𝑡)  for −𝛿 < 𝑡 < 𝛿 implies that derivatives of 𝑀𝑋(𝑡) of all orders exists at  𝑡 = 0 (or 

summation of 𝑚𝑋(𝑡) for discrete type).  
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2- m.g.f. if exists is an effective method of finding the distribution function of several 

random variables. 

 

Example:- Show that m.g.f. for binomial distribution is given by   𝑚𝑋(𝑡) = [1 + 𝑝(𝑒𝑡 − 1)]𝑛 

And find the mean and the variance for X. 

 

 

Example:- Show that the m.g.f. for normal distribution with parameters   𝜇  and   𝜎2 is given by  

𝑀𝑋(𝑡) = 𝑒𝜇𝑡+
𝑡2𝜎2

2  

Proof: 
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EX:-Show that  the m.g.f. for Poisson distribution(𝑖. 𝑒. ,   𝑋~𝑃(𝜆) ) is   𝑀𝑋(𝑡) = 𝑒𝜆(𝑒𝑡−1) and for  

Gamma distribution (𝑖. 𝑒. ,   𝑋~𝐺(𝛼, 𝛽))  is  𝑀𝑋(𝑡) = (1 − 𝛽𝑡)−𝛼 

 

Note:- Chi- square distribution is gamma distribution with  𝛼 =
𝑟

2
  𝑎𝑛𝑑  𝛽 = 2, so that the m.g.f. 

is defined as 𝑀𝑋(𝑡) = (1 − 2𝑡)−
𝑟

2  

 

To find the distribution function for the random variables  𝑋1, 𝑋2, … , 𝑋𝑛 from the distribution 

function for random variable we can use the following theorems: 

 

 

Theorem: (Uniqueness theorem) 

 

Let 𝑀𝑋1
(𝑡) and 𝑀𝑋2

(𝑡) be the m.g.f. for two random variables 𝑋1 𝑎𝑛𝑑  𝑋2 respectively, if both 

m.g.f.s exists and  𝑀𝑋1
(𝑡) = 𝑀𝑋2

(𝑡) for all values of𝑡, then  𝑋1 𝑎𝑛𝑑 𝑋2 have the same distribution 

function (𝑖. 𝑒. , 𝑓1(𝑋1) = 𝑓2(𝑋2)  ) whenever 𝑋1 = 𝑋2 
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Example:- Let 𝑋~ 𝑁(𝜇 , 𝜎2). Show that  𝑍 =
𝑋−𝜇

𝜎
~𝑁(0,1) using m.g.f. technique. 

 

𝑀𝑍(𝑡) = 𝐸(𝑒𝑡𝑧) = 𝐸 (𝑒𝑡(
𝑥−𝜇

𝜎
)) = 𝐸 (𝑒

𝑡

𝜎𝑒(𝑥−𝜇)) = 𝑀(𝑋−𝜇) (
𝑡

𝜎
) = 𝑒

(
𝑡

𝜎
)

2
(

𝜎2

2
)

= 𝑒
𝑡2

2  

⇒   𝑍~𝑁(0,1) 

 

Example:-  Let 𝑍~𝑁(0,1) . Find the distribution function for  𝑍2 using m.g.f. technique. 

𝑀𝑍2(𝑡) = 𝐸(𝑒𝑡𝑧2
) = ∫ 𝑒𝑡𝑧2

𝑓(𝑧)𝑑𝑧 =
1

√2𝜋
∫ 𝑒𝑡𝑧2

𝑒−
𝑧2

2 𝑑𝑧 =
1

√2𝜋
∫ 𝑒−

𝑧2

2
(1−2𝑡)𝑑𝑧

∞

−∞

∞

−∞

∞

−∞

 

multiply the numerator and denominator by (1 − 2𝑡)−
1

2 

 

⇒  𝑀𝑍2(𝑡) =
1

(1 − 2𝑡)
1

2

∫
1

√2𝜋(1 − 2𝑡)−
1

2

𝑒−
𝑧2

2
(1−2𝑡)𝑑𝑧

∞

−∞

 

⇒  𝑀𝑍2(𝑡) =
1

(1 − 2𝑡)
1

2

 

which is m.f.g. of gamma distribution with 𝛼 =
1

2
  𝑎𝑛𝑑  𝛽 = 2 

So, we conclude that  

if𝑍~𝑁(0,1)  then 𝑍2~𝐺(
1

2
. 2) and this means that  𝑍2~𝜒(1)

2  

 

Note: 

One of the most useful facts about moment generating functions is that the moment generating 

function of a sum of independent variables is the product of the individual moment generating 

functions. 

