<u>Question Bank</u>

- **Q1**: Let $X_1, X_2, ..., X_n$ be a random sample from a normal distribution function $\sim N(\mu, \sigma^2)$, Find:
 - 1. MLE estimator for σ^2 .
 - 2. The MSE for two estimators defined as:

 $S^2 = \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{n-1};$ $\hat{\sigma}^2 = \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{n}$ then compare the two estimators according to MSEs.

- **a** Construct the confidence interval for μ , the mean of a random variable $X \sim N(\mu, \sigma^2)$ when the variance σ^2 is unknown and the size of the random sample is small.
- *b* if a R. S. of size n=10 taken from a population distributed as normal gives \overline{X} 164.9, S = 4.157 find 95% C. I. for:
 - i) μ when σ^2 is unknown. ii) for σ^2 when μ is unknown.
- c- a random variable $X \sim N(\mu, \sigma^2)$. Construct a 95 percent confidence interval for σ^2 when the mean μ is unkown.

Q2: If a random variable $X \sim B(n, P)$ and $\widehat{P} = X/n$, then:

- 1. Is \widehat{P} a Minimum Variance Unbiased and consistent estimator for P?
- 2. Find the efficiency for \widehat{P} .

Q3: Let $X_1, X_2, ..., X_n$ be a random sample from a distribution function defined as: $f(x, \theta) = \frac{2X}{\theta^2}$ $0 < x < \theta$

- 1) Find an estimator for θ .
- 2) If an estimator for θ is defined as $\hat{\theta} = \frac{4}{5} * \bar{X}$, Can the Cramer Roa Lower Bound be applied to $\hat{\theta}$? Explain your answer.

 $f(x) = \frac{cX^2}{9}$ for 0 < x < 3 and zero else, where c is constant. Define $Y = X^3$, find the probability distribution function for Y.

b- If F has F-distribution F(4,2), find a and b so that $pr \{ F \le a \} = 0.05$, and $pr\{ F \le b \} = 0.95$.

Q4: **a**- Let X_1, X_2 be two stochastically independent random variables distributed as Binomial where $X_1 \sim B(10, \frac{1}{2})$ and $X_2 \sim B(5, \frac{1}{2})$, define $Y = X_1 - X_2 + 5$, find the distribution function for Y, by using the m.g.f technique.

Q5- Let the random variable *X* have the p.d.f given by:

f(x) = 1 for 0 < x < 1, and zero elsewhere

Assume that X_1 , X_2 are stochastically independent random variables distributed as f(x). Define $Y_1 = X_1 + X_2$, $Y_2 = X_1 - X_2$

- 1. find the distribution function for Y_1 .
- 2. Are Y_1 , Y_2 independent?
- **Q6:** Assume that X_1, X_2, X_3 are identically independent random variables from uniform distribution having the p.d.f. f(x) = 1, 0 < x < 1 and zero elsewhere.

1- Show that there is a unique median m of the distribution with F(m) = 1/2;

2- Find the value for the median of X.

Q7: If X_1, X_2, X_3 are iid random variables from a distribution function defined as:

f(x) = 2x 0 < x < 1, zero elsewher.

- 1- Drive the p.d.f. for $Min\{X_i\}$,
- 2- Find $\Pr\{ Min\{X_i\} > 0.5 \} \}$

Q8: Let two iid random variables with distribution function defined as:
f(x) = 2(1-x) 0 < x < 1 and zero else where
1. Find probability that {max{X} > 2 * Min {X}}
2. If f(x) = e^x 0 < x < ∞; then show that Z=(X/X₂) has an F- distribution.

Q9: a. Let X have the pdf $f(x) = (1/2)^x$, x = 1, 2, 3, ..., zero elsewhere. Find the probability distribution function for $Y = X^3$.

b. Assume that X_1 , X_2 are two stochastically independent binomial random variables with parameters m, p and n, p respectively. Show that $Y = X_1 + X_2$ has binomial distribution with parameters r, p where r = n + m.

- **Q10-** a. Consider two stochastically independent random variables **X** and **Y** that are distributed as $X \sim N(0, 1)$ and $Y \sim \chi^2(r)$ such that $f(y) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} y^{(\frac{r}{2}-1)} e^{-\frac{y}{2}}$, for y > 0, and zero elsewhere. Define $T = \frac{X}{\sqrt{Y/r}}$, obtain the pdf for **T**.
 - b. If F has an F distribution with parameters $r_1 = 4$ and $r_2 = 2$, find a and b so that $pr \{ F \le a \} = 0.05$, and $pr \{ F \le b \} = 0.95$.
- *Q11:* a- Let X have the pdf $f(x) = (1/2)^x$, x = 1, 2, 3, ..., zero elsewhere. Find the probability distribution function for $Y = X^3$.
 - b. Assume that X_1 , X_2 are two stochastically independent binomial random variables with parameters m, p and n, p respectively. Show that $Y = X_1 + X_2$ has binomial distribution with parameters r, p where r = n + m.
- Q12) a. Consider two stochastically independent random variables X and Y that are distributed as $X \sim N(0, 1)$ and $Y \sim \chi^2(r)$ such that $f(y) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} y^{\left(\frac{r}{2}-1\right)} e^{-\frac{y}{2}}$, for y > 0, and zero elsewhere. Define $T = \frac{X}{\sqrt{Y/r}}$, obtain the pdf for T.
 - b. If F has an F distribution with parameters $r_1 = 4$ and $r_2 = 2$, find a and b so that $pr \{ F \le a \} = 0.05$, and $pr \{ F \le b \} = 0.95$.
- *Q13:* Define a random $Y = \frac{1}{2} * (X_1 X_2)$ where X_1 and X_2 are stochastically independent random variables having the joint p.d.f. $f(x_1, x_2) = \frac{1}{4} e^{(-\frac{x_1 + x_2}{2})}$, for: $0 < x_1 < \infty, \ 0 < x_2 < \infty$. Find
 - **1.** The distribution function for *Y*.
 - 2. Probability that $\{Y > 1\}$.
- *Q14)* Let X_1, X_2, X_3 be independent random variables taken from a uniform distribution having p.d.f. f(x) = 1, 0 < x < 1 zero elsewhere.
 - **1.** Derive the distribution function for $Min{X_i}$;

- *2.* Determine that prob{ $Min{X_i} > 0.3$ };
- 3. If $Z = (Max\{X_i\} Min\{X_i\})$ is the rang for $\{X_i\}$ then find the pdf for Z. 4.

Q15: Define a random $Y = \frac{1}{2} * (X_1 - X_2)$ where X_1 and X_2 are stochastically independent random variables having the joint p.d.f. $f(x_1, x_2) = \frac{1}{4} e^{(-\frac{x_1 + x_2}{2})}$, for: $0 < x_1 < \infty, \ 0 < x_2 < \infty$. Find

- 3. The distribution function for **Y**.
- 4. Probability that { Y > 1 }.
- Q15: Let X_1, X_2, X_3 be independent random variables taken from a uniform distribution having p.d.f. f(x) = 1, 0 < x < 1 zero elsewhere.
 - 5. Derive the distribution function for $Min{X_i}$;
 - 6. Determine that prob{ $Min{X_i} > 0.3$;
 - 7. If $Z = (Max\{X_i\} Min\{X_i\})$ is the rang for $\{X_i\}$ then find the pdf for Z.