Exp. No. 1: Half and Full Adder

Maha George Zia Assistant professor Electrical Engineering department

By: Assistant Professor Maha George Zia

Half adder Circuit

Is a combinational circuit that adds two bits

Sum = A XOR BCarry = A AND B

A	в	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full adder circuit

Is a combinational circuit that adds three bits (A, B, Carry-in (Ci))

The full adder takes 3 inputs: A, B, and a carry-in value

А	в	Carry- in	Sum	Carry- out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Truth Table

5

By: Assistant Professor Maha George Zia

- Example: Add two 8-bit binary numbers
- Solution: we need an 8-bit adder

Notice how the carry out from one bit's adder becomes the carry-in to the next adder

