## EXP. NO. 5 2'S COMPLEMENT ADDER-SUBTRACTOR

## Full-Adder IC 7483

- inputs are $\mathrm{A}, \mathrm{B}$, and Cl .
- outputs are S and CO

$\mathrm{A}_{1}-\mathrm{A}_{4}$
$\mathrm{~B}_{1}-\mathrm{B}_{4}$
$\mathrm{C}_{0}$
$\Sigma_{1}-\Sigma_{4}$
$\mathrm{C}_{4}$
Operand A Inputs Operand B Inputs
Carry Input Sum Outputs (Note b) Carry Output (Note b)


## Addition and subtraction operations

Using XOR gate properties:

- 1- Mode $\mathrm{M}=1: x \oplus 1=\bar{x}$, the carry in $(\mathrm{Ci})=1$, and the
- output $=\mathrm{A}+(2$ 's complement of B), we have subtraction operation
- 2 - Mode $\mathrm{M}=0: x+0=\mathrm{x}$, the carry in $(\mathrm{Ci})=0$, and the
- output $=\mathrm{A}+\mathrm{B}$, we have addition operation


## four bit binary parallel adder



## Adder-Subtractor using IC 7483



Example: Given the two binary numbers $\mathrm{X}=1010100$ and $\mathrm{Y}=1000011$, perform the subtraction (a) X - Y and (b) Y - X using 2's complements


There is no end carry.
Answer: $Y-X=-(2$ s complement of 1101111$)=-0010001$

Example: Given the two binary numbers $\mathrm{X}=1010100$ and $\mathrm{Y}=1000011$, perform the subtraction (a) X - Y and (b) Y - X using 1's complements
(a) $X-Y=1010100-1000011$

| $X$ | $=$ | 1010100 |
| ---: | ---: | ---: |
| 1 's complement of $Y$ | $=$ | $+\underline{0111100}$ |
| Sum | $=$ | $\square$ |
| End-around carry |  | $\square+10000$ |
| Answer: $X-Y$ | $=$ | 0010001 |

(b) $Y-X=1000011-1010100$

$$
\begin{aligned}
& Y= \\
& \text { I's complement of } X= \\
& \text { Sum }= \\
&+\frac{01010011}{1101110}
\end{aligned}
$$

There is no end carry.
Answer: $Y-X=-(1$ 's complement of 1101110$)=-0010001$

Complemented 4-bit output

## Circuit for 1's complement (4-bit)



