Exp. No. 1: Half and Full Adder

Maha George Zia
Assistant professor

Electrical Engineering department

Binary addition

- $0+0$ is a sum of 0 with a carry of 0
- $1+0$ is a sum of 1 with a carry of 0
- $0+1$ is a sum of 1 with a carry of 0
- $1+1$ is a sum of 0 with a carry of 1

Half adder Circuit

Is a combinational circuit that adds two bits

Sum $=$ A XOR B
Carry $=$ A AND B

A	B	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Pin diagram of 7486 XOR

Pin diagram of 7408
Quad 2-input AND gates

Full adder circuit

- Is a combinational circuit that adds three bits (A, B, Carry-in (Ci))

The full adder takes 3 inputs:

- A, B, and a carry-in value
Truth Table

A	B	Carry- in	Sum	Carry- out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
$\mathbf{1}$	1	0	0	1
1	1	1	1	1

- inputs are A, B, and Cl .
- outputs are S and $C O$

$\begin{array}{ll}A_{1}-A_{4} & \text { Operand } A \text { Inputs } \\ B_{1}-B_{4} & \text { Operand } B \text { Inputs }\end{array}$
C_{0}
Carry Input
$\Sigma_{1}-\Sigma_{4} \quad$ Sum Outputs
Carry Output
- Example: Add two 8-bit binary numbers
- Solution: we need an 8-bit adder

Notice how the carry out from one bit's adder becomes the carry-in to the next adder

