Question Bank

Q1: Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a normal distribution function $\sim \mathrm{N}\left(\mu, \sigma^{2}\right)$, Find:

1. MLE estimator for σ^{2}.
2. The MSE for two estimators defined as:
$S^{2}=\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{n-1} ; \quad \hat{\sigma}^{2}=\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{n} \quad$ then compare the two estimators according to MSEs.
a- Construct the confidence interval for μ, the mean of a random variable $X \sim N\left(\mu, \sigma^{2}\right)$ when the variance σ^{2} is unknown and the size of the random sample is small.
\boldsymbol{b} - if a R. S. of size $\mathrm{n}=10$ taken from a population distributed as normal gives \bar{X} 164.9, $S=$ 4.157 find 95% C. I. for:
i) μ when σ^{2} is unknown. ii) for σ^{2} when μ is unknown.
c- a random variable $X \sim N\left(\mu, \sigma^{2}\right)$. Construct a 95 percent confidence interval for σ^{2} when the mean μ is unkown.

Q2: If a random variable $X \sim B(n, P)$) and $\widehat{P}=X / n$, then:

1. Is \widehat{P} a Minimum Variance Unbiased and consistent estimator for P ?
2. Find the efficiency for \widehat{P}.

Q3: Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution function defined as:

$$
f(x, \theta)=\frac{2 X}{\theta^{2}} \quad 0<x<\theta
$$

1) Find an estimator for θ.
2) If an estimator for θ is defined as $\dot{\theta}=\frac{4}{5} * \bar{X}$, Can the Cramer Roa Lower Bound be applied to $\hat{\theta}$? Explain your answer.
$f(x)=\frac{c X^{2}}{9}$ for $0<x<3$ and zero else, where c is constant. Define $Y=X^{3}$, find the probability distribution function for Y.
b- If F has F -distribution $F(4,2)$, find a and b so that $p r\{F \leq a\}=0.05$, and $\operatorname{pr}\{F \leq b\}=0.95$.

Q4: a- Let $\mathrm{X}_{1}, \mathrm{X}_{2}$ be two stochastically independent random variables distributed as Binomial where $\mathrm{X}_{1} \sim \mathrm{~B}\left(10, \frac{1}{2}\right)$ and $\mathrm{X}_{2} \sim \mathrm{~B}\left(5, \frac{1}{2}\right)$, define $\mathrm{Y}=X_{1}-X_{2}+5$, find the distribution function for Y, by using the m.g.f technique.

Q5- Let the random variable X have the p.d.f given by:

$$
f(x)=1 \text { for } 0<x<1, \text { and zero elsewhere }
$$

Assume that X_{1}, X_{2} are stochastically independent random variables distributed as $f(x)$. Define $Y_{1}=X_{1}+X_{2}, Y_{2}=X_{1}-X_{2}$

1. find the distribution function for Y_{1}.
2. Are Y_{1}, Y_{2} independent?

Q6: Assume that X_{1}, X_{2}, X_{3} are identically independent random variables from uniform distribution having the p.d.f. $f(x)=1,0<x<1$ and zero elsewhere.

1 - Show that there is a unique median m of the distribution with $F(m)=1 / 2$;
2- Find the value for the median of X .

Q7: If X_{1}, X_{2}, X_{3} are iid random variables from a distribution function defined as:
$\mathrm{f}(\mathrm{x})=2 \mathrm{x} \quad 0<x<1, \quad$ zero elsewher.
1- Drive the p.d.f. for $\operatorname{Min}\left\{X_{i}\right\}$,
2- Find $\left.\operatorname{Pr}\left\{\operatorname{Min}\left\{X_{i}\right\}>0.5\right\}\right\}$

Q8: Let two iid random variables with distribution function defined as:
$f(x)=2(1-x) \quad 0<x<1 \quad$ and zero else where

1. Find probability that $\{\max \{X\}>2 * \operatorname{Min}\{X\}\}$
2. If $\mathrm{f}(\mathrm{x})=e^{x} \quad 0<x<\infty$; then show that $\mathrm{Z}=\left(\frac{X_{1}}{X_{2}}\right)$ has an F - distribution .

Q9: a. Let X have the pdf $f(x)=(1 / 2)^{x}, x=1,2,3, .$. zero elsewhere. Find the probability distribution function for $\boldsymbol{Y}=X^{3}$.
b. Assume that $\boldsymbol{X}_{\mathbf{1}}, \boldsymbol{X}_{\mathbf{2}}$ are two stochastically independent binomial random variables with parameters $\boldsymbol{m}, \boldsymbol{p}$ and $\boldsymbol{n}, \boldsymbol{p}$ respectively. Show that $\boldsymbol{Y}=\boldsymbol{X}_{\mathbf{1}}+\boldsymbol{X}_{\mathbf{2}}$ has binomial distribution with parameters $\boldsymbol{r}, \boldsymbol{p}$ where $\boldsymbol{r}=\boldsymbol{n}+\boldsymbol{m}$.

