Exp No. 2 Magnitude Comparator

Two 1-bit magnitude comparator

Α	B	E (A = B)	G(A>B)	L(A <b)< th=""></b)<>	
0	0	1	0	0	
0	1	0	0	1	
1	0	0	1	0	
1	1	1	0	0	
		$\bar{A}\bar{B}$ + AB	AB	Ā B	

1-bit magnitude comparator

By: Assistant Professor Maha George Zia

2-bit comparator

- The block diagram of a two-bit comparator which has four inputs and three outputs is shown below.
- * The first number A is designated as A = A1A0 and the second number is designated as B = B1B0.
- ✤ This comparator produces three outputs as G (G = 1 if A>B), E (E = 1, if A = B) and L (L = 1 if A<B).</p>

INPUT				OUTPUT		
Al	A0	Bl	B 0	A>B	A=B	A <b< th=""></b<>
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

Table 1. Truth Table of 2-Bit Magnitude Comparator

Using k-map:

A>B: $G = A0 \overline{B1} \overline{B0} + A1 \overline{B1} + A1 A0 \overline{B0}$

 $A = B: E = \overline{A1} \overline{A0} \overline{B1} \overline{B0} + \overline{A1} A0 \overline{B1} B0 + A1 A0 B1 B0 + A1 \overline{A0} B1 \overline{B0}$

 $=\overline{A1} \ \overline{B1} (\overline{A0} \ \overline{B0} + A0 B0) + A1 B1 (A0 B0 + \overline{A0} \ \overline{B0})$

 $= (A0 B0 + \overline{A0} \overline{B0}) (A1 B1 + \overline{A1} \overline{B1})$

= (A0 Ex-NOR B0) (A1 Ex-NOR B1)

 $A \le B: L = \overline{A1} B1 + \overline{A0} B1 B0 + \overline{A1} \overline{A0} B0$

Two bit comparator logic diagram

 It can be used to compare two four-bit words.
The two 4-bit numbers are A = A3 A2 A1 A0 and B3 B2 B1 B0 where A3 and B3 are the most significant bits.

8-bit comparator

- An 8-bit comparator compares the two 8-bit numbers by cascading of two 4-bit comparators.
- The circuit connection of this comparator is shown below in which the lower order comparator A<B, A=B and A>B outputs are connected to the respective cascade inputs of the higher order comparator.