 

Theorem (2):- Let  𝑋1, 𝑋2, … , 𝑋𝑛 be independent random variables with m.g.f.s 

𝑀𝑋1
(𝑡), 𝑀𝑋2

(𝑡), … , 𝑀𝑋𝑛
(𝑡),    if   𝑢 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 then  

𝑀𝑢(𝑡) = 𝑀𝑋1
(𝑡) .  𝑀𝑋2

(𝑡). … . 𝑀𝑋𝑛
(𝑡) = ∏ 𝑀𝑋𝑖

(𝑡)

𝑛

𝑖=1

 

Proof:- EX 

 

Example:- using m.g.f. technique to show that the binomial distribution with parameters 𝑝  and 

𝑛  approaches to the poisson distribution with parameter   𝜆  𝑎𝑠   𝑛 → ∞ and 𝑝 → 0  while 𝜆 =

𝑛𝑝 remains fixed. 

Solution:-m.g.f. for 𝑋~𝐵(𝑛, 𝑝) is  𝑚𝑋(𝑡) = [1 + 𝑝(𝑒𝑡 − 1)]𝑛 

Take the limit as 𝑝 → 0,     lim
𝑝→0

𝑚𝑋(𝑡) = lim
𝑝→0

[1 + 𝑝(𝑒𝑡 − 1)]𝑛 

Since 𝜆 = 𝑛𝑝  then =
𝜆

𝑝
 ,   

lim
𝑝→0

𝑚𝑋(𝑡) = lim
𝑝→0

[1 + 𝑝(𝑒𝑡 − 1)]
𝜆

𝑝  = lim
𝑝→0

[1 + 𝑝(𝑒𝑡 − 1)]
1

𝑝(𝑒𝑡−1)
∗ 𝜆(𝑒𝑡−1)
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lim
𝑝→0

𝑚𝑋(𝑡) = 𝑒𝜆(𝑒𝑡−1)[ since𝑒 = lim
𝑡→0

(1 + 𝑡)
1

𝑡    ]; Which is the m.g.f. for Poisson 

 

Theorem (3):- Let  𝑋1, 𝑋2, … , 𝑋𝑛 be stochastically independent random variables that have 

respectively the Chi-square distribution 𝜒(𝑟1)
2 , 𝜒(𝑟2)

2 , … , 𝜒(𝑟𝑛)
2 , then the random variable 𝑌 = 𝑋1 +

𝑋2 + ⋯ +  𝑋𝑛 has a Chi-square distribution with 𝑟1 + 𝑟2 + ⋯ + 𝑟𝑛 degree of freedom i.e., 

𝑌~𝜒(𝑟1+𝑟2+⋯+𝑟𝑛)
2  

Proof:-   If 𝑋~𝜒(𝑟)
2   then  𝑀𝑋(𝑡) = (1 − 2𝑡)−

𝑟

2  

𝑀𝑌(𝑡) = 𝐸(𝑒𝑡(𝑥1+𝑥2+⋯+𝑥𝑛)),but𝑋𝑖  are independent     ⇒ 𝑀𝑌(𝑡) =

𝐸(𝑒𝑡𝑥1)𝐸(𝑒𝑡𝑥2) …  𝐸(𝑒𝑡𝑥𝑛)      ⇒      𝑀𝑌(𝑡) = (1 − 2𝑡)−
(𝑟1+𝑟2+⋯+𝑟𝑛)

2  ,      𝑡 <
1

2
 

Exercises: 
Solve the problems below using the moment-generating-function technique. Make sure to state 

the distribution and its parameters. 

1. Let X1,...,Xn be independent random variables, such that Xi ∼ Exponential(θ), for i = 1,...,n.      

Find the distribution of:   Y = X1 + ··· + Xn. 

2. Let X1,...,Xn be independent random variables, such that Xi ∼ Poiss(λi), for i = 1,...,n. 

 Find the distribution of:     Y = X1 + ··· + Xn. 

3. Let X1,...,Xn be independent random variables, such that Xi ∼ N(µi,σi2), for i = 1,...,n.  Find 

the distribution of:Y = a1X1 + ··· + anXn.. 