Q10- a. Consider two stochastically independent random variables \boldsymbol{X} and \boldsymbol{Y} that are distributed as $\quad X \sim N(0,1)$ and $Y \sim \chi^{2}(r)$ such that $\quad f(y)=\frac{1}{\Gamma\left(\frac{r}{2}\right) 2^{\frac{r}{2}}} \boldsymbol{y}^{\left(\frac{r}{2}-1\right)} e^{-\frac{y}{2}}$, for $\boldsymbol{y}>0$, and zero elsewhere. Define $\boldsymbol{T}=\frac{X}{\sqrt{Y / r}}$, obtain the pdf for \boldsymbol{T}.
b. If \boldsymbol{F} has an \boldsymbol{F} distribution with parameters $\boldsymbol{r}_{\mathbf{1}}=\mathbf{4}$ and $\boldsymbol{r}_{\boldsymbol{2}}=\mathbf{2}$, find a and b so that $\boldsymbol{p r}\{\boldsymbol{F} \leq \boldsymbol{a}\}=0.05$, and $\boldsymbol{p r}\{\boldsymbol{F} \leq \boldsymbol{b}\}=0.95$.

Q11: a- Let X have the pdf $f(x)=(1 / 2)^{x}, x=1,2,3, .$. , zero elsewhere. Find the probability distribution function for $Y=X^{3}$.
b. Assume that X_{1}, X_{2} are two stochastically independent binomial random variables with parameters m,pand n, p respectively. Show that $Y=X_{1}+X_{2}$ has binomial distribution with parameters r, p where $r=n+m$.

Q12) a. Consider two stochastically independent random variables X and Y that are distributed as $\quad X \sim N(0,1)$ and $Y \sim \chi^{2}(r)$ such that $f(y)=$ $\frac{1}{\Gamma\left(\frac{r}{2}\right) 2^{\frac{r}{2}}} y^{\left(\frac{r}{2}-1\right)} e^{-\frac{y}{2}}$, for $y>0$, and zero elsewhere. Define $T=\frac{X}{\sqrt{Y / r}}, \quad$ obtain the pdf for T.
b. If \boldsymbol{F} has an \boldsymbol{F} distribution with parameters $r_{1}=4$ and $r_{2}=2$, find a and b so that $\operatorname{pr}\{\boldsymbol{F} \leq \boldsymbol{a}\}=0.05$, and $\operatorname{pr}\{\boldsymbol{F} \leq \boldsymbol{b}\}=0.95$.

Q13: Define a random $Y=\frac{1}{2} *\left(X_{1}-X_{2}\right)$ where X_{1} and X_{2} are stochastically independent random variables having the joint p.d.f. $f\left(x_{1}, x_{2}\right)=\frac{1}{4} e^{\left(-\frac{x_{1}+x_{2}}{2}\right)}$, for: $0<x_{1}<\infty, 0<x_{2}<\infty$. Find

1. The distribution function for Y.
2. Probability that $\{Y>1\}$.

Q14) Let X_{1}, X_{2}, X_{3} be independent random variables taken from a uniform distribution having p.d.f. $\quad f(x)=1, \quad 0<x<1$ zero elsewhere.

1. Derive the distribution function for $\operatorname{Min}\left\{X_{i}\right\}$;
2. Determine that prob $\left\{\operatorname{Min}\left\{X_{i}\right\}>0.3\right\}$;
3. If $\boldsymbol{Z}=\left(\operatorname{Max}\left\{X_{i}\right\}-\operatorname{Min}\left\{X_{i}\right\}\right)$ is the rang for $\left\{X_{i}\right\}$ then find the pdf for Z. 4.

Q15: Define a random $\boldsymbol{Y}=\frac{\mathbf{1}}{\mathbf{2}} *\left(\mathbf{X}_{\mathbf{1}}-\mathbf{X}_{\mathbf{2}}\right)$ where $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ are stochastically independent random variables having the joint p.d.£. $f\left(x_{1}, x_{2}\right)=\frac{1}{4} e^{\left(-\frac{x_{1}+x_{2}}{2}\right)}$, for:
$0<x_{1}<\infty, 0<x_{2}<\infty$. Find
3. The distribution function for \boldsymbol{Y}.
4. Probability that $\{\boldsymbol{Y}>\mathbf{1}\}$.

Q15: Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{\mathbf{3}}$ be independent random variables taken from a uniform distribution having p.d.f. $f(\boldsymbol{x})=\mathbf{1}, \quad \mathbf{0}<\boldsymbol{x}<\mathbf{1}$ zero elsewhere.
5. Derive the distribution function for $\operatorname{Min}\left\{\boldsymbol{X}_{\boldsymbol{i}}\right\}$;
6. Determine that $\operatorname{prob}\left\{\operatorname{Min}\left\{\boldsymbol{X}_{\boldsymbol{i}}\right\}>\mathbf{0 . 3}\right\}$;
7. If $\boldsymbol{Z}=\left(\boldsymbol{\operatorname { M a x }}\left\{\boldsymbol{X}_{\boldsymbol{i}}\right\}-\boldsymbol{\operatorname { M i n }}\left\{\boldsymbol{X}_{\boldsymbol{i}}\right\}\right)$ is the rang for $\left\{\boldsymbol{X}_{\boldsymbol{i}}\right\}$ then find the pdf for \boldsymbol{Z}.

