Exp No. 2 Magnitude Comparator

Two 1-bit magnitude comparator

\mathbf{A}	\mathbf{B}	$\mathbf{E}(\mathbf{A}=\mathbf{B})$	$\mathbf{G}(\mathbf{A}>\mathbf{B})$	$\mathbf{L}(\mathbf{A}<\mathbf{B})$
0	0	1	0	0
0	1	0	0	$\mathbf{1}$
1	0	0	1	0
1	1	1	0	0
		$\bar{A} \bar{B}+\mathrm{AB}$	$\mathbf{A} \overline{\boldsymbol{B}}$	$\overline{\boldsymbol{A}} \mathbf{B}$

1-bit magnitude comparator

2-bit comparator

:The block diagram of a two-bit comparator which has four inputs and three outputs is shown below.
$\%$ The first number A is designated as $\mathrm{A}=\mathrm{A} 1 \mathrm{~A} 0$ and the second number is designated as $\mathrm{B}=\mathrm{B} 1 \mathrm{~B} 0$.
$\%$ This comparator produces three outputs as $\mathrm{G}(\mathrm{G}=1$ if $\mathrm{A}>\mathrm{B}), \mathrm{E}(\mathrm{E}=1$, if $\mathrm{A}=\mathrm{B})$ and $\mathrm{L}(\mathrm{L}=1$ if $\mathrm{A}<\mathrm{B})$.

Table 1. Truth Table of 2-Bit Magnitude Comparator

INPUT			OUTPUT			
Al	A 0	B 1	B 0	$\mathrm{~A}>\mathrm{B}$	$\mathrm{A}=\mathrm{B}$	$\mathrm{A}<\mathrm{B}$
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

- Using k-map:

$$
\begin{gathered}
\mathrm{A}>\mathrm{B}: \mathrm{G}=\mathrm{A} 0 \overline{\mathrm{~B} 1} \overline{\mathrm{~B} 0}+\mathrm{A} 1 \overline{\mathrm{~B} 1}+\mathrm{A} 1 \mathrm{~A} 0 \overline{\mathrm{~B} 0} \\
\mathrm{~A}=\mathrm{B}: \mathrm{E}=\overline{\mathrm{A} 1} \overline{\mathrm{~A} 0} \overline{\mathrm{~B} 1} \overline{\mathrm{~B} 0}+\overline{\mathrm{A} 1} \mathrm{~A} 0 \overline{\mathrm{~B} 1} \mathrm{~B} 0+\mathrm{A} 1 \mathrm{~A} 0 \mathrm{~B} 1 \mathrm{~B} 0+\mathrm{A} 1 \overline{\mathrm{~A} 0} \mathrm{~B} 1 \overline{\mathrm{~B} 0} \\
=\overline{\mathrm{A} 1} \overline{\mathrm{~B} 1}(\overline{\mathrm{~A} 0} \overline{\mathrm{~B} 0}+\mathrm{A} 0 \mathrm{~B} 0)+\mathrm{A} 1 \mathrm{~B} 1(\mathrm{~A} 0 \mathrm{~B} 0+\overline{\mathrm{A} 0} \overline{\mathrm{~B} 0}) \\
=(\mathrm{A} 0 \mathrm{~B} 0+\overline{\mathrm{A} 0} \overline{\mathrm{~B} 0})(\mathrm{A} 1 \mathrm{~B} 1+\overline{\mathrm{A} 1} \overline{\mathrm{~B} 1}) \\
=(\mathrm{A} 0 \mathrm{Ex}-\mathrm{NOR} \mathrm{~B} 0)(\mathrm{A} 1 \mathrm{Ex}-\mathrm{NOR} \mathrm{~B} 1) \\
\mathrm{A}<\mathrm{B}: \mathrm{L}=\overline{\mathrm{A} 1} \mathrm{~B} 1+\overline{\mathrm{A} 0} \mathrm{~B} 1 \mathrm{~B} 0+\overline{\mathrm{A} 1} \overline{\mathrm{~A} 0} \mathrm{~B} 0
\end{gathered}
$$

Two bit comparator logic diagram

(a) Pin diagram (IC 7485)

It can be used to compare two four-bit words.
The two 4-bit numbers are A = A3 A2 A1 A0 and B3 B2 B1 B0 where A3 and B3 are the most significant bits.

8-bit comparator

- An 8 -bit comparator compares the two 8 -bit numbers by cascading of two 4 -bit comparators.
- The circuit connection of this comparator is shown below in which the lower order comparator $\mathrm{A}<\mathrm{B}, \mathrm{A}=\mathrm{B}$ and $\mathrm{A}>\mathrm{B}$ outputs are connected to the respective cascade inputs of the higher order comparator.

